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Abstract— The present paper proposes an auditory BCI
paradigm for systems based on P300 signals which are gen-
erated by auditory stimuli characterized by different sound
typologies and locations. A Head Related Transfer Function
approach is adopted to virtualize auditory stimuli. When
virtualized audio is used, the user has to focus the attention both
on the type and location of the stimulus, thus generating P300
signals whose amplitude is higher than that generated without
audio virtualization. Classification is performed by Support
Vector Machines in which gaussian radial basis functions are
used as kernel functions. The system has been validated with 14
users, who were asked to choose one among five common spoken
words, previously virtualized and transmitted to stereophonic
headphones. Classification results prove that the proposed
auditory BCI system performed similarly to common visual
BCI P300 systems, representing then an alternative to visual
BCI for users with visual impairments.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are devices which trans-
late the brain activity of the user into specific signals, which
may be used for communicating or controlling external
devices [1], [2] without the use of peripheral nerves and
muscles [3]. BCIs represent an interesting option to people
affected by neuromuscolar disorders, but whose brain activity
is normal, such as in patients affected by Amyotrophic
Lateral Sclerosis (ALS).

In the literature three different types of stimuli are com-
monly adopted to drive a BCI: visual stimuli, tactile stimuli
and auditory stimuli. Visual stimuli were the first to be stud-
ied, and typically lead to the best classification results [4],
[5]. Visual stimuli, however, can not be used when the
user’s sight has been compromised (e.g. limited horizontal
eyes movement, incapability to focus the gaze, etc . . . ),
which is the most critical problem faced by both visual
BCI and non-BCI systems (such as Eye Gaze systems [6]).
In these cases tactile stimuli and auditory stimuli can be
adopted instead. Tactile BCI proved to be a good choice for
navigation purposes [7]–[9], but only recently it has been
used as a communication device [10]. Different typologies
of ElectroEncefaloGraphic (EEG) signals have been used in
the literature for developing auditory BCIs (e.g. cortical po-
tentials, sensorimotor rhythm, steady state evoked potential
and P300), and auditory BCIs represent at the moment the
most suitable alternative to visual BCI.

Slow Cortical Potential (SCP) signals were studied in [11].
The users involved in the experiment received either visual,
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auditory or combined visual/auditory feedback of their SCPs.
Results showed that even if the visual feedback led to the
highest number of correct answers, auditory stimuli could
be used as well. In [12], instead, the authors adopted an
auditory BCI driven by the Sensory Motor Rhythm (SMR)
signal. Experimental results showed that auditory stimuli
led to similar final results as visual stimuli, even if in the
first case the training time was longer. A different approach
to auditory paradigm exploits the Steady-State Auditory
Evoked Potentials (SSAEP). These are elicited by click-
trains, amplitude/frequency modulated tones. A steady-state
response is represented by a significant amount of power at
the modulation amplitude/frequency of a stimulus [13]. Many
of the auditory BCIs available in the literature, however, are
based on the P300 component of the Event Related Potential
(ERP). In [14] P300 responses to two simultaneous auditory
stimulus streams were classified. The users had to choose
among one of the two streams and focus their attention by
counting the target stimulus. The outcome of the experiment
was that a user could possibly direct his/her attention using
auditory stimuli only. In [15] a four-choice BCI was tested
with both healthy users and patients affected by ALS. The
users were presented auditory and visual stimuli and they
had to choose the words “yes” or “no” among “yes”, “no”,
“pass” and “end”, according to a classic Oddball Paradigm
(OP). The results showed that a target probability of 25% was
enough to elicit a reliable P300 signal both in healthy users
and ALS patients. A P300 speller driven by auditory stimuli
was first presented in [16]. The authors created a 5×5 letter
matrix similar to that adopted in common visual P300 BCI
spellers (see [17]). Column and row flashes were replaced
with auditory stimuli that were coded to particular columns
and rows in the matrix (i.e. spoken number of column and
row). Even if the presence of a visual support matrix was
still needed, more than half of the users were able to focus
their attention so that the auditory stimulus could be correctly
detected and classified, even if with an average accuracy and
bit rate lower than those achievable through visual BCIs.
Similar results were obtained in [18], where the authors
extended the letter matrix to 36 characters and added visual
cues early in the training phase. A larger amount of choices
did not compromise the classification performances, while
the addition of visual cues allowed for a better accuracy
during the online phase.

