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Abstract— Keyframe selection is the process of
finding a representative frame in an image se-
quence. Although mostly known from video process-
ing, keyframe selection faces new challenges in the
lifelog domain. To obtain a keyframe that is close to
a user-selected frame, we propose a keyframe selec-
tion method based on image quality measurements
and excitement features. Image quality measurements
such as contrast, color variance, sharpness, noise
and saliency are used to filter high quality images.
However, high quality images are not necessarily
keyframes because humans also use emotions in the
selection process. In this study, we employ a biosensor
to measure the excitement of humans. In previous
investigation, keyframe selection using only image
quality measurements yielded an acceptance rate of
79.70%. Our proposed method achieves an acceptance
rate of 84.45%.

I. INTRODUCTION

Lifelogging [1] refers to recording daily life using multi-
ple wearable sensors such as a camera to capture images,
a microphone to record conversations and surrounding
sounds, GPS to track positions, and so on. Currently, the
research on lifelog image processing or visual lifelogging
is becoming more active since it has many applications
in medical, touristic or human attention analysis. Since
lifelog image sequences contain many images, the most
important and meaningful frame (keyframe) of each
event should be properly selected. A keyframe can be
one of the frames in the sequence, or multiple images
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Fig. 1. Visualization of image obtained from video sequence
and lifelogging devices. There are obvious differences in frame rate
between both image domains. Noncontinuous image sequences are
obtained from a lifelogging device. This kind of image sequence
poses difficulty as far as event segmentation and keyframe selection
using related features between consecutive frames are concerned.

combined into one summary image [2]. In this study, we
are interested in the selection of only one keyframe from
each image sequence in the event.

Keyframe selection was first used in video process-
ing as a method of selecting a thumbnail picture. The
conventional method selects a keyframe from a fixed
position, such as the middle frame of the sequence [3] for
simplicity and fast processing time. In other methods,
the keyframe is selected based on visual criteria such
as motion [4] or the presence of humans in the image.
In comparison with video processing, where frames are
usually captured at 24-30 fps, images from a visual
lifelog device are passively captured in larger discrete
time intervals, e.g. 1 frame every 30 seconds (0.033
fps) to record daily life activity. Due to the low frame
rate, there are great differences in consecutive images in
lifelog image sequences (as seen in Fig. 1). The keyframe
selection technique, which benefit from the properties of
consecutive frames [4], [3] can not be applied directly in
the lifelog domain.

Visual lifelogging devices are widely available nowa-
days, for example Sensecam [5]. Such a device enables
scenarios such as event capture, story-telling, and mem-
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ory assistance. Doherty et al. [6] proposed a keyframe se-
lection technique for lifelogging based on many wearable
sensors and image features. For evaluation, the method
is compared with the middle frame selection method
and is found to yield improved results. They show that
each sensor has unique benefits in each particular situ-
ations. Amornched et al. [7] proved that this technique
is robust to high variability in passively captured image
collections. They also proposed a keyframe evaluation
framework to evaluate the degree of representativeness
of the keyframe and discussed the nature of position
distribution of the user selected keyframe choices.

Previous keyframe selection techniques rely mainly
on image quality measurements and multi-sensor fusion.
However, there still remain unsolved problems in the
domain of processing passively captured images. One of
the main reasons is that keyframe selection is a highly
subjective issue. From our preliminary experiment when
users select the keyframes by themselves, they do not
consider only image quality, but their emotions are also
involved in the selection process. The emotional compo-
nents are difficult to realize using only vision techniques.

The objective of this study is to automatically select
keyframes for all lifelog events that closely match the
image chosen by the user. Our assumption is that the
most important or memorable moments of human life
are those where humans are emotionally involved. We
propose a keyframe selection method based not only
on image quality but also emotional criteria. We detect
excitement, which is one of the emotional criteria, by
utilizing wearable bio-sensors [8] that the user will wear
alongside the camera. The wearable biosensor quanti-
fies emotional excitement by measuring physiological
responses in skin conductance. Images that satisfy both
image quality and emotional criteria will be selected as
keyframes.

This paper is structured as follows: section II presents
our proposed keyframe selection using image quality
measurements and the excitement feature. We evaluate
our proposed method in Section III. Section IV describes
the experiments and results of keyframe selection. Fi-
nally, our conclusion and future work are discussed in
Section V.

II. METHODOLOGY

When a user manually selects the keyframe from the
enormous amount of images in each event, the user
usually picks the image that has a good quality and
is meaningful for him/her [7]. Therefore, we designed a
method for keyframe selection based on image quality
measurements and excitement features. The structure of
the proposed keyframe selection is shown in Fig. 2.

