
Learning-Based Robot Control with Localized
Sparse Online Gaussian Process

Sooho Park
Mechanical Engineering

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, Pennsylvania 15213, USA
Email: soohop@andrew.cmu.edu

Shabbir Kurbanhusen Mustafa
Singapore Institute

of Manufacturing Technology
71 Nanyang Drive
638075, Singapore

Email: mustafa@simtech.a-star.edu.sg

Kenji Shimada
Mechanical Engineering

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, Pennsylvania 15213, USA
Email: shimada@cmu.edu

Abstract—In recent years, robots have been increasingly
utilized in applications with complex unknown environments,
which makes system modeling challenging. In order to meet the
demand from such applications, an experience-based learning
approach can be used. In this paper, a novel learning algo-
rithm is proposed, which can learn an unknown system model
from given data iteratively using a localization approach to
manage the computational costs for real time applications. The
algorithm segments the data domain by measuring significance
of data. As case studies, the proposed algorithm is tested on
the control of the mecanum-wheeled robot and in learning the
inverse kinematics of a kinematically-redundant manipulator.
As the result, the algorithm achieves the on-line system model
learning for real time robotics applications.

I. INTRODUCTION

In recent years, robots have been increasingly utilized in
applications with complex and unknown environments. In
such applications, there are two demanding issues that are
difficult to address by conventional robot control approaches.
The first issue is that it is difficult to obtain an accurate
model of a highly nonlinear system. The second issue is
that modeling every situation a robot encounters is often
impossible. In contrast, experience-based learning approaches
[1]–[4] are able to resolve these issues. Since an experience-
based approach learns the system model directly from data,
it can adapt to complex system behaviors that are difficult
to be addressed in an idealized analytical model or to be
modeled in advance. In addition, this learning approach
can be applied across a wide range of robotics problems
because it does not need analytical models that depend on the
unique configurations of the problems. As such, this general
approach can be applied .

The general framework of learning-based robot control
algorithms consists of three steps. In Step 1, the algorithm
applies a user-supplied initial controller on the system and
observes the behavior of the system. It then learns the system
model from observations (data or sensory information) in
Step 2. In Step 3, it improves the controller to achieve a
given task based on the learnt system model. Repeating these
steps, the algorithm gradually builds the system model and
updates the controller.

In this paper, we focus on an algorithm to learn the
system model in Step 2. It is important to note that there
are four requirements for the learning algorithms. First,
the algorithm should be able to handle arbitrary nonlinear
systems. For this requirement, an approach known as non-
parametric regression should be used. Second, as the sensory
information are usually given as a data stream, the algorithm
should be able to update the existing knowledge of the
system iteratively with the arrival of new data. Third, the
algorithm should be computationally fast. Since the robot
interact with environment in real time, the learning algorithm
should perform as fast as possible. The final requirement is
that the algorithm should be able to handle noisy data in
a robust fashion. As far as we know, none of the previous
methods used in experience-based approaches satisfy all
these requirements, limiting their applications.

This paper proposes a novel algorithm - Localized Sparse
Online Gaussian Process (LSOGP) that is based on On-
line Gaussian Process (OGP) [5]. Even though OGP is a
non-parametric, iterative, and stochastic regression method
that satisfies most of the requirements mentioned above, It
still cannot achieve the real time performance speed and
accuracy at the same time since the computational cost is
increasing along with the learning procedure. LSOGP resolve
this problem. On top of the advantages of OGP, LSOGP
effectively controls the computational cost to realize real time
responsiveness by using a localization approach detailed in
Section III. As the result, LSOGP can learn an unknown
complex system model from given data iteratively using a
localization approach to manage the computational costs for
real time applications.

The rest of the paper is organized as follows: Section
II briefly discusses the mathematical background of OGP
and related work. Section III proposes LSOGP based on the
formulation from Section II. Two examples are presented
to evaluate this algorithm in Section IV, while Section V
concludes with some future directions for this work.

