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Abstract— It was clarified that limit cycle walkers with
redundant free joints generate the measurable periods of
double-limb support (DLS) through numerical simulations and
experiments. This paper then conducts numerical analyses to
examine the effects of non-instantaneous DLS motion on the
gait properties such as stability and energy efficiency. First,
we divide the gait cycle into the collision and the stance
phases and numerically evaluate their stability in terms of
the convergence rate. Second, we analyze the stability in more
detail by dividing the stance phase into the periods of DLS
and single-limb support. The simulation results show that the
energy efficiency monotonically worsens with the increase of the
ratio of the period of DLS to the gait cycle but the convergence
rate improves. Furthermore, we discuss the similarities between
robot walking and human walking based on the analysis results
obtained.

I. INTRODUCTION

It is well known that limit cycle walkers smoothly walk
without placing feet flat on the ground and keep walking
with small energy supply. The generated gait is thus energy-
efficient and high-speed, and the limit cycle consists of the
stance and the collision phases. There is a tendency that
the inelastic collision for stance-leg exchange is modeled
on the assumption that the rear leg leaves the ground im-
mediately after touchdown of the fore leg. The validity of
this assumption has been confirmed through experimental
walking of rimless wheels, compass-like walkers, and kneed
walkers [1][2]. The generated gait mathematically becomes
a limit cycle without containing non-instantaneous double-
limb support (DLS) motion. In human walking, however,
periods of non-instantaneous DLS emerge more than 10%
cycle, but the effects and roles of DLS on the gait properties
have not been investigated actively in the field of robotic
limit cycle walking.

Recently, however, several major results have been re-
ported. Geyer et al. discussed the similarity between human
walking and limit cycle walking from the viewpoint of
ground reaction forces [3]. They used the model of a planar,
elastic-legged compass-like walker without having the leg
mass and showed that the walker generates non-instantaneous
DLS motion. Asano and Kawamoto also investigated the
potentiality of emergence of non-instantaneous DLS motion
through mathematical modeling and numerical simulations
of more realistic spoked walker with viscoelastic-leg frames
[4][5]. They showed that non-instantaneous DLS motion
emerges after the instant of touchdown of the fore leg. Asano
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and Ohshima also numerically showed that a rimless wheel
that composed on eight leg frames with active knees also
generates non-instantaneous DLS motion in the case that the
knee joints are kept free [6]. Furthermore, they numerically
showed that a kneed bipedal walker also generates the motion
by keeping the knee joints free [7].

These early works suggest that we must be careful to
develop the collision model and to determine the robot’s
state immediately after impact if the robot has free redundant
DOF. As discussed in [6][7], we can determine how the
robot’s state transitions during the collision phase by observ-
ing the sign of impulses acting on the fore and the rear feet.
It has also been elucidated that the generated gaits including
non-instantaneous DLS motion are also asymptotically stable
and the convergence rate can be controlled by adjusting
the system parameters. There is, however, an incomplete
understanding of the qualitative properties.

Based on the observations, in this paper we conduct
fundamental study on the effects of non-instantaneous DLS
motion on the generated gait properties. First, we introduce
a planar bipedal walker with knee joints and semicircular
feet for analysis. We then perform numerical simulations
and examine the inherent stability principle by dividing the
walking cycle into the stance and the collision phases. We
discuss the limit cycle stability from the viewpoint of the
convergence rate of the state error norm. The simulation
results show that the stability significantly changes with
respect to the ratio of the period of DLS to the step period.
Based on the results obtained, we discuss the mechanism of
how elderly people fall while walking.

II. MODELING

A. Equation of Motion

This paper deals with the model of a planar biped model
with active knees and semicircular feet shown in Fig. 1. This
robot is composed of four links without having the inertia
moment. We call the stance leg Leg 1 and swing leg Leg
2. (x, z) is the end position of Leg 1 which is identical to
the attachment position of semicircular foot. The robot can
exert the joint torques; u1 and u3 are the joint torques at the
stance and the swing knees, and u2 is the hip-joint torque.

Let q =
[
x z θ1 θ2 θ3 θ4

]T
be the generation coordi-

nate vector (6-DOF). The robot equation of motion then
becomes

M(q)q̈ + h(q, q̇) = Su+ J(q)
T
λ, J(q)q̇ = 0. (1)
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Fig. 1. Underactuated biped model with knees

Here, Su ∈ R6 is the control input vector and is detailed as

Su =


0 0 0
0 0 0
1 0 0
−1 1 0
0 −1 1
0 0 −1


 u1

u2

u3

 . (2)

The second term of the right-hand side in Eq. (1) represents
the holonomic constraint force vector and the elements are
equal to the tangential and the normal ground reaction forces
at the stance foot or at the both feet. By eliminating the
undermined multiplier vector, λ, from Eq. (1), we obtain

M(q)q̈ = Y (q)(Su− h(q, q̇))

−J(q)TX(q)−1J̇(q, q̇)q̇, (3)

where X(q) := J(q)M(q)−1J(q)T and

Y (q) := I6 − J(q)TX−1J(q)M(q)−1.