A. Image Quality Measurements

First, we consider the image quality. To measure the
quality of each image, the following 5 measurements
based on [6], [7] are considered:
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Fig. 2. The structure of the proposed keyframe selection

1) Contrast (m1): The human eye is sensitive to im-
ages that have optimal contrast [9].

2) Color Variance (mg): High color variation in the
image strongly relates to the degree of colorfulness
[6].

3) Global Sharpness (ms): This feature is used to
filter blurry images. The method is implemented
according to [10].

4) Noise (my): Heavily noisy images are rarely pre-
ferred by humans. We measure the noise level as
described in [7].

5) Saliency (ms): Saliency measurement [11], [7] is
used to measure the degree of occlusion in images.

B. Excitement Feature (mg)

To detect human excitement, we use the Q sensor by
Affectiva [12]. This device detects Electrodermal Activity
(EDA). EDA represents the change in the conductivity
of electricity in the human skin, which increases in
cases of emotional arousal, increased cognitive workload
and physical exertion. A low level of EDA can refer
to the situation when a human is inactive or relaxed.
However, EDA offers no indication about the valence of
the emotional state (i.e. it does not distinguish between
being peacefully calm or bored, or between joyous or
angry). For preliminary observations, we investigated the
EDA data when users traveled to new places. During the
highlight moment of the day such as walking through
the castle and souvenir shop (Fig. 3), the EDA value
increased significantly. The keyframes selected by users
were the ones where the EDA value was also relatively
high.

To process the EDA signal, we first filter the raw data
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Fig. 3.  An example of biosensor data corresponding to images

captured by visual lifelogging device

to remove motion artifacts and noise (that appear as
high-frequency spikes). A butterworth low-pass filter was
applied as follows:

Hf) = 0 (1)

i+

where n is the order of the filter, f; is the cutoff
frequency and Hp is the gain magnitude. Note that the
signal is more accurate when the sensors warm to body
temperature, and perspiration appears at the contact
interface. We normalized the data and then map with
the corresponding frames.

C. Keyframe Selection

Since there are 5 image quality measurements and 1
excitement feature involved in making decisions on the
keyframe, the super position principle is used to integrate
all the features. A weighting factor, w;, is introduced to
each measurement and feature. Hence, the image score
(S(k)) is computed from the image features (mj; —ms),
and the bio-physical excitement feature (mg) of each
image at each sampling time is computed by

S =3 “’n(’“) @)

i=1

where m; (k) is the measurement or feature 4 of frame k,
and n; is the variance of each feature ¢ in each event used
for normalization.

This technique can be extended easily when the num-
ber of sensors increases. After calculating the scores of
all images in the event, the frames with the highest and
most distinct score [7] will be chosen, as presented in Fig.
4.
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Fig. 4. The graph of scores for each image in the event. The image
that got the worst score (‘Worst’), highest and most distinct score
(‘IMGQ+ECT”), the middle image (‘MID’) and the user selection
(‘USER’) score are also presented.

I1I. EVALUATION METHODS

In this evaluation section, the following terms are
used to describe the utilized methods. Our proposed
keyframe selection (using a combination of image quality
measurements and excitement features) is referred to
as ‘IMGQ+ECT’. Keyframe selection using only image
quality measurements is referred to as ‘IMGQ’. As a
baseline method, we use middle frame keyframe selection,
which we abbreviate as ‘MID’. Finally, the reference in
this study is the keyframe manually selected by the users
themselves, named ‘USER’.

To evaluate the accuracy of each method, the keyframe
selection results (‘IMGQ+ECT’ ‘IMGQ’,‘MID’) and the
keyframes from the user selection (‘USER’), are com-
pared. In the direct comparison method, only the exact
same image as the one chosen by the user should be
considered a positive result. However, there are many
similar images in the dataset, and therefore picking an
image that is similar to the one chosen by the user is also
an acceptable result. Therefore, we use the evaluation
framework based on the similarity criteria described in
[7].

There are 4 similarity criteria: the number of Speeded
Up Robust Features (SURF) [13] matching points, the
average of the SURF matching error,the color histogram
intersection, and the frame number distance.

1) SURF matching points : High SURF matching
points are directly connected to the similarity be-
tween images.

2) SURF matching error : Matching error is the degree
of dissimilarity.