II. ONLINE GAUSSIAN PROCESS

Given a data set D = {(xt, yt), t = 1, · · · , T} of vector
inputs xt ∈ Rdx and scalar outputs yt = f (xt) + ε,

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1202

yt ∈ R, ε ∼ N
(
0, σ2

ε

)
, Online Gaussian Process (OGP)

[5] provides a tool to represent the functional Gaussian
probability distribution of underlying function f based on
D in iterative update formula as follows:

Pr (f (x)|YT) ≈ N (µT (x) ,ΣT (x,x)) , (1)

where µT and ΣT are

µT (x) = K (x, XT)αT , (2)

αT =

[
αT−1

0

]
+

[
ΩT−1K (XT−1,xT)

1

]
αT |xT

, (3)

αT |xT
=
[
ΣT−1 (xT ,xT) + σ2

ε

]−1 (
yT − µT−1 (xT)

)
,
(4)

ΣT (x,x′) = K (x,x′) +K (x, XT) ΩTK (XT ,x
′) , (5)

ΩT =

[
ΩT−1 0
0T 0

]
(6)

+

[
ΩT−1K(XT−1,xT)

1

]
ΩT |(xT ,xT)

[
ΩT−1K(XT−1,xT)

1

]T
,

ΩT |(xT ,xT) = −
[
ΣT−1 (xT ,xT) + σ2

ε

]−1
, (7)

and XT = {x1, · · · ,xT }, YT = {y1, · · · , yT }.
A kernel used in this paper is the Radial Basis Function
(RBF) kernel,
K (xi,xj) = exp

(
−1

2
(xi − xj)

T
WT

x Wx (xi − xj)

)
,

(8)
where WT

x Wx (:= Px) ∈ Rdx×dx is the weight matrix,
which is symmetric positive-semidefinite, and can be adjusted
to compensating for scale differences among the dimensions
of x. Px and the system noise σε are more commonly referred
to hyper-parameters, θ.
Note that the computational cost of this is reduced to O

(
T 2
)

by actively exploiting the previous regression results αT−1

and ΩT−1.

III. LOCALIZED SPARSE ONLINE GAUSSIAN PROCESS

Although OGP is attractive due to its simple implemen-
tation, capability to handling a highly nonlinear system,
fully probabilistic expression, and iterative update property,
applying OGP to robot dynamics learning is still not feasible
because the computational cost increases as the number of
observed data points increases. This is due to the dependency
on the data set1, whose size increases along with the training.
Therefore, the computation of OGP becomes infeasible as the
size of the training set increases.

There are two solutions for this problem. First, the total
computational cost can be controlled by limiting the size of
the data to keep. Only the most significant, finite number
of data points are kept and reused. Leave One Out Cross
Validation (LOOCV) can be applied to implement this. If
the regression result changes appreciably after adding the
new data point, the data point is considered significant
and kept in a data set called the Representative data set,
XR = {xi1 , · · · ,xiR} and reused for the next iteration. If

1This is a model parameter of OGP.

not, it can be discarded. This approach is termed Sparse
approximation [6]. In the sparse approximation approach, the
evaluation of the significance of each datum (significance
measurement) and the method to exclude a certain datum
from the previous learning result αT and ΩT (pruning data)
are important issues.

The second approach is a divide-and-conquer approach. It
is termed Localization [7], and its data domain is learned by
not one OGP, but by many OGPs that segment the whole
domain into smaller pieces so that the size of data to be
learned is confined for each local region. In this approach,
the proper partitioning of data space becomes a challenge.

In this section, both of these approaches are derived to
make OGP fast enough to be applied to a robotic system.

A. Sparse Approximation
With respect to basis function representation, Eqs. (2)

and (5) add a new basis function K (xT ,x) to the OGP
model at every iteration. This is prohibitive for on-line
learning because the memory usage and computational cost
increase with training data size. In this section, Sparse Online
Gaussian Process (SOGP) [5] is shortly introduced.
• Significance Measurement:

