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Abstract— In this paper, we investigate the property of an
impulse force generator based on snap-through buckling of a
robotic closed elastic rod which is considered as one of good
examples of continuum robots. The impulse force generator
considered here utilizes a snap through buckling of an elastic
rod where its base end is pinned and driven by a rotary actuator
forcibly while the tip end is pinned or clamped to the fixed point.
One of the most fundamental design problems is to maximize
the released elastic energy at each buckling state subject to
limited ranges of driving torque and angle of a given actuator.
From this design viewpoint, we show two findings obtained from
quasi-static planar shape transition simulation of the closed
elastica, which will be useful for a design of the robot, that
is, the ratio of the elastica length and the endpoint distance
decides 1) the buckling angle which relates to the range of an
actuator driving angle, and 2) the released elastic energy per
the maximum driving torque. We also provide a mathematical
description of snap-through buckling based on which we can
measure a distance to a buckling point.

I. INTRODUCTION

Continuum robots have been recognized as one of im-
portant research fields in robotics recently. Starting form
biologically-inspired motivations [1]–[6], this type of robots
is considered to be potentially useful, especially for medical
applications [7]–[11]. Our research group has focused on
another type of continuum robots which has a function
of impulse force generation [12]–[17]. The impulse force
generator considered here utilizes a snap through buckling
of an elastic rod where its base end is pinned and driven
by a rotary actuator forcibly while the tip end is pinned or
clamped to the fixed point. This robotic device can be utilized
as an artificial muscle of compact mobile robots [12]–[17].
One of the most important design problems of this robotic
device is to maximize the released elastic energy at each
buckling state subject to limited ranges of driving torque and
angle of a given actuator. However, any systematic design
procedure has not been provided yet, and design parameters
for the robot have been decided by trial and error.

In this paper, we investigate the property of an impulse
force generator based on snap-through buckling of a robotic
closed elastic rod which is considered as one of good
examples of continuum robots. From a design viewpoint, we
show two findings obtained from quasi-static planar shape
transition simulation of the closed elastica, which will be
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useful for a design of the robot, that is, the ratio of the
elastica length and the endpoint distance decides 1) the
buckling angle which relates to the range of an actuator
driving angle, and 2) the released elastic energy per the
maximum driving torque.

II. MODELING

A. Closed elastica as impulse force generator

The closed elastica is a bended elastic strip whose both
ends are pinned or clamped to fixed points (Fig.1). The
closed elastica is said to be robotic if we can apply torques
at certain points on the elastica, typically at a pinned end by
a rotary actuator so that the elastica can deform actively. By
driving the actuator gradually, the elastica deforms gradually,
but at some point a drastic shape change of the elastica may
occur. This process is called snap-through buckling. If we
put an object on the way of the shape trajectory around
a snap-through buckling state, an impulsive force will be
generated at the point of contact between the object and the
elastica under snap-through buckling. Therefore, the robotic
closed elastica can be utilized for impulse force generation
by making use of snap-through buckling.

Although a wide variety of mechanisms of the robotic
closed elastica has been already found [12]–[17], we focus
on two fundamental planar mechanisms in this paper. One
mechanism is called the planar basic type, where the base
end of the elastica is connected to the axis of an active joint
(i.e., pinned and driven by a rotary actuator) while the tip end
is connected to the axis of a free joint (i.e., just pinned), and
these two joints are perpendicular to the plane on which the
backbone curve of the elastica always lies (Fig.2). The other
is called the planar simplest type. This is almost same as the
planar basic type, but only difference is that the tip end is
not pinned but clamped with angle ϕend from the direction
of the line connecting the both ends (Fig.3).