The above mentioned articles prove that auditory BCI
is a possible alternative to visual BCI, however at the
cost of lower classification scores and average bit rates.
An alternative method to improve performances has been
presented in [19], where the authors adopted spatial auditory
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stimuli. Users had to sit in the middle of a room surrounded
by five speakers with 45◦ angle between them. All speakers
were given a unique complex audio stimulus, so that the
discriminating cue was both the physical property and spatial
location of the stimulus. The results showed an increment in
the classification score w.r.t. the case where a single speaker
only was adopted. Moreover by increasing the number of
runs (times that the audio stimuli were repeated) it was also
possible to achieve results similar to that of visual BCIs,
however impacting negatively on the bit rate.

The main drawback of the proposed solution was that the
user had to stand still in the middle of a room surrounded by
speakers. The present paper tries to overcome this obstacle
by using a single stereo headphone where audio stimuli are
virtualized. Sound virtualization has already been studied in
[20] to show that spatial location can be a cue determining
factor for BCI applications. The auditory paradigm presented
in this work aims to give the user the opportunity to choose
one between five different audio stimuli, retaining at the
same time the possibility for the user to be moved within the
home environment. Moreover the audio stimuli presented to
the users are simple words referred to common daily life
activities, rather than audio tones set at specific frequen-
cies [11], [14], [19], [20], numbers [16], or instrumental
sounds [12], [18]. It is the authors claim that the use of
words of the common language in auditory BCIs can lead to
a straightforward communication paradigm, reducing at the
same time the training time needed to use the BCI correctly.

The article is divided as follows. Section II describes how
spatial hearing have been adopted for developing the pro-
posed auditory BCI. The methodology, the hardware and the
software adopted to perform the tests are described in Section
III. In section IV the results are presented and discussed.
Final remarks and possible future research prospectives are
given at the end of the paper.

II. SPATIAL AUDIO

Given an audio source in a room, the human ear can
perceive mainly two information: the sound and the position
of the source. In anechoic chamber, in case of source
in front of the listener, the human auditory system can
recognize variation of sound source direction of about 1◦

on the horizontal plane. In case of source behind or beside
the listener, the sensibility significantly decreases to about
10◦. On the vertical plane there are no differences between
sources in front of and behind the listener and also in this
case the order is about 10◦ [21]–[23].

In order to obtain spatial audio, one of the most used
technique is the binaural recording: the aim is to get a very
realistic recording of a sound event, which takes place in
a real environment, through a single pair of microphones,
placed on an artificial head at the ears. In this paper we are
interested in obtaining spatial audio which can later be used
as auditory stimulus directly fed into the user’s headphone:
the binaural recording thus represents a natural approach
to obtain highly realistic sound images. In this context the
Head Related Transfer Function (HRTF) assumes a great

(a) The five audio stimuli directions, played by headphones,
with an off-set of 45◦.

(b) Schematic of left and right HRTF relative to a sound
source coming from a well-defined direction α.

Fig. 1. Spatial hearing

importance. HRTF is an impulse response that describes how
a sound coming from a well-defined direction is perceived
by the human ear. With a set of two HRTFs, one for each ear,
any direction of sound source propagation can be synthesized
(Fig. 1(b)).

Therefore, given the left and right HRTFs relative to a
desired sound direction α, a mono signal s becomes directive
through the operation of convolution:

outR = s ∗ HRTFR(α) (1)
outL = s ∗ HRTFL(α) (2)

Database of HRTFs for several sound directions in ane-
choic environment can be found in the literature: the one
used in this work has been realized by MIT Media Lab [24].

Five audio signals, namely the words “bathroom”, “bed-
room”, “kitchen”, “help” and “stop” have been virtualized
through the use of ten different HRTFs, i.e. five different
sound directions per ear with an off-set of 45◦ (Fig. 1(a)).

III. TESTING METHODOLOGIES

A. Participants

Fourteen healthy subjects (10 males, 4 females, mean age
25.4, standard deviation± 2.85, range 22−33) participated in
the study. All subjects were volunteering group members and
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Fig. 2. Electrode set for recording and analysis. Eight data channels are
according to the International 10-20 electrodes system; the reference and
ground electrodes are selected as the left earlobe and the left mastoid,
respectively.

had some previous experience with visual BCI, mainly based
on imagined movement and P300 tasks. No one had previous
experiences with auditory BCI. The lack of experience is not
a main issue: the proposed BCI system, based on auditory
stimuli represented by common spoken words, is simpler
to use than auditory BCI systems in which stimuli are
represented by tones or instrumental sounds, thus requiring
short training phase.