As mentioned above, Eqs. (2) and (5) can be represented
by only the important basis functions K (XR,x) and their
coefficients αT and ΩT . In order to choose XR, it is
necessary to measure the significance of each datum. In
every iteration of OGP, the coefficients αT−1 and ΩT−1 are
updated, and a new kernel function K (xT ,x) is added to
the previous set of basis functions K (XR−1,x), i.e., adding
one more dimension to the functional subspace. However, in
the case where K (xT ,x) is close enough to the subspace of
K (XR−1,x), the projection of K (xT ,x) onto the functional
subspace K (XR−1,x) can be used instead of adding one
more functional dimension. Furthermore, the projection error
can be used as a significance measurement. Since we are
handling a functional space, Reproducing Kernel Hilbert
Space (RKHS) norm [5], [8] is used for computing the
functional projection error instead of the projection error
in the Euclidean space. This projection finds the optimal
linear combination of the bases of subspace K (XR−1,x) to
make the shortest distance to K (xT ,x), and is represented
as βTK (XR−1,x). The coefficient β can be obtained ana-
lytically as

β = K (XR−1, XR−1)
−1
K (XR−1,xT) . (9)

Hence, the projection error of the kernel function can be
obtained as

ε2 (x) =K (x,xT)

−K (x, XR−1)
T
K (XR−1, XR−1)

−1
K (XR−1,xT) .

Note that this is always positive as long as the Gram matrix
is positive semi-definite. If ε2 (x) is small enough to be
ignored, K (xT ,x) can be approximated as K (xT ,x) ≈
βTK (XR−1,x). In this case, Eqs. (3) and (6) can be
represented as

αT = αT−1 + (ΩT−1K (XR−1,xT) + β) αT |xT
(10)

1203

ΩT = ΩT−1

+ (ΩT−1K (XR−1,xT) + β) ΩT |(xT ,xT)

× (ΩT−1K (XR−1,xT) + β)
T
, (11)

From the difference between Eq. (2) with Eq. (3) and Eq.
(5) with Eq. (10), the projection error in the output domain
becomes

e (xT) =
∣∣αT |xT

∣∣ ε2 (xT) . (12)

Based on e (xT), we can decide whether Eqs. (3) and (6),
or Eqs. (10) and (11) should be used to update coefficients.
If e (xT) is bigger than a certain value ν, (xT , yT) should
be added as a new basis function (a new dimension of the
functional space) by using Eqs. (3) and (6), and if e (xT) is
smaller than ν, it should be projected by using Eqs. (10) and
(11). Using this approach, the size of XR to be stored can
be kept significantly smaller than the size of the given data.

Eq. (12) can be represented in a simpler form as follows:
by using the Woodbury matrix identity,

K (XR, XR)
−1

:=

[
A b
bT c

]
,

where

c =
[
K (xT ,xT)− βTK (XR−1,xT)

]−1

=
1

ε2 (xT)
.

Also, from Eqs. (3), (12) and c, the projection error is
expressed as

e (xT) =

∣∣αT |xT

∣∣
c

=

∣∣αT |xT

∣∣
K (XR, XR)

−1
∣∣∣
(xT ,xT)

.

Furthermore, assuming that this error formula is consistent
for all other data in XR and YR, the projection error for an
arbitrary rth representative datum can be defined as

e (xir) =

∣∣∣αT |xir

∣∣∣
K (XR, XR)

−1
∣∣∣
(xir ,xir)

. (13)

In summary, if K (XR, XR)
−1 is given, we can obtain

e (xir) of all the representative data by using Eq. (13).
Based on e (xir), we can measure the significant of each
representative data.

In practice, calculating β or e (xir) can be expensive
because the computational cost of Gram matrix inversion
is O

(
R3
)
. We can overcome this obstacle by using the

‘Woodbury matrix identity’ or ‘Cholesky decomposition rank
one update’ [9]. In both methods, calculating K (XR, XR)

−1

from K (XR−1, XR−1)
−1 can be done iteratively in O

(
R2
)
.

• Pruning of Representative Data:
When e (xir) < ν, we can remove the corresponding datum
xir from the representative data set and project it. Since the
only coefficients we have at the T th iteration are αT and ΩT ,
the goal is to restore αT\r and ΩT\r from αT and ΩT , and
then projecting the removed datum on αT\r and ΩT\r (·\r
means excluding the rth element of ·). Although we assume
only the situation in which the lastly added datum xiR is

removed, the same strategy can be applied to all r. From
Eqs. (3) and (6), we can obtain following equalities:

αT |XR
= αT−1 + ΩT−1K (XR−1,xiR) αT |xiR

, (14)

ΩT |(XR,XR) = ΩT−1 (15)

+ ΩT−1K (XR−1,xiR) ΩT |(xiR
,xiR)K (xiR , XR−1) ΩT−1,

ΩT |(XR−1,xiR) = ΩT−1K (XR−1,xiR) ΩT |(xiR
,xiR) .