The robot has two or four holonomic constraints in accor-
dance with the number of the support legs.

B. Phase Sequence

The robot generates walking gaits by actuating the three
joints according to the method described later. The generated
gait includes both non-instantaneous DLS and single-limb
support (SLS) phases, and is divided into the following three
phases according to the contact conditions.

• Collision phase (Touch down of the swing leg)
• Stance phase 1: Period of DLS (2-DOF)
• Stance phase 2: Period of SLS (4-DOF)

The Jacobian matrix, J(q), in Eq. (1) is exchanged in
accordance with the holonomic constraint conditions.

1) Period of DLS: In this period, the following two
conditions hold.
(C1) The sole of Leg 1 contacts the floor without slipping.

Rolling constraint is guaranteed.
(C2) The sole of Leg 2 contacts the floor without slipping.

Rolling constraint is guaranteed.
J(q) is then derived by summarizing four equations repre-
senting these conditions. In this period, the 6-DOF system
has four constraint conditions and the motion therefore
becomes 2-DOF and the holonomic constraint forces can be
divided into

JDLS(q)
Tλ =

4∑
j=1

J j(q)
Tλj , (4)

where J j(q) ∈ R1×6 is the (j)th row vector of JDLS(q) ∈
R4×6 and λj ∈ R is the (j)th component of λ ∈ R4.
The Jacobian vectors J1(q) and J2(q) corresponds to the
constraint condition (C1), whereas J3 and J4 corresponds to
(C2). The vertical ground reaction force acting on the contact
point of Leg 1 with the ground is represented by λ2, and that
of Leg 2 is represented by λ4. Both of them must be positive
during DLS motion and we can detect the instant that Leg
2 leaves the ground by observing the sign of λ4.

2) Period of SLS: In this period, only the condition (C1)
holds. The Jacobian matrix therefore becomes

JSLS(q) =

[
J1(q)
J2(q)

]
. (5)

C. Collision Equation

After having calculated the velocity immediately after the
impact without changing the swing leg for the stance leg, we
take the way to change velocity of Leg 1 and Leg 2. Let q−

be the velocity immediately before impact and q+ be that
immediately after impact, the collision equation becomes

M(q)q̇+ = M(q)q̇− + JI(q)
TλI , JI(q)q̇

+ = 0. (6)

Here, we do not consider the stance-leg exchange and thus
q = q±. We exchange the positional coordinates after
computing the post-impact velocities. By solving the above
equations, the velocity vector immediately after impact can
be derived as

q̇+ =
(
I6 −M(q)−1JI(q)

TXI(q)
−1JI(q)

)
q̇−, (7)

where XI(q) := JI(q)M(q)−1JI(q)
T and the Jacobian

matrix at impact, JI(q), is exchanged in accordance with
the following algorithm.
(A1) We set JI(q) = JDLS(q) in Eq. (6) and compute

λI ∈ R4.
(A2) Divide λI into λI =

[
λI1 λI2 λI3 λI4

]T
. λI2 ≥ 0

and λI4 ≥ 0 must hold to transition to DLS. It
is obvious, however, that λI2 ≥ 0 always holds.
Therefore we should check the sign of λI4 only.

(A3) If λI4 < 0, DLS motion does not emerge. We then
compute q̇+ by setting JI(q) = JSLS(q).

(A4) If λI4 ≥ 0, the motion then transitions to DLS and we
compute q̇+ by setting JI(q) = JDLS(q).
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D. Detection of takeoff of Leg2

Leg 2 begins to leave the ground at the instant that the
sign of λ4 in Eq. (4) continuously changes from positive to
negative. The problem is, however, that the vertical (normal)
ground reaction force immediately after impact, λ+

4 , does
not become positive even if λI4 is positive in the case that
collision occurs while keeping the knee-joint actuation. In the
case that the robot mechanically locks all the joints or does
not have redundant joints, the sign of the vertical (normal)
velocity at rear foot immediately after impact is equal to
that of −λI4 [8][9]. In other words, the rear foot always
leaves the ground immediately after impact if λI4 > 0. In
the presence of redundant free joints [6][7], however, the
same is not true and we must be careful to determine the
post-impact situation.

We then take the following computational procedure based
on the sign of λ+

4 .

(B1) If λI4 ≥ 0, the motion is determined to transition to
DLS. The collision equation are then specified as

M(q+)q̈+ + h(q+, q̇+) = Su+ JDLS(q
+)Tλ+, (8)

JDLS(q
+)q̇+ = 04×1. (9)

Note that, however, q+ in the above equations is the
positional vector after exchanging the coordinates.

(B2) Divide λ+ in Eq. (8) into λ+ =
[
λ+
1 λ+

2 λ+
3 λ+

4

]T
.