3) Color histogram intersection : Apart from the
matching points, similarity in color distribution is
also considered.
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The evaluation process

4) Frame Distance : Frames that are close to the user
selected frame have a higher chance to contain
similar contents or similar scenes than the frames
that are further away.

A flow chart showing how each criterion is used to
evaluate the quality of the keyframe is presented in
Fig. 5. Each criterion has its own threshold value, i.e.,
THMatcha THET‘T‘OT7 THCol and THDista COI‘I‘GSpOHd—
ing to SURF matching points, SURF matching errors,
histogram intersection, and distance from the manually
selected ground truth frame, respectively.

With this evaluation process, the keyframes obtained
with the proposed method can be classified as:

o ‘Eractly Matched’ refers to the result of keyframe
selection that matches perfectly with the USER
keyframe.

o ‘Acceptable’ is when the keyframe from the pro-
posed method is not exactly the same as the USER
keyframe, but it satisfies the similarity conditions
in the evaluation process. In other words, it is
acceptable as a keyframe. Unlike [7], we modify the
diagram in favor of acceptable keyframe analysis.
The more criteria the keyframe satisfies, the higher
its acceptance score. If the keyframe satisfies all
criteria, it is considered as 100 % acceptable. Oth-
erwise, it is considered as 75 %, 50 % and 25 %
acceptable when it satisfies 3, 2, and 1 criterion,
respectively.

o ‘Unacceptable’ refers the keyframe that does not
satisfy any similarity criteria.

A. Parameter Optimization

In both the keyframe selection and the evaluation
method, there are several parameters that have to be
optimized, namely, the weighting factor (w; - wg) and
the threshold values of the evaluation process. We follow
the parameter optimization process from [7], [14]. In

(b)

Fig. 6. (a) The Emocam camera on the smartphone used in this
study (Image obtained from www.clingo.com); (b) The biosensor
worn around wrist for measuring EDA. Picture is taken from [15].

brief, to find the optimal value for all the parameters,
we first initialize the weighting factors for the keyframe
selection process with equal weights. Then, we use those
weighting factors to find proper threshold values in the
evaluation process. Finally, we use the average accuracy
of each factor to recalculate the weighting factors in the
keyframe selection.

IV. EXPERIMENTS AND RESULTS
A. Experiment Setup

Our study was conducted with 6 participants, who
have no prior knowledge about this project, wearing an
Emocam (an Android phone with a customized version
of the Ubiglog Application) and bioseosor for a certain
amount of time (3-4 hours) during their daily life, as
presented in Fig. 6. Datasets from different participants
are recorded over a time period of 2-3 weeks. There are
25,451 images in 253 log events. Events range from daily
life activities such as using a computer, watching TV, or
shopping, to more extraordinary ones such as traveling
and sightseeing. A sample of lifelog images is shown
in Fig. 1. The lifelog image collection is a mixture of
high and low quality images. The implemented keyframe
selection and evaluation method run on a PC (E5420
2.50 GHz Xeon CPU, 4096M RAM, NVIDIA Quadro FX
1700 graphic card). The processing time of each frame
and the evaluation process varies between 10 ms to 25
ms, depending on the number of SURF keypoints found
in the image stream. All data processing is performed
using MATLAB. The images from Emocam are time-
synchronized with the biosensor to make sure that it
records the correct corresponding information.

B. Experiment Results

This section presents the keyframe selection result of
each method. The results presented in the Table I are the
percentages of acceptable keyframes from our keyframe
evaluation framework. The preliminary experiments on
MID and IMGQ keyframe selection are used to analyze
the performance of keyframe selection when compared to
our proposed IMGQ+ECT method.

Based on the analysis in [7], most of the USER
keyframe locations are close to the middle frame of the
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TABLE 1
THE ACCURACY RESULTS OF THE PROPOSED KEYFRAME SELECTION

ALGORITHM
Keyframe selection Acceptance The number of
method rate (%) exact keyframes
IMGQ+ECT 84.45 52 (out of 253)
(training weighting factors)
IMGQ+ECT 83.33 49 (out of 253)
(equal weighting factors)
IMGQ 79.70 36 (out of 253)
(training weighting factors)
IMG 78.11 32 (out of 253)
(equal weighting factors)
MID 67.12 11 (out of 253)

(based line method)

events. The middle frame method is chosen because it is
fast and simple. However, our result shows that strictly
selecting the middle frame as a keyframe achieves only
67.12 % of acceptable keyframes. This is because the
MID keyframe selection method has no guarantee of
returning a high quality image. Therefore low quality
images (e.g. blurry, or with low contrast) might appear
as keyframes.