(16)
And from Eq. (16),

ΩT−1K (XR−1,xiR) = ΩT |(XR−1,xiR) ΩT |−1

(xiR
,xiR) .

(17)
By substituting Eq. (14) into Eq. (10) and Eq. (15) into Eq.
(11) and then using Eq. (17), we can restore the coefficients
by projecting xR as follows:

αT = αT−1|XR−1
+ β αT |xiR

, (18)

ΩT = ΩT |(XR−1,XR−1) + β ΩT |(xiR
,XR−1)

+ ΩT |(XR−1,xiR) β
T + β ΩT |(xiR

,xiR) β
T . (19)

Based on this pruning strategy, we can bound R by a
certain value Rmax and achieve a computational efficiency
of O

(
R2
max

)
. The detail procedure is presented in Algorithm

1.

Algorithm 1 Sparse Online Gaussian Process Algorithm
1) Given x1, y1, ν, Rmax
2) Initialization

α1 =
[
K (x1,x1) + σ2

ε

]−1
y1

Ω1 = −
[
K (x1,x1) + σ2

ε

]−1

R = 1
3) Learning:

Datum addition:
For a given new datum (xT , yT), T > 2,
Compute µT−1 (xT) and ΣT−1 (xT ,xT) using
Eqs. (2) and (5).
Compute αT |xT

and ΩT |(xT ,xT)

using Eqs. (4) and (7).
Update coefficient αT and ΩT using
Eqs. (3) and (6).
Let R = R+ 1.

Data pruning:
If R > Rmax

For twice
Calculate the projection error e (xir), ∀r.
For the rth datum whose e (xir) is smallest,
If e (xir) < ν,

Remove and project the rth datum using
Eqs. (18) and (19).

end if
end for

end if
4) Prediction:

For a query input x,
compute µT (x) and ΣT (x,x) using Eqs. (2) and (5).

1204

B. Localization : Multi-Layer Clustering
Even though we can manage the computational cost as

described in Section III-A, such a limited number of rep-
resentative data points may not be enough to cover a wide
range of domain, and prediction results may not be accurate
enough in this case. The data domain can be divided into
small subregions [7] and SOGP can be performed for each
subregion separately to ensure both accuracy and speed.
Thus, the training data form a set of local data clusters,
and the prediction for a query is then implemented by using
only the nearest local SOGP from the query. In this way, the
learning can be done in real time without sacrificing accuracy.
This section proposes a novel localization method based on
the significance measurement in Section III-A.

In order to localize the input domain, each cth local SOGP
model has a center cc which is the mean of its XR. When
a new datum (xT , yT) is given, the nearest local model
is found based on the distance between each cc and xT .
Then (xT , yT) is learned by the nearest local SOGP model.
During the learning process of the local SOGP model, if
e (xT) > ν (the new datum is significant) but the local model
is already populated with the maximum representative data
Rmax, (xT , yT) cannot be added to the local model. Instead,
it spawns a new local model. Thus, the number of local model
is increased by one.

This concept can be extended to multi-layer localization,
meaning that there is a local model for each local model.
This naturally makes the hierarchical structure shown in Fig.
1. In this localization, two kinds of local model additions are
possible: 1) A new node is added as a sibling node, which
means the added node has the same parent node as the current
node, or 2) The current node is considered a parent node, and
the new one is added as a child node of it. When the first
datum is given, the root SOGP model is initialized and learns
the datum. Once the node is fully populated (R > Rmax), it
spawns two child nodes as illustrated in Fig. 1 (a). One child
node is an exact copy of the parent node, while the other is
a new node that is initialized with the new datum. From this
point, a new datum is learned by these child nodes. Every
time a new datum is given, the nearest child node is found,
and the datum is learned by it. Note that the parent node is
now populated not with data but with child nodes. So, the
node becomes underpopulated when it becomes a parent node
as shown in Fig. 1. Once the parent node is fully populated
with Rmax child nodes, the parent node cannot have more
child nodes. Then, the nearest child node from the new datum
becomes a parent node, and spawns two child nodes just
as the root node does (Fig. 1 (b)). With this procedure, the
LSOGP has no limitation in terms of number of local models.
The entire algorithm for multi-layer LSOGP is presented in
Algorithm 2.