B. Data acquisition

The EEG was recorded monopolarly using an electrode
cap with 8 active high-purity gold (Au) electrodes (g.tec
medical engineering GmbH) following the American Elec-
troencephalographic Society modified version of the 10-20
system [25]. These are located at positions Fz, Cz, Po7, P3,
Pz, P4, Po8, and Oz (see Fig. 2). Channels are referenced to
the left earlobe and grounded to the left mastoid. Signals
were acquired and amplified using a g.MobiLab+ (g.tec
medical engineering GmbH, Germany). Data collection and
stimulus presentation were controlled by the BCI2000 soft-
ware package [26].

C. Procedure

Prior to recording periods, participants were asked to
minimize eye movements and muscle contractions during the
experiment. Each participant was equipped with stereophonic
headphones, and was requested to repeatedly fulfill the
following auditory task: listen to a sequence of five words
and focus his/her attention when the target word was played
(i.e. mentally counting how many times the target word was
listened to). Each run contained 1 target word and 4 non-
target words: both the sequence of the five words and their
spatial orientation were randomly chosen. The users were not
requested to consciously identify the word spatial orientation,
however this association is unconsciously made by the users,
thus increasing the P300 activity as already shown in [19].
Each run was repeated 150 times, for a total of 750 audio
stimuli of which 150 were target stimuli and 600 non-target
stimuli. A ratio of 1 to 5 between target and non-target

stimuli has been shown to be rare enough to produce a
P300 response [15]. A stimulus duration of 1500 ms and
an Inter Stimulus Interval (ISI) of 250 ms were chosen.
Electrooculogram (EOG) was not recorded, then the artifact
rejection was not considered, but the artifact reduction was
implemented using the following filters: a high pass filter at
0.1 Hz, a low pass filter at 30 Hz and a notch filter at 50
Hz. A Common Average Reference (CAR) spatial filter was
applied to the temporal filtered signals [27]. Acquired signals
were segmented into epochs of 800 ms starting at the onset
of a stimulus. The data, that was originally sampled at a rate
of 256 Hz, was decimated and moving average filtered by
a frequency of 20 Hz. This resulted in 150 target trials (i.e.
number of audio stimuli listened) and 600 non-target trials.

A Support Vector Machine (SVM) was used for data
classification [28], [29], with the following gaussian radial
basis function used as kernel function:

φ(‖xi − xj‖) = e−a‖xi−xj‖, (3)

where xi, xj , are the i-th and j-th data sample. The kernel
function parameter a is chosen as the value that maximizes
the average between the target and non-target classification
accuracy. To increase sensitivity, outcomes of multiple runs
for the same task can be averaged. In this way, the influence
of single trials can be decreased and the selection score can
be more robust. One possibility is to average the raw trials
timeseries for each task and classify them as a single trial.
Another option is to classify each original trial individually
and average over the classifier scores: which implies the
use of two or more iterations (i.e. number of runs repeated
before the classificator generates the output). We opted for
this second approach, since it showed better performances.

Datasets from the BCI experiments contained four times
more non-target stimuli than targets. Although the classifica-
tion task is essentially binary, chance level for classification
is 80%, which could potentially be obtained by simply
assigning all samples to the non-target group. Therefore,
to evaluate the performances different type of classification
accuracy indexes are considered.
• The classification accuracy, which refers to the binary

classification and is defined as the percentage of trials in
which both the target or non-target stimuli are correctly
scored.

• The target accuracy, which is defined as the percent-
age of trials in which a target stimulus is correctly
scored.

• The non-target accuracy, which is defined as the
percentage of trials a non-target stimulus is correctly
scored.

• The selection accuracy, which denotes the percentage
of trials in which the BCI system returns the target
action thought by the user.

The selection accuracy index is evaluated for all iterations,
therefore it is the average of the classifier scores for each
trial. In order to have a single target output from the BCI
system, just the target which has the largest classification
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output is chosen thus multiple targets are not allowed and
one target always exists.