If λ+
2 ≥ 0 and λ+

4 ≥ 0, then we take q̈+ obtained in
(B1) and continue the numerical integral.

(B3) If λ+
2 ≥ 0 and λ+

4 < 0, unilateral constraint condition
is not satisfied and the motion should transition to
SLS. We then break q̈+ obtained in (B1) and solve
the following equations for q̇+.

M(q+)q̈+ + h(q+, q̇+) = Su+ JSLS(q
+)Tλ+ (10)

JSLS(q
+)q̇+ = 02×1 (11)

We take the newly-calculated q̈+ from Eq. (10) as
the proper initial acceleration vector and begin the
numerical integral.

In the case of (B3), the rear foot leaves the ground
immediately after impact. The generated DLS motion is
therefore instantaneous although the collision equation used
JDLS(q

+).

III. LEVEL GAIT GENERATION

A. Control Phase I

Let t = 0 [s] be the instant of touchdown of the swing
leg. In this phase, we do not exert all the joint torques. Non-
instantaneous DLS motion then continues.

B. Control Phase II

The control phase II starts at t = T1(> 0) [s]. In this
control phase, we set the knee-joint torques, u1 and u3,
to constant values determined in advance. This control is
continued for T2 [s]. We concurrently control the hip-joint

to follow a desired-time trajectory. Let us divide the control
input vector into

Su =


0 0
0 0
1 0
−1 0
0 1
0 −1


[
u1

u3

]
+


0
0
0
1
−1
0

u2 = S13u13 + S2u2.

(12)
Let the relative hip-joint angle, θH := θ2−θ3, be the control
output in this phase. Its second-order derivative with respect
to time becomes

θ̈H = AII(q)u2 +BII(q, q̇), (13)

where AII(q) := ST
2 M(q)−1Y (q)S2 and

BII(q, q̇) := ST
2 M(q)−1Y (q)(S13u13 − h(q, q̇))

−ST
2 M(q)−1J(q)TX(q)−1J̇(q, q̇)q̇.

The control input for achieving θ̈H = v2 can be determined
as u2 = AII(q)

−1(v2 −BII(q, q̇)) where

v2 = θ̈Hd(t)+KD(θ̇Hd(t)− θ̇H)+KP (θHd(t)−θH). (14)

Here, KP and KD are PD gains and are positive con-
stants. The desired-time trajectories for hip-joint, θHd(t),
is given as a five-order function of time that satisfies the
boundary conditions of θHd(0

+) = α′, θHd(Tset) = α, and
θ̇Hd(0

+) = θ̇Hd(Tset) = θ̈Hd(0
+) = θ̈Hd(Tset) = 0. Here,

α′ [rad] is the hip-joint angle at the beginning time of the
control phase II, and Tset is the desired settling time for the
output following control. As described later, Leg 2 begins to
leave the ground after exerting the knee-joint torques during
this phase.

C. Control Phase III

At t = T2(> T1) [s], we start an output PD control for the
relative knee-joint angles to straighten them. They are settled
to the desired terminal values. In this phase, we choose the
control output vector as

y :=

 θ1 − θ2
θ2 − θ3
θ3 − θ4

 = STq. (15)

The second-order derivative with respect time becomes

ÿ = STq̈ = AIII(q)u−BIII(q, q̇), (16)

where AIII(q) := STM(q)−1y(q)S and

BIII(q, q̇) := STM(q)−1(y(q)h(q, q̇)

+J(q)TX(q)−1J̇(q, q̇)q̇).

The control input for achieving ÿ = v can be determined as

u = AIII(q)
−1 (v +BIII(q, q̇)) , (17)

and each element of the vector v =
[
v1 v2 v3

]T
can be

determined as vj = −KDẏj +KP (yjd − yj) (j = 1 or 3),
and v2 is the same as Eq. (14). The relative knee-joint angles,
y1 and y3, are then controlled to the desired terminal values,
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y1d = β and y3d = −β [rad], whereas the relative hip-
joint angle, θH , is controlled and maintained to the desired
terminal value, α [rad], where t ≥ Tset.

IV. STABILITY ANALYSIS

A. Preliminaries

Let us define approximate transition functions of the state
error for the stance and the collision phases. In limit cycle
walkers that fall down as a 1-DOF rigid body immediately
before impact, we can consider only the error of the angular
velocity at impact because the positional errors are always
zero due to the constraint on impact posture [10][11]. By
linearizing the equation of motion, we can analytically derive
the transition function of the state error for the stance phase
as

∆θ̇
−
1(i+1) = Q̄∆θ̇

+

1(i). (18)

This is available if the walker keeps locking all the joints
during the collision phases. To derive Q̄, we must apply
some linear approximations [11]. The error terms higher
than second order neglected in the derivation, however, are
not sufficiently small and there is a considerable difference
between the values of Q̄ and of the real walking system [12].

The walker in this paper does not mechanically lock the
joints during the collision phases, so we should introduce
more generalized transition function. For example, the fol-
lowing function can