In order to maximize the ability of the robotic closed
elastica for impulse force generation, we have to design it so
as to maximize the released energy by snap-through buckling
subject to limited ranges of an actuator torque and angle.
Typical important design parameters of the robotic closed
elastica are the size of an elastic strip, i.e., length L, thickness
t and width w, and the distance between the both ends of
the strip, d, as shown in Fig.1. Moreover, we choose the way
of fixing the tip end, i.e., pinned or clamped. Modeling and
simulation of the robotic closed elastica are required for such
a design.
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Fig. 1. closed elastica

B. Kinematics

Consider the Cartesian coordinate frame so as to align the
x axis with the direction of the line from the base end to
the tip end of the elastica, and align the z axis with the
direction of the active joint axis. The y axis is taken such
that the coordinate frame is right-handed. Note that, in this
coordinate frame setting, the backbone curve of the elastica
always exists on the x-y plane. (See Fig.4 for the case of the
planar basic type).

Let σ ∈ [0 L] be the arc-length parameter, and θ(σ) ∈ R
the curvature of the backbone curve at σ. It is known that
the position vector p(σ) ∈ R3 and the orientation matrix
of the Frenet frame Φ(σ) ∈ SO(3) at σ are governed by the
differential equations w.r.t. σ called the Frenet-Serret formula
[20]. In the case of plane curves, the solutions can be written
by

p(σ) =

[ ∫ σ

0

cosϕ(η)dη

∫ σ

0

sinϕ(η)dη 0

]T
(1)

Φ(σ) =

 cosϕ(σ) − sinϕ(σ) 0
sinϕ(σ) cosϕ(σ) 0

0 0 1

 (2)

where ϕ(σ) ∈ R is the absolute angle, i.e., the angle of the
tangent of the backbone curve at σ from the x axis. This
absolute angle can be expressed by

ϕ(σ) =

∫ σ

0

θ(η) dη + u (3)

where u ∈ R is the absolute angle at the origin. This angle
is exactly the control input for changing the shape of the
elastica, and is called the base angle.

Fig. 2. Planar basic type

Fig. 3. Planar simplest type

Since the tip position is fixed to the point with distance
d apart from the origin in the x direction, the following
boundary condition should be satisfied:

p(L) = dex (4)

where ex = [1 0 0]T is unit vector in the x direction. (We
also define the unit vectors in the direction of y and z axes
in the same manner.)

In the case of the planar simplest type, the following
boundary condition has to be satisfied additionally:

ϕ(L) = ϕend (5)

C. Statics

Based on the elastica theory [18], assume that the elastic
rod is unshearable and inextensible, and moreover, satisfies
the following constitutive equation which means that the
moment at σ is uniformly linear in the curvature :

τ(σ) = kθ(σ) (6)

where k is a proportional constant showing the bending
elasticity of the rod. The elastic energy stored in the rod,
E ∈ [0 ∞), can be written by

E =

∫ L

0

1

2
kθ2(σ)dσ (7)

In the static case, the following Euler equation expressing
torque balance 1 holds:

kθ(σ) = eTz {(p(L)− p(σ))× λ}+ τe (8)

1Equation (8) can be derived by straightforward application of calculus
of variation [19]. The detailed derivation can be found in [21] although only
Japanese paper is available now.
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Fig. 4. Geometry of elastica shape on plane

Fig. 5. Multi-link approximation of elastica shape

where λ ∈ R3 is the constraint force by which the tip
position p(L) always stays at the point dex, and τe ∈ R
is the constraint torque by which the tip orientation is kept
with the angle ϕend in the case of the planar simplest case.

Note that k and the pair of λ and τe have linear relation
for any σ in the balance equation. Therefore, proportional
change of k leads to proportional change of λ and τe, but
does not affect its shape.

To keep the base angle u, the driving torque by the
actuator, τ , has to support the elastic moment at σ = 0.
Thus, τ is written by

τ = −kθ(0) (9)
= −eTz {(p(L)− p(0))× λ} − τe

= −dλTey − τe (10)

D. Discrete Equivalent

Here we consider a discretized model of the closed elastica
which will be utilized for numerical simulation and param-
eter identification and so on.