IV. EXPERIMENTS

This section demonstrates two simulation examples carried
out using MATLAB R© on a workstation running Ubuntu
12.04 with an Intel i7 2.8GHz quad-core processor to show
the capability of LSOGP. In all these examples, system
models are assumed to be unavailable and learned by LSOGP

Root Node

Fully Populated Parent Node

Fully
Populated

New
Child Node

Copied
Child Node

New
Child Node

(a) Spawning from Root Node

... ...

Fully Populated

Parent Node

Copied
Child Node

New
Child Node

Fully Populated

Under Populated

(b) Spawning from Parent Node

Figure 1. Multi-layer Clustering

on the fly from the new data at every iteration. By applying
the same approach to solve two different example problems,
we show that this learning-based robot control algorithm is
generic and potentially can be applied to various robotic
platforms.

A. Mecanum-Wheeled Robot
In this example, we control a simulation of a mecanum-

wheeled robot as shown in Fig. 2 (a) without any analytical
dynamics model. The robot has four separate actuators to
drive each wheel, and the velocity of the robot is a result of
these four wheel velocities. The task of the robot is to start
from (0, 0, 0) to reach a given goal position

(
0, 10, π4

)
, i.e.,

(x, y, θ) on a 2D plane as shown in Fig. 2 (b). The ideal
relationship between the velocity of robot and the velocities
of wheels used in the simulation is given as

vFL
vFR
vRL
vRR

 =

1 −1 1
1 1 1
−1 −1 1
−1 1 1

 vx
vy
vθ

 , (20)

where vFL, vFR, vRL and vRR are the velocities of Front
Left (FL), Front Right (FR), Rear Left (RL), and Rear Right
(RR) wheel respectively. vx, vy and vθ are the robot’s linear
velocities in the x and y direction and its angular velocity,
respectively. In every pre-defined time interval, the robot
applies control variables, i.e., xT = [vFL, vFR, vRL, vRR]

T

to the system and observes the noisy system state, i.e.,
yT = [vx, vy, vθ]

T . As the system model in Eq. (20) is
assumed to be unavailable, the robot learns it from the given
datum (xT ,yT) using LSOGP. Since the robot can control
only xT , this is the input, and yT is the output. In this
test, the output is three-dimensional, and one-dimensional
LSOGP in Algorithm 2 is implemented for each dimension
independently.

The target function f of LSOGP is assumed to be

yT = f (xT) + ε,

where ε ∼ N
(
0, σ2

ε ⊗ I
)

is the system noise, and ⊗ is
element-wise multiplication.

The desired robot velocity change ∆y needed to reach the
goal is obtained based on the difference between the current

1205

Algorithm 2 Multi-layer LSOGP Algorithm
1) Initialization:

Initialize a single SOGP model ModelLSOGP as a root
node (it is a child node at the same time).
Let C = 1.

2) Learning: For a given new datum (x, y)
Find the nearest LSOGP model.
Call function LSOGP (x, y,ModelLSOGP)

3) Prediction:
For a query input x, find the nearest LSOGP model.
Compute µT (x) and ΣT (x,x) by using Eqs. (2) and
(5).

Function LSOGP (x, y,ModelLSOGP)
If ModelLSOGP is a child node,

If R = Rmax and projection error e (x) > ν,
If parent node is R < Rmax (for the root node,
this is always false),

Add a new local SOGP model at x as a child
node of the parent node.
Let C = C + 1, cC+1 = x.

else parent node has room for a new child node.
Make current child node a parent node.
Copy current node to child node of the parent
node.
Reinitialize the parent with the two child nodes.
Add a new local SOGP model at the removed x,
C = C + 1, cC+1 = x as a child node of the
new parent node.

end if
else

Learn (x, y) with local SOGP model ModelLSOGP
by using Algorithm 1.

