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Abstract— Bipedal robots have the potential to provide robust
locomotion over uneven terrain and its dynamic stability has
been shown to be analogous to that of a spring loaded inverted
pendulum (SLIP). The SLIP model is fundamentally limited
in its ability to accurately represent legged locomotion since
it does not take into account the impulsive dynamics of foot
ground interaction. In this paper we investigate the control
of a four-link hopping robot based on the complete dynamics
of the system. Using partial feedback linearization to control
the configuration in continuous time, and discrete parameter
variations the control object of apex height control of the robot
is achieved. Simulation results are presented to show the efficacy
of the control scheme.

I. INTRODUCTION

Compared to wheeled robots, biped robots are better suited

to locomotion over uneven terrain, and therefore, dynamic

stability of biped robots has been an active area of research.

The locomotion of biped robots involve transition of support

from one leg to another, and therefore, walking and running

actions have similarities with hopping of a monoped. The

analysis of hopping motion of a single legged robot began

with the work by Raibert [10], [17], where a mass on a

hydraulic piston was used to experimentally demonstrate a

stable hopping gait. The controller of the hydraulic monoped

utilized a spring-like motion to produce vertical and lateral

translation in addition to a stabilizing torque at the hip. The

spring loaded inverted pendulum (SLIP) model was shown

to be an accurate representation of running and hopping in

biological systems [1], [4]. The validity of the SLIP model

was also established by Koditscheck and Bruehler [13].

Schwind [20] and Saranli et al. [18] used the symetric SLIP

model to design a controller for a four-link monoped and

Hyon et al. [11] provided validity to the theoretical results

in the literature with experimentation on a 3-link monoped.

Once it was established that the SLIP model can be used to

achieve dynamic stability of a multi-link monoped, analysis

of the SLIP model increased in popularity. Altendorfer et al.

[2], [3] studied the return map of the non-integrable SLIP dy-

namics and investigated the stability of the map. Ghigliazza

et al. [8], [7] studied the stability and bifurcation charac-

teristics of the SLIP model using different spring dynamics.

Seipel and Holmes [21], [22] investigated the stability of the

SLIP model for a three-dimensional system, and Poulakakis

and Grizzle [15], [16] investigated the dynamics and control

of a legged robot with a more accurate asymmetric SLIP
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model. Hamed and Grizzle [9] later proposed a robust event-

based control method to improve stability of the controlled

legged system. Although the analysis of the SLIP model

is useful and provides the basis for the design of effective

controllers, it is incomplete since it does not account for the

impulsive dynamics associated with foot-ground interaction.

In this paper we investigate the hybrid dynamics of a

four-link hopping robot and propose a control method which

takes into account the complete dynamics of the system. The

hybrid dynamics is comprised of the flight phase, the impact

phase, and the contact phase. Partial feedback linearization

is used during the flight and contact phases to continuously

control the configuration of the hopper, and “chaos control”

[19] is used to stabilize the zero dynamics and control the

apex height based on the hopping map. The validity of the

method is shown through a simulation and a video animation.

Our paper is structured as follows. In Section II we present

the dynamics for the flight phase, impact phase, and contact

phase. In Section III we design the continuous controllers

for the flight and contact phases. In Section IV the first

return map between consecutive hops is determined and a

chaos controller is used to guarantee asymptotic stability of

a periodic configuration. Simulations are presented in Section

V and concluding remarks are presented in Section VI.

II. DYNAMICS

Consider the four link monoped hopping robot shown in

Fig.1. Let x and y be the Cartesian coordinates of the base

of the foot of the robot (point O) relative to the fixed ground

reference. For i = 1, 2, 3, 4, the mass, moment of inertia, and

length of each link are denoted by mi, Ii, and li respectively.

The angular displacement of the ith link is denoted by θi and

the distance to its center of mass is denoted by di - see Fig.1.

The states are defined as

q =
[

x y θ1 θ2 θ3 θ4
]T

(1)

The equations of motion of the hopper are given by

M(q)q̈ +N(q, q̇) = AT + Fext (2)

where M(q) is the mass matrix, N(q, q̇) is the vector of

Coriolis, centrifugal, and gravitational forces, A ∈ R
6×3 is

the matrix give bellow:

A =





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





T

, (3)

T is the vector of input torques

T =
[

τ1 τ2 τ3
]T
, (4)
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Fig. 1. Four-link hopping robot

and Fext it the force applied by the ground on the robot

given by

Fext =
[

Fx Fy 0 0 0 0
]T

(5)

In Eq.(5), Fx and Fy denote the x and y components of the

force applied to the robot by the ground at point O. The

dynamics of the hopper may be separated into three phases:

the flight phase for which y > 0, the impact phase which

occurs at the instant y = 0, and the contact phase which

occurs for the duration in which the foot remains in contact

with the ground, y ≡ 0.