D. Information transfer rate

The Information Transfer Rate (ITR) measures the amount
of information carried by every selection and, is a per-
formance index for the evaluation of BCI systems. The
ITR facilitates the performance comparison with other BCI
applications and it is calculated in bits per selection with the
following formula [30]:

B = log2N + P log2 P + (1− P ) log2
(
1− P
N − 1

)
, (4)

where N represents the number of classes (five in the present
case of study) and P is the selection accuracy. The ITR in
bits per minute was obtained by multiplying the bit rate B
by the classification speed V , that is the average number of
selections per minute, as follows:

ITR = B · V. (5)

Eq. (4) shows that even though the selection accuracy may
increase when using two or more iterations, the ITR may
stay the same or even decrease when V decreases, that is
to say when selection takes more time. This is typically the
case of our auditory BCI, which requires audio stimuli of
long duration based on words of common language rather
than digital tones.

IV. RESULTS

A. Classification performance

Table I gives the classification, target and non-target
accuracy for the BCI experiment when the SVM is required
to perform a classification within a single run. In this case
only one subject reaches 70% of target accuracy, while
the remaining subjects scored a target accuracy below the
70% limit, which is assumed to be the minimal limit for
useful BCI operations [31]. Please note that target accuracy
being lower than non-target accuracy is considered normal:
whenever the ratio between target and non-target words is
small, the classificator tends to weight non-target words more
than target ones. When using multiple iterations, instead, the
score went up quickly for most of the subjects, as shown in
Fig. 3, which summarizes the selection accuracy in function
of iterations required by the SVM to perform classification,
for users 1, 5, 6, 8, 9 and 13.

The average value of iterations to reach the 70% selection
score is 5, as shown in Fig. 4. Mean selection score for a
single run is about 50%, as shown in Fig. 4 and table I.
The participants reached the 80% selection score after ten
iterations and 90% after fourteen iterations.

Fig. 5 shows the boxplot of the selection score for all
iterations. On each box, the central mark is the median,
the edges of the box are the lower and higher quartiles.
When the lower quartile is considered, seven subjects are
over the 70% selection accuracy. Considering the median, six
subjects are over the 70% selection accuracy. If the higher
quartile is considered, instead, eleven participants are over

TABLE I
CLASSIFICATION ACCURACY, TARGET ACCURACY AND NON-TARGET

ACCURACY FOR AUDITORY STIMULI (STIMULUS DURATION 1500 ms,
ISI 250 ms) WITHIN A SINGLE RUN. PEAK AMPLITUDE FOR THE

AUDITORY CONDITION IS DETERMINED AS THE MAXIMUM AMPLITUDE

IN THE RANGE FROM 0 TO 800 ms.

Participant Classification Target Non-target
accuracy (%) accuracy (%) accuracy (%)

1 76,8 42,0 85,5
2 78,8 44,0 86
3 84,0 51,6 90,7
4 82,9 48,4 90,0
5 84,0 52,0 90,4
6 78,0 33,9 86,8
7 86,2 58,1 92,0
8 82,5 47,3 89,5
9 78,9 36,7 87,3
10 87,3 61,3 92,7
11 82,5 47,3 89,5
12 80,2 40,6 88,1
13 90,6 71,0 94,7
14 85,1 54,8 91,3
Mean 82,5 49,1 89,6
SD 3,9 9,7 2,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
30

40

50

60

70

80

90

100

Iterations

S
e
le

c
ti

o
n

 a
c
c
u

ra
c
y
 %

 

 
Participant 1

Participant 5 

Participant 6

Participant 8

Participant 9

Participant 13

Fig. 3. Selection scores, for auditory stimuli (stimulus duration 1500 ms,
ISI 250 ms), plotted as a function of the number of iterations for the users
1, 5, 6, 8, 9 and 13.

the selection score limit, and only subjects number 6 and 11
are below. Subject 6, with the minimum selection value, does
not reach the 70% selection score. The maximum selection
score achieved is 99% and the minimum is 32.3%. Selection
scores are comparable to those achievable with visual and
auditory P300 spellers [16].

B. ITR performance

ITR performances are shown in Fig. 6 for six participants.
When using multiple iterations, ITR for most subjects went
down quickly as shown in Fig. 6. This is a consequence of
the classification speed (V ) reduction: since ISI is 250 ms
and stimulus duration is 1500 ms, each additional iteration
increases the classification time of 1750 ms by no trials
within each run (i.e 7.5 s).