end if
else ModelLSOGP is parent node,

Find the nearest local cluster model ModelLSOGP
(child node of the current node) based on the
distance between x and cc, ∀c.
Call function LSOGP (x, y,ModelLSOGP).

end if
end of function

location yT and the given goal to determine the next control
variable xT+1. Then, the following optimization problem is
solved.

argmin
∆x

{
1

2
‖∆y −∇xf (x) ∆x‖2 +

1

2
w2 ‖∆x‖2

}
, (21)

where the first term is the dynamics constraint of the system,
and the second term is the penalty of the magnitude of the
input change. w2 is the weight coefficient. Note that the
gradient of the LSOGP model, ∇xf (x), can be obtained
analytically using Eqs. (23) and (24) in the Appendix. The
analytical solution of this optimization problem is

∆x∗=[∇xf(x)]
T
[
∇xf(x)[∇xf(x)]

T
+w2⊗I

]−1

∆y. (22)

Hence, xT+1 = xT + ρ∆x∗ will be the next test input to

the robot system f (x), where ρ is the learning rate or the
update step size. By applying xT+1, the robot reduces the
error between the current position and the goal.

It is worth mentioning that, in the early stage of the
learning, f (x) is inaccurate and ∇xf (x) is not good enough
to find a correct ∆x∗. In order to overcome this problem,
more training data are necessary, and they can be generated
by adding random variance to ∆x∗. By doing this, the robot
explores around ∆x∗ and collects data to get a more accurate
f (x). However, when the robot approaches the goal, this
randomness should be decreased. Thus, we use a random
variable added to ∆x∗ whose variance is proportional to the
magnitude of error between the current position and the goal.
Also, to be robust in the early stages of learning, the data
pruning happens only when the data size of the local model
is bigger than 100.

The test results show that LSOGP successfully learns the
system model on the fly, and the control algorithm can
achieve the task in 250 iterations (in Fig. 2 (c)). At the
same time, time consumption is limited to approximately
20 msec or less (in Fig. 2 (d)). Contrary to the original
SOGP in which the computational cost increases along with
the iterations, we can confirm that LSOGP can successfully
limit the maximum computational cost. Note that the jump
at the 100th iteration in Fig. 2 (d) is due to the data pruning
procedure. The parameters used in this test are listed in Table
I. Parameters and entire algorithm used for this test are listed
in Table I.

(a) Mecanum-Wheeled Robot

Goal

Start

-15
-15

0 15

0

15

(b) Configuration of Simulation

Position Error

E
rr

o
r

x
y

theta

Iterations
0 50 100 150 200 250

-4.0

0.0

4.0

8.0

12.0

(c) Position Error Graph

Time Consumption

Ti
m

e
 (

m
se

c)

Iterations
0 50 100 150 200 250

0

10

20

30

(d) Time Consumption Graph

Figure 2. Mecanum-Wheeled Robot

B. Seven Degrees of Freedom Spiral Manipulator Inverse
Kinematics

In this example, we control a redundant seven Degrees
Of Freedom (DOF) spiral manipulator shown in Fig. 3 (a)
without analytical inverse kinematics model. The manipu-
lator has eight links and seven revolute joints without any

1206

mechanical joint angle limitations. The position of the end
effector {xee, yee, zee} is a result of all these seven joint
angles {q1, · · · , q7}. The task of the robot is to touch a
sphere of radius 0.02m centered at given goal position in 3D
space with its end effector. At every pre-defined time interval,
the manipulator applies control variables xT = [q1, · · · , q7]

T

to the system and observes the noisy end effector position
yT = [xee, yee, zee]

T . The analytical kinematics model of
this robot is assumed to be unavailable. Hence, the robot
should learn it from the given data by using LSOGP. The
desired robot end effector position change ∆y to reach the
goal is obtained from the difference between the current
yT and the goal to decide the next control variable xT+1.
Then, Eq. (21) is solved using Eq. (22) in the same way as
in mecanum-wheeled robot control example. Parameters and
entire algorithm used for this test are listed in Table I.

(a) 7DOF Spiral Manipulator

x
y

z

Start Config.

Result Config.