A. Flight Phase

During the flight phase Fext = 0. Furthermore, the

dynamics in Eq.(2) results in the non-holonomic constraint

due to conservation of angular momentum about the center

of mass of the hopper.

B. Impact

At the time of impact we assume:

Assumption 1: The applied torques T are not impulsive.

Assumption 1 does not imply that the torques T cannot

be discontinuous; it simply implies that the torques cannot

produce discrete jumps in the states.

Assumption 2: The hopper’s foot comes in contact with the

ground only at point O.

Assumption 2 can be enforced through proper choice of

control gains.

Assumption 3: At the instant the foot contacts the ground

(y = 0), the ground applies an impulsive force that results

in ẋ = ẏ = 0.

Assumption 3 simply implies inelastic impact.

Taking the integral over the infinitesimal period of time in

which the impact occurs we have

∫ t0+ǫ

t0

q̈dt =

∫ t0+ǫ

t0

M−1(q) [AT −N(q, q̇) + Fext] dt

(6)

q̇+ = q̇− +M−1(q)Fext (7)

where q̇+ and q̇− are the right and left limits in time of

q̇. This follows form our earlier work [6]. Partitioning q
according to

q = [x y | θ]
T

(8)

where θ is given by

θ = [θ1 θ2 θ3 θ4]
T (9)

results in the corresponding partition of M−1(q) given by

M−1(q) =

[

(M−1)11 (M−1)12
(M−1)21 (M−1)22

]

(10)

Solving Eq.(7) results in the following change in the state

variables

q+ = q−

ẋ+ = 0

ẏ+ = 0

θ̇+ = θ̇− − (M−1)21[(M
−1)11]

−1

[

ẋ−

ẏ−

]

(11)

C. Contact Phase

During the contact phase Fext is such that ÿ = 0.

Assumption 4: The force Fx is always sufficiently large such

that ẍ = 0 during the contact phase.

During the contact phase the dynamics of the hopper is

given by

DM(q)DTDq̈ +DN(q, q̇) = DAT (12)

where D is the matrix

D =









0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1









(13)

The contact phase transitions to the flight phase when

Fy = 0 Ḟy < 0 (14)

III. CONTINUOUS CONTROL

For control of the position of the center of mass of the

hopper, we define r to be the vector from the base of the

foot to the center of mass of the hopper. If rx and ry denote

the horizontal and vertical components of r, we can write

r =

[

rx
ry

]

=

[

fx(q)
fy(q)

]

(15)

where fx(q) and fy(q) are given by

fx(q) = a1 cos(θ1) + a2 cos(θ1 + θ2) +

a3 cos(θ1 + θ2 + θ3) +

a4 cos(θ1 + θ2 + θ3 + θ4) (16)

fy(q) = a1 sin(θ1) + a2 sin(θ1 + θ2) +

a3 sin(θ1 + θ2 + θ3) +

a4 sin(θ1 + θ2 + θ3 + θ4) (17)
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in Eq.(16) and (17), the constants have the expressions

a1 =
m1d1 + (m2 +m3 +m4)l1

m

a2 =
m2d2 + (m3 +m4)l2

m

a3 =
m3d3 +m3l3

m

a4 =
m4d4
m

m = m1 +m2 +m3 +m4 (18)

Differentiating with respect to time gives

ṙ =

[

ṙx
ṙy

]

=

[

Jx(q)
Jy(q)

]

Dq̇ (19)

where Jx(q) and Jy(q) are Jacobian matrices.

In addition to control of the center of mass position r, we

wish to control the angle of the first link, θ1. To this end we

define the desired equilibrium point of the system as follows

(rx, ry, θ1, ṙx, ṙy, θ̇1) = (0, yd, θd, 0, 0, 0) (20)

A. Contact Phase

To achieve the goal of a vertical hop, we control the

position of the center of mass, the angle of the foot, and

the angular momentum of the system. During the contact

phase the system dynamics are described by Eq.(12). To

transform this dynamics to normal form [12], we use the

transformations in Eqs.(15),(19), and

η = ψ1(q)

ζ1 = ψ2(q, q̇) = −
1

mg
CDM(q)DTDq̇ (21)

where the matrix C is given by

C =
[

1 0 0 0
]

(22)