We approximate a smooth backbone curve of the contin-
uum closed elastica by a polygonal line having n nodes and
links with length l = L/n (Fig.5). We call this n the number
of partition. These nodes and links are numbered from 0 to
n from the base side. Let θi ∈ R be the relative angle from
the direction of link i−1 to that of link i. Then, the position
of the i-th node, pi ∈ R3, and the orientation matrix of the
i-th link, Φi, are given by

Φi =

 cosϕi − sinϕi 0
sinϕi cosϕi 0
0 0 1

 (11)

pi =

[
i∑
1

l cosϕi

i∑
1

l sinϕi 0

]T

, (12)

where ϕi ∈ R is the absolute angle from link i and the x axis.
The relationship between the relative angle and the absolute
angle is written by

ϕi =
i∑
1

θi + u (13)

where u is the base angle appear in the continuous model.
Since the position of the tip of the approximated polygonal

line, pn, also has to stay at the point dex, the following
boundary condition should hold:

pn = dex (14)

Furthermore, in the case of the planar simplest type, since
the direction of the tip is also fixed, the following boundary
condition has to be satisfied additionally:

ϕn = ϕend. (15)

Notice that if the number of partition, n, is sufficiently
large, we can expect that pi ≈ p(i · l) and θi ≈ θ(i · l),
because the polygonal line converges to the continuous
curve to be approximated. Then, we consider the following
discretized torque balance equation:

kdθi = eTz (pn − pi−1)× λ+ τe, (16)

where kd is a positive constant corresponding to the bending
elasticity k, and is called the discretized bending elasticity.
Note that, for this discretized version of the torque balance
equation, the linear relationship between the elasticity and
the constrained wrenches still holds. Therefore, change in kd
does not affect the shape of the discretized closed elastica.

If the number of partition, n, is sufficiently large, we can
also expect that kd ≈ k. The discrete version of the elastic
energy, Ed, is given by

Ed =
1

2

i∑
1

kdθ
2
i . (17)

Furthermore, the driving torque by the actuator is expressed
by

τ = −kdθ1 (18)
= −eTz {(pn − p0)× λ} − τe

= −dλTey − τe. (19)

Therefore, the driving torque is proportional to the bending
elasticity in the discrete model as well.

III. SIMULATION ANALYSIS

Using the discretized model derived in the previous sec-
tion, we carry out quasi-static shape transition simulation of
the closed elastica where equilibrium shapes are calculated
for step by step change of the base angle. Based on the
simulation, we can see basic properties of the closed elastic
useful for designing the impulse force generator, for example,
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Fig. 6. shape transition of closed elastica for free end
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Fig. 7. shape transition of close elastica for fixed end

the released elastic energy at snap-through buckling, the
necessary range of the driving angle and so on, although
dynamic behaviors, such as motions during snap-through
buckling cannot be taken into consideration here.

A. Simulation Method

First, we tentatively determine a set of θ1, θ2, · · · θn, the
constraint force λ, and the constrained torque τe. From equa-
tion (12) , (13), we compute p1,p2, · · · ,pn recursively. Next,
we update θ1, θ2, · · · , θn by using equation (16) recursively
to satisfy the torque balance equation. Third, we obtain
the shape of the elastica by computing p1,p2, · · · ,pn from
equation (12) again. Then, we update the constrained force
and torque according to the errors between pn and dex and
ϕn and ϕend. We repeat the above process until the errors
become sufficiently small, and then increase the base angle
u. In the case of the planar basic type, we do not need to
calculate the constrained torque, because we always have
τe = 0.

B. Simulation of snap-through buckling

Here we show the result of simulation of shape transition.
In this simulation, we set kd = 0.002[Nm2], l = 5[mm].
We change the base angle u with the amount of 1[deg]
from -75[deg] to 75[deg], and vice versa. Fig.6 is the stick
diagram of the shape simulation of the planar basic type for
d = 100[mm], L = 140[mm], with drawing the curves at
every 10[deg] of the base angle. The dashed curves show the
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Fig. 8. Driving torque
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Fig. 9. Stored elastic energy

backbone curves during the upward motion, while the solid
curves show the downward one. The four thick curves, A,
B, C, and D, in the figure express the shapes just before and
after the snap-through buckling. That is, the snap-through
buckling occurs from dashed curve A to B upward, and from
solid curve C to D downward. We can see that the diagram
is symmetric with respect to the x axis.