The worst ITR is 0.2 bits/min, the best result is 3.8
bits/min, which is achieved by the seventh participant. The
average value of iterations needed to reach the 70% selection
score is 5. At this iteration value, ITR is 1.3 bits/min as
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Fig. 4. Mean selection accuracy, for auditory stimuli (stimulus duration
1500 ms, ISI 250 ms), plotted as a function of the number of iterations
for fourteen participants.
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Fig. 5. Selection accuracy boxplot, for auditory stimuli (stimulus duration
1500 ms, ISI 250 ms), of all participants. Boxplot is evaluated with all
iterations.

shown in Fig. 7. Mean ITR for one run is 2.4 bits/min,
as shown in Fig. 7. When the participants reach the 80%
selection score after ten iterations, the ITR is 1 bits/min.
After fourteen iterations, which corresponds to 90% selection
accuracy, ITR is 0.9 bits/min. Fig. 8 shows the boxplot
of the ITR for all iterations. The boxplot shows that seven
subjects are, for all iterations, below 1 bits/min and seven
subjects are above this value. The best ITR median is 1.8
bits/min, which is achieved by subject 13. Subject 6 shows
the worst ITR performances.

ITR are not high compared to visual and auditory P300
spellers [16]. ITR performances, as shown in Eq. (4) and (5),
depend from speed and selection accuracy. Speed is related
to stimulus duration and ISI. In the present study, the time
interval, between the onset of one stimulus until the next,
is 1.75 s, that is much higher respect to visual and auditory
P300 speller based systems. This high time interval entails
a lower ITR but a more natural way of communicating with
the user, because the subject has not to pay attention to
different tones, timbres or pitches but to single words only.
ITR results are comparable to those achievable by auditory
P300 in BCI [18] and [19].

V. CONCLUSION

Visual BCI systems have been intensively researched in
the literature, however they can not be adopted by users
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Fig. 6. ITR for auditory stimuli (stimulus duration 1500 ms, ISI 250 ms),
plotted as a function of the number of iterations for the subjects 1, 5, 6, 8,
9 and 13.
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Fig. 7. Mean ITR, for auditory stimuli (stimulus duration 1500 ms, ISI
250 ms), plotted as a function of the number of iterations for fourteen
participants.

suffering of visual impairments. Auditory BCI systems rep-
resent a valid alternative, even if they yield to lower classi-
fication scores. Our contribution was that of developing an
auditory BCI system which tries to overcome this obstacle by
using a stereo headphone where audio stimuli are virtualized.
Sound spatial location can be a cue determining factor for
BCI applications. When the user has to focus the attention
both on the type and location of the stimulus, then generated
P300 signals have an higher amplitude than without audio
virtualization.

The proposed sound virtualization procedure is based on
Head Related Transfer Function: an impulse response that
describes how a sound coming from a well-defined direction
is perceived by the human ear. With a set of two of these
transfer functions, one for each ear, any direction of sound
source propagation can be synthesized. The classification is
realized using Support Vector Machines based on gaussian
radial basis functions used as kernel functions.

The results obtained with a group of 14 users show
that classification and selection accuracy are comparable
to those achievable with visual BCI systems. However the
average bit rate is lower than that of visual BCI and BCI
using tonal audio stimuli. This is due to the typology and
duration of the chosen audio stimuli, namely the following
spoken words: “bathroom”, “bedroom”, “kitchen”, “help”
and “stop”. The use of words of the common language in
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Fig. 8. ITR boxplot for auditory stimuli (stimulus duration 1500 ms, ISI
250 ms), of all participants. Boxplot is evaluated for all iterations.

auditory BCIs can lead to a straightforward communication
paradigm, reducing at the same time the training time needed
to use the BCI correctly. The authors preferred usability
over bit rate since auditory BCIs are typically designed for
people with severe physical impairments, which cause the
impossibility of moving the eyes (e.g. patients affected by
Amyotrophic Lateral Sclerosis). In these cases short training
times and system simplicity may be more important than
communication data rate.

The authors are currently considering two possible future
developments for the auditory BCI paradigm. The first is
related to study all the possible experiment variations (e.g.:
to focus the attention both on the target word and its
spatial location, to increase/decrease the number of sound
directions, etc . . . ) in order to evaluate both the classification
performances and usability of the different solutions. The
second one is related to the testing phase and to obtain a more
accurate set of indices by increasing the number of users.
Both the aspects are under investigation and should provide
an improvement to the system and a better comparison of
the system to those which have already been presented in
the BCI literature.
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