Goal

1

0

-0.5

-0.50.5

0.5

(b) Simulation Configuration

x
y
z

Position Error

E
rr

o
r

Iterations
0 50 100 150 200

-0.8

-0.4

0

0.4

(c) Position Error Graph

Time Consumption

Iterations

Ti
m

e
(m

se
c)

0 50 100 150 200
0

10

20

30

40

(d) Time Consumption Graph

Figure 3. 7DOF Spiral Manipulator

Table I
PARAMETERS FOR EXPERIMENTS

Mecanum-Wheeled Robot 7DOF Spiral Manipulator
P I4×4 I7×7

σε 0.05 0.01
ν 0.01 0.01
w 0.01 0.1
ρ 0.1 0.1

Rmax 200 200

V. CONCLUSIONS

This paper proposes the novel learning algorithm - Local-
ized Sparse Online Gaussian Process (LSOGP) for learning-
based robot control. in contrast to the previous algorithms,
LSOGP can learn an unknown complex system model from
given data iteratively using a localization approach to manage
the computational costs for real time applications.

The proposed algorithm is tested on the control of the
mecanum-wheeled robot and in learning the the inverse kine-
matics of a kinematically redundant manipulator to demon-
strate its capability. With LSOGP, the same algorithm in

both tests successfully learns the system model in real time
and completes the tasks without any a priori system model.
This also verifies that the proposed learning-based approach
is a general method which can be applied to various robot
platforms in the same way.

Our future work will consider the following enhancements.
First, hyper-parameters of each local OGP model can be opti-
mized as mentioned in [10] by using the maximum likelihood
approach. Since SOGP is a iterative method, the iterative
numerical optimization may be implemented concurrently
to save the time consumption at one iteration of LSOGP.
Second, if a rough system model is available, it may be used
as a prior for the LSOGP algorithm. Third, old data should
be forgotten to remove the effects of early transient stage
of the learning procedure in which data may be inaccurate,
or to adapt to a non-stationary system. Fourth, dimensional
reduction techniques such as PCA may be used to be more
efficient for high dimensional YT . Fifth, the prediction can
be made not only by using the nearest local model, but by
mixing a few nearest ones as in [7]. This approach is helpful
to guarantee the global smoothness.

APPENDIX

In SOGP, derivatives of mean and covariance with respect
to inputs are given as follows:

∂µ (x)

∂XR
=

K (x, XR)

...
K (x, XR)

⊗Px [(x1 − x) , · · · , (xR − x)]

T

⊗ [α, · · · ,α] , (23)

∂Σ (x,x)

∂XR
= [2⊗ ΩK (XR,x) , · · · , 2⊗ ΩK (XR,x)]

⊗
[
∂K (x,x1)

∂x1
, · · · , ∂K (x,xR)

∂xR

]T
, (24)

∂K (x,x′)

∂x
= −Px (x− x′)K (x,x′) . (25)

REFERENCES

[1] M.P. Deisenroth and C.E. Rasmussen. PILCO: A model-based and
data-efficient approach to policy search. 2011.

[2] S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs.
optimal control a unifying view. Progress in brain research, 165:425–
445, 2007.

[3] J. Peters and S. Schaal. Reinforcement learning of motor skills with
policy gradients. Neural Networks, 21(4):682–697, 2008.

[4] J. Kober and J. Peters. Policy search for motor primitives in robotics.
Machine Learning, 84(1):171–203, 2011.

[5] L. Csató and M. Opper. Sparse online Gaussian processes. Neural
Computation, 14(3):641–668, 2002.

[6] J.Q. Candela and C.E. Rasmussen. A unifying view of sparse
approximate gaussian process regression. Journal of Machine Learning
Research, 6:1939–1959, 2005.

[7] D. N. Tuong and J. Peters. Local gaussian process regression for real-
time model-based robot control. In Proc. Int. Conf. Intell. Robots Sys.,
pages 380–385, 2008.

[8] S. Vijayakumar and H. Ogawa. Rkhs-based functional analysis for
exact incremental learning. Neurocomputing, 29(1-3):85–113, 1999.

[9] Matthias Seeger. Low rank updates for the cholesky decomposition.
University of California at Berkeley, Tech. Rep, 2007.

[10] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, Massachusetts, 2006.

1207