Fig.7 is the stick diagrams of the shape simulation of
the planar simplest type for d = 100[mm], L = 140[mm],
ϕend = +10[deg](left) or −10[deg](right), with drawing the
curves at every 15[deg] of the base angle. In this case, we
obtain asymmetric diagrams w.r.t. the x axis.

Fig.8 and Fig.9 show the graphs of the necessary driving
torque and the stored elastic energy for the base angle change
in the case of the planar base type (dashed curves) and the
planar simplest type with ϕend = 10[deg] (solid curves),
respectively, under the conditions that d = 100[mm], L =
140[mm]. The four point on the dashed curve in each figure,
A, B, C and D, correspond to the shapes of curves A, B,
C and D in Fig.6. From point A to B, i.e, during the snap-
through buckling, for example, sudden drops in the driving
torque and stored elastic energy can be seen in these figures.
We can also see the change in the necessary driving torque
and the stored elastic energy when we change the way to fix
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Fig. 10. Maximum driving torque for ϕend=0
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Fig. 11. Released elastic energy for ϕend=0

the tip of an elastic strip.
Here note that in this simulation, we do nothing special for

simulating snap-through buckling. The drastic shape change
can be calculated according to the numerical computation
property that it is difficult to find a higher elastic energy
solution around the point of snap-through buckling.

C. Findings from Simulation

Here we focus on the ratio of the elasitica length and
the endpoint distance L/d, and the maximum driving torque
τmax as well as the angle when the snap-through buckling
occurs, and the released elastic energy ∆E.

Fig.10 is the graph of the maximum necessary driving
torque τmax for L/d. The horizontal axis means the ratio
L/d while the vertical axis denotes the maximum necessary
driving torque τmax[Nm]. The solid, dashed and dotted
curves correspond to the conditions d = 100, 90, 80[mm],
respectively. If the ratio L/d is same, the larger the maximum
necessary driving torque is, the smaller the endpoint distance
is.

On the other hand, Fig.11 is the graph of the released
elastic energy for L/d. The horizontal axis means the ratio
L/d while the vertical axis denotes the released elastic
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Fig. 12. Snap-through buckling Angle for ϕend=0
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Fig. 13. Ratio of released elastic energy and maximum driving torque for
ϕend=0

energy ∆E[Nm]. In this case, the larger the ratio L/d is,
the larger the released elastic energy is.

Fig.13 is the graph of ∆E/τmax for L/d. The horizontal
axis means the ratio L/d while the vertical axis denotes the
ratio ∆E/τmax. Plots ◦, × and ∗ correspond to the conditions
d = 100, 90, 80[mm], respectively. We can see that the larger
ratio L/d is, the larger the ratio ∆E/τmax is. Here note
that even if endpoint distances are different, all the plots
are on the same curve. Therefore, we can say that the ratio
L/d determines the released elastic energy for the maximum
necessary driving torque.

On the other hand, Fig.12 is the graph of the snap-through
buckling angle for the ratio L/d. The horizontal axis means
the ratio L/d while the vertical axis denotes the snap-through
buckling angle. Plots ◦, × and ∗ correspond to the conditions
d = 100, 90, 80[mm], respectively. The larger the ratio L/d
is, the larger the snap-through buckling angle is. Here note
that, even if endpoint distances are different, all the plots are
on the same curve again. Therefore, we can say that the ratio
L/d determine the snap-through buckling angle.

We have checked that the above properties are valid for
many other parameters.
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Our research group has already noticed that L/d was
a very important parameter for the impulse force gener-
ator [13]. In this paper, we have succeeded to show the
relationship of L/d to very important quantities for the
mechanism design, i.e., the released elastic energy for the
maximum necessary driving torque and the snap-through
buckling angle, explicitly.

IV. MATHEMATICAL REPRESENTATION OF
SNAP-THROUGH BUCKLING

In this section, we show a mathematical representation of
the snap-through buckling. Without loss of generality, we set
τe = 0 for simplicity.