In addition, ζi, i ∈ [2, 7], are defined as

ζ2 = rx ζ3 = ry − yd ζ4 = θ1 − θd
ζ5 = ṙx ζ6 = ṙy ζ7 = θ̇1

(23)

It can be shown

η̇ =
∂ψ1(q)

∂q
q̇ = f(η, ζ)

ζ̇1 =
∂ψ2(q, q̇)

∂q
q̇ +

∂ψ2(q, q̇)

q̇
q̈

=
−CD

mg

[

AT−N(q, q̇) +Ṁ(q)DTDq̇
]

=ζ2 (24)

and
[

ζ̇2, ζ̇3, ζ̇4

]T

= [ζ5, ζ6, ζ7]
T
= J(q)Dq̇ (25)

[

ζ̇5, ζ̇6, ζ̇7

]T

= J(q)Dq̈ + J̇(q)Dq̇ (26)

where J(q) is given by

J(q) =





Jx(q)
Jy(q)
C



 (27)

The expression ζ̇1 = ζ2 follows intuitively from mgζ1 being

the angular momentum of the hopper about its foot, and

mgζ2 being the resulting torque about the foot due to gravity.

The dynamics in Eq.(12) are described by Eqs.(24), and

(26) in the region where the transformations in Eq.(21) and

(23) are diffeomorphic. Substituting Eq.(12) into (26) gives




ζ̇5
ζ̇6
ζ̇7



=J(q)(DMDT )−1D [AT −N(q, q̇)] + J̇(q)Dq̇ (28)

Defining the torques T to be

T = [J(q)(DM(q)DT )−1DA]#[vg

+J(q)(DM(q)DT )−1DN(q, q̇)− J̇(q)Dq̇](29)

where (·)# is the right pseudoinverse of (·), results in

[

ζ̇5, ζ̇6, ζ̇7

]T

= vg (30)

We choose vg to the be given by

vg =





−K1ζ1 −K2ζ2 −K5ζ5
−K3ζ3 − αK6ζ6
−K4ζ4 −K7ζ7



 (31)

with α defined as

α =

{

1 ζ6 ≤ 0
ν ζ6 > 0

(32)

and the gains Ki chosen such that Ki > 0 ∀i and

K6 < 2
√

K3 (33)

This ensures asymptotic convergence of trajectories to the

manifold

M = {ζ ∈ R
7|(ζ1, ζ2, ζ4, ζ5, ζ7) = (0, 0, 0, 0, 0)} (34)

On M, the trajectories of the system obey
[

ζ̇3
ζ̇6

]

=

[

0 1
−K3 −αK6

] [

ζ3
ζ6

]

(35)

which represents a ”mass spring damper” whose damping is

positive or negative based on the value of ν. By modulating

ν we will increase or decrease the energy of the system and

achieve apex height control.

B. Flight Phase

During the flight phase, the position of the foot relative to

the center of mass is controlled in order to achieve a desired

foot placement at the time of touchdown. In this phase the

system has additional dynamics of x, ẋ, y, and ẏ, which

were not present in the contact phase. We define the states

d = x+ rx h = y + ry

ḋ = ẋ+ ṙx ḣ = ẏ + ṙy (36)

where d and h represent the horizontal and vertical compo-

nent of the center of mass in the inertial frame of reference.

Using Eq.(2) we can show

d̈ = 0, ḧ = −g (37)
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Additionally, the angular momentum of the system about its

center of mass is conserved. The angular momentum about

the center of mass is given by

Hc =
4
∑

i=1



ri ×miṙi + Ii

i
∑

j=1

θ̇j



 (38)

Substituting Eqs.(21) and (23) into (38) gives

Hc = −m[gζ1 + (ζ3 + yd)ζ5 − ζ2ζ6] (39)

Sovling Eq.(39) for ζ1 gives

ζ1 =
1

mg
[mζ2ζ6 −m(ζ3 + yd)ζ5 −Hc] (40)

This shows ζ1 is related to ζ2, ζ3, ζ5, and ζ6 via an algebraic

relationship. The dynamics of ζ2, ζ3, and ζ4 are the same as

in Eq.(25), whereas the dynamics of ζ5, ζ6, and ζ7 can be

obtained by substituting Eq.(2) into Eq.(26):




ζ̇5
ζ̇6
ζ̇7



 = J(q)DM−1 [AT −N(q, q̇)] + J̇(q)Dq̇ (41)

Defining the torques T to be

T = [J(q)DM−1(q)A]#[vf

+J(q)DM−1(q)N(q, q̇)− J̇(q)Dq̇] (42)

results in
[

ζ̇5, ζ̇6, ζ̇7

]T

= vf (43)

We choose vf as follows:

vf =





−K2ζ2 −K5ζ5
−K3ζ3 −K6ζ6
−K4ζ4 −K7ζ7



 (44)

where Ki > 0 ∀i ∈ [2, 7]. This guarantees that the

variables ζi i ∈ [2, 7] will asymptotically converge to zero.