We firstly investigate the USER keyframe using IMGQ
keyframe selection. We found that USER keyframes tend
to have a high visual quality. However, the number of
acceptable keyframes and exactly matched keyframes
is still low. This is because IMGQ keyframe selection
method sometimes returns a high quality image, but
not an image that is meaningful for the user. As shown
in Fig. 7, although the IMGQ method gives a high
quality keyframe (a picture of a tree and sky), the user
decides to select as a keyframe an image that contains
people/activity /places that are meaningful or impressive
for his/her, such as his friends smiling or the main
building seen while sightseeing.

By integrating the excitement feature from the biosen-
sor data, our proposed method outperforms the result
from the MID and IMGQ keyframe selection methods.
Our proposed method achieves 84.45 % acceptance, while
the other two methods achieve 79.70 % and 67.12 %
respectively. Furthermore, there is a higher number of
perfect keyframes obtained with our proposed method
(53 out of 253 frames) than with the IMGQ (41 out of
253 frames) and MID method (11 out of 253 frames).

C. Discussion

We have analyzed the acceptable keyframe from each
method in comparison with the USER keyframe. With
the similarity criteria we used in the evaluation process,
each acceptable keyframe can be graded with 4 levels
depending on the number of criteria it satisfies. Fig. 8
shows the comparison of the representative percentage of
each method. The amount of acceptable keyframes that
pass all criteria is clearly higher with the IMGQ+ECT
method, reaching more than 60% when compared to
IMGQ and MID, which achieve only 34.1 % and 25.5 %,

USER MID
Visiting
amusement
Sightseeing
gl SEIUILREF
Fig. 7. The result of keyframe selection from IMGQ and MID

method. The keyframe selection results are still far from the USER
keyframe.
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Fig. 8. Percentages of acceptable keyframes; a comparison between
the IMGQ+ECT, IMGQ and MID keyframe selection results.

respectively. The number of unacceptable keyframes is
also lower with our proposed IMGQ+ECT method (from
31.2 % in IMGQ to 15.5 %).

The quality of the proposed keyframe selection result
can also be measured by the frame index distance from
the user selected keyframe. Fig. 9 shows the keyframes
selected with all 3 methods and the distance between
these frames and the one selected by the USER. In this
case, the distance was normalized to be in the range
between 0—1. The distances between the USER keyframe
and the keyframes obtained with IMGQ+ECT, IMGQ
and MID keyframe are 0.31, 0.53 and 0.75 respectively.
The conventional MID keyframe selection has a rela-
tively big distance from the USER keyframe and also
has no significant detail or visual similarity related to
the USER keyframe. The keyframe from our proposed
IMGQ+ECT method is significantly closer to USER
keyframe compared to the IMGQ and MID keyframes.
Finally, although the IMGQ+ECT keyframe does not
exactly match the USER keyframe, it has a very similar
content when compared to it.

The proposed method has been developed based on the
assumption that humans select a keyframe based on its

5219



o

IMGQ+ECT

MID

0.75

Fig. 9. The comparison of distances from the USER keyframe and IMGQ-+ECT, IMGQ and MID keyframe selection results. IMGQ+ECT
keyframe selection result is the closest keyframe to the USER keyframe.

quality, as well as their emotion, especially excitement.
In case there is no excitement, such as when the user
is relaxing or studying, our system will consider other
factors involved in keyframe selection e.g. image quality.
There are still many factors that have to be implemented
in our framework, for example, the presence of a smiling
face in the frame; also, adding other sensors to integrate
other human senses such as sound or touch must be
considered in the future. These other factors can be easily
added to our proposed model. Moreover, the parameters
in our system were optimized by a simple methodology,
and calibrated from our set of participants only. For
other groups of people in a different culture or context,
all parameters and human characteristics have to be
reconsidered.

V. CONCLUSION

We proposed a keyframe selection based on image
quality measurements and emotional features. We used
5 different image quality measurements, i.e., contrast,
color variance, sharpness, noise and saliency. By taking
into account the influence of excitement measured by
a biosensor, the acceptance rate increased to 84.40%
compared to keyframe selection using only image qual-
ity measurement (79.70%) and middle frame method
(67.12%). Moreover, the number of keyframes that match
the keyframe selected by the user was significantly im-
proved from 4.34% to 20.09%. The result about frame
index distance from the USER keyframe also confirms
that using a combination of image quality measurements
and excitement in keyframe selection delivers results that
are closer to the user selected keyframes with similar
content.
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