A. Nonlinear differential equation to express shape transi-
tion

If we fix the base angle ϕ0, we can find the balanced shape
with the corresponding constrained force. Then, we regard
the shape and the constrained force as a function of ϕ0, i.e.
θi(ϕ0) and λ(ϕ0). For the discretized model, θi and λ have
to satisfy following equations:

kdθ1 − eTz (pn − p0)× λ = 0
kdθ2 − eTz (pn − p1)× λ = 0

...
kdθn − eTz (pn − pn−1)× λ = 0

−pn + dex = 0

(20)

The number of the variables, i.e., θi and λ is essentially of
(n+2) because the third (z) element of λ is always zero in
planar cases. Here note that this number is equal to the net
number of constraints expressed by equation (20) because
the last equation is essentially a 2-dimensional constraint for
planar cases. In other words, we use the first two equations in
the last vector equation in (20) since the third one is always
satisfied.

If we differentiate equation (20) with respect to ϕ0,
we obtain the following differential equation about θ :=
[θ1 θ2 · · · , θn]

T and λ:

d

dϕ0

[
θ
λ

]
= g(ϕ0,θ,λ), (21)

where g ∈ Rn+2 is a nonlinear map characterizing the shape
transition. The nonlinear map g can be expressed in terms
of inner and outer products of physical quantities in space
as follows:

g = −S−1
[
c1 c2 · · · cn b1

T
]T

(22)

S =

[
A BT

B 0

]
(23)

[A]ij =

{
δijkd + cj (i ≤ j)
ci (i > j)

(24)

B = [b1 b2 · · · bn] (25)
bi = −ez × (pn − pi−1) (26)
ci = λT (pn − pi−1), (27)

where i, j∈ [1, · · · , n], δij is the Kronecker delta, and S ∈
Rn+2×n+2 is a block matrix constructed from matrices A ∈
Rn×n and B ∈ R2×n. [A]ij stands for the ij element of
matrix A. Again we ignore the third element of vector bi
which is always zero.

Snap-through buckling is a phenomenon that the shape of
the closed elastica drastically changes at a certain driving
angle. The left-hand side of equation (21) expresses small
variation of the shape (i.e., θ, the set of the relative angles)
and the constrained force w.r.t. the driving angle. Therefore,
we can consider that g, which appears in the right-hand
side of equation (21), must become very large when snap-
through buckling occurs. Since g includes the inverse of S,
it is expected that we can express snap-through buckling by
detS = 0, and measure closeness to the point of snap-
through buckling by the value of detS.

B. Validation from Simulation

We check the value of detS during the shape transition
simulation.

Fig.14 is a pair of graphs of detS for the driving angle.
In the both figures, the horizontal axis denotes the driving
angle and the vertical axis means 100 detS. In the upper
and lower figures, we increase and decrease the driving
angle, respectively. We put some figures of the elastica at
the corresponding points on the graphs to show its shapes
during the shape transition. From this figure, we can see that
the determinant of the matrix changes drastically according
to the drastic shape change (around 60 and -60[deg]), which
shows the validity of our mathematical representation of
snap-through buckling.

V. CONCLUSION

In this paper, we showed two properties of the robotic
closed elastica important for its mechanism design as an im-
pulse force generator. The properties were found from quasi-
static shape transition simulation based on rigorous mod-
eling, kinematics, statics and discretization for the robotic
closed elastica. Moreover, we provided a mathematical rep-
resentation of snap-through buckling which could be utilized
for measuring closeness to the point of snap-through buck-
ling.

Here we limited our continuum robot analysis within
quasi-static situations. It is necessary to take dynamics into
account for precise estimation of generated impulse forces
in many applications. Especially, dynamic behavior during
snap-through buckling should be analyzed deeply in the
future. We are also planning to extend our theoretical analysis
to three-dimensional deformation cases where we need to
consider twisting of an elastic rod as well as bending. We
expect that the theoretical analysis presented in this paper
becomes a theoretical footing for these extensions mentioned
above and for other types of continuum robots.
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