Additionally, if Hc = 0, ζ1 will asymptotically converge to

zero.

Since the angular moment Hc cannot be controlled in the

flight phase, our objective is to bring it to zero during the

contact phase.

C. Hybrid Dynamics of Closed-Loop System

The hybrid dynamics of the system over one hop is

summarized as follows:

Flight Phase: The dynamics during flight phase is de-

scribed by






























d̈

ḧ
η̇

ζ̇2
ζ̇3
ζ̇4
ζ̇5
ζ̇6
ζ7































=





























0
−g

f(η, ζ)
ζ5
ζ6
ζ7

−K2ζ2 −K5ζ5
−K3(ζ3 − yd)−K6ζ6
−K4(ζ4 − θd)−K7ζ7





























(45)

and the non-holonmic constraint given by Eq.(40) for ζ1.

Impact: The hopper makes contact with the ground when

y = 0 or h − ζ3 − yd = 0. The impulse due to impact is

given by Eq.(11).

Contact Phase: From Eqs.(24), (26), (30) and (31), and

ẍ = ÿ = 0 the dynamics during contact phase are given by



























η̇

ζ̇1
ζ̇2
ζ̇3
ζ̇4
ζ̇5
ζ̇6
ζ̇7



























=

























f(η, ζ)
ζ2
ζ5
ζ6
ζ7

−K1ζ1 −K2ζ2 −K5ζ5
−K3(ζ3 − yd)− αK6ζ6
−K4(ζ4 − θd)−K7ζ7

























(46)

where

α =

{

1 ζ6 ≤ 0
ν ζ6 > 0

(47)

and the states h and ḋ are given by

h ≡ ζ3 + yd, ḋ ≡ ζ5 (48)

The contact phase ends at the instant Fy in Eq.(5) is equal

to 0, that is

Fy = mζ̇6 +mg = 0 ⇒ ζ̇6 = −g (49)

IV. PERIODIC BEHAVIOUR

Hopping is described by consecutive sequences of flight

phase, impact, and contact phase. To describe a single hop,

we define the state χ

χ ∈ Ω, Ω = {(θ, θ̇) | ζ̇6(θ, θ̇) + g = 0} (50)

which define the configuration of the hopper at the time

of transition from the contact to the flight phase. The

configuration χ does not include d since the objective of

this paper is to control only the height. The first return map

between the kth hop and the (k + 1)th hop is defined as

χ(k + 1) = P (χ(k)) (51)

where P (χ(k)) is the solution of the closed-loop hybrid

dynamics.

A. Period One Orbits

For a period one orbit [5] we have

χ(k)− P (χ(k)) = 0 (52)

Let χ∗ to be any value of χ that satisfies Eq.(52). Note that

χ lies in a 7 embedded manifold of R
8. Let V to be the

matrix of linearly independent unit vectors

V = [v1, v2, . . . v7] vi ∈ R
8, |vi| = 1, i ∈ [1, 7] (53)

where

span(V ) = Ω (54)
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Linearization of Eq.(51) about the periodic point χ∗ gives

χ(k + 1) ≈ P (χ∗) +

7
∑

i=1

[

∂P (χ)

∂vi
vTi |χ=χ∗(χ(k)− χ∗)

]

(55)

where ∂P (χ)/∂vi is given by

∂P (χ)

∂vi
= lim

h→0

P (χ+ hvi)− P (χ)

h
(56)

It follows that Eq.(55) is asymptotically stable iff

ρ

(

7
∑

i=1

[

∂P (χ)

∂vi
vTi |χ=χ∗

]

)

< 1 (57)

where ρ(·) is the spectral radius.

B. Chaos Control

A periodic orbit defined by χ∗ may not be stable for a

given set of system parameters. However, we note that P (χ)
is dependant on the variable ν. By defining ν∗ to be the

value of ν that satisfies Eq.(52) for χ = χ∗, we will vary

the value of ν to ensure asymptotic stability of χ∗.

To design the input ν(k), first define the vector v as

v =

[

a
b

]

|v| = 1, a ∈ R
8, b ∈ R− {0} (58)

where a satisfies Eq.(49). Defining the error E and the input

u as

E(k) = χ(k)− χ∗

u(k) = ν(k)− ν∗ (59)

we have the linearized equation of Eqn. (52):

E(k + 1) = AE(k) +Bu(k) (60)

where A and B are given by

A =
7
∑

i=1

[

∂P (χ)

∂vi
vTi

]

+
∂P (χ(k))

∂v
aT

B =
∂P (χ(k))

∂v
b (61)

and where the directional derivatives ∂P (χ)/∂vi and

∂P (χ)/∂v are evaluated at (χ∗, ν∗). For asymptotic stability,

u(k) is designed as

u(k) = GE(k) (62)

where G is chosen such that

ρ(A+BG) < 1 (63)

V. SIMULATIONS

For the four-link hopper, the masses are assumed to be

m1 = 2.5 kg, m2 = 5 kg, m3 = 10 kg, m4 = 20 kg (64)

The length of the links of the hopper are assumed to be

l1 = 0.1 m, l2 = l3 = l4 = 0.3 m (65)

and the distance to the center of mass of each link - see Fig.1

are assumed to be

d1 = 0.05 m, d2 = d3 = d4 = 0.15 m (66)

The moment of inertia of each link is computed as

Ii =
1

12
mil

2
i ∀i ∈ [1, 4] (67)

The gains used for the continuous control are

K1 = 12000 K2 = 8000 K3 = 300 K4 = 300
K5 = 120 K6 = 10 K7 = 8

(68)

and the set points yd and θd for the continuous control are

yd = 0.4967 m θd =
π

2
− 0.1 (69)

The value of yd is 0.14 m below the maximum height of the

center of mass relative to the foot.

We choose the desired apex height of the center of mass

to be 0.65 meters and compute the periodic point, (χ∗, ν∗)
to be given by

χ∗

1 = 1.579 χ∗

2 = −0.407 χ∗

3 = 1.135
χ∗

4 = −1.178 χ∗

5 = −6.696 χ∗

6 = 11.659
χ∗

7 = −10.360 χ∗

8 = 8.960 ν∗ = −0.607
(70)

with all values given in rad and rad/s where appropriate.

The stabilizing control gains G for the periodic point in

Eq.(70) are by solving the discrete LQR problem:

G1 = −0.023 G2 = 0.025 G3 = −0.005
G4 = 0.011 G5 = −0.051 G6 = −0.030
G7 = 0.005 G8 = −0.027

(71)

We choose the initial configuration of the system is assumed

to be

(x(0), ẋ(0), y(0), ẏ(0)) = (0.00, 0.00, 0.03, 0.00)

θ(0) = [1.65, −0.50, 1.07, −0.94]
T

θ̇(0) = [0.00, 0.00, 0.00, 0.00] (72)

where the units are in meters, rad, and rad/sec. These initial

conditions were chosen such that the center of mass of the

hopper lies vertically above the point of support. The initial

value of the discrete control input is chosen to be

u(0) = 0 ⇒ ν(0) = ν∗ (73)

Figure 2 shows the height of the center of mass as a

function of time. It can be seen that the center of mass

converges to the desired height in approximately 4 hops.

Figure 3 displays the inputs torques τ1, τ2, and τ3. The

sharp peaks indicate the discontinuous jumps in the torques

immediately following impact.

A video animation of the simulation, running for a longer

duration of time than that presented in Figs.2 and 3, has been

uploaded as supplementary material.
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Fig. 2. Center of mass height above the ground for the four-link hopper
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Fig. 3. Input torques for the four-link hopper

VI. CONCLUSION

A method for controlling the apex height of a four-

link hopping robot was presented. The dynamics of the

hopping robot was separated into the flight phase, impact

phase, and contact phase; and partial feedback linearization

was used to control the configuration of the robot during

the flight and contact phases. A discrete chaos-controller

was used to converge the first return map of consecutive

hops to a periodic point utilizing variations of a specific

parameter of the continuous controller. Simulation results

were presented to show that the controller is indeed capable

of converging the apex height of the robot to a desired value.

Future work will be aimed at experimental verification, as

well as generalization of the results to an N -link hopping

robot. Based on preliminary investigations, it appears that the

method presented in this paper will be applicable to hopping

robots with revolute joints (like the one presented in this

paper) for N ≥ 3. The method will not be applicable for a

two-link revolute joint hopping robot since it is not possible

to decouple the X and Y motions. For a two-link prismatic

joint robot, however, the dynamics in the X and Y directions

are naturally decoupled and it is possible to design an apex

height controller, as shown in our earlier work [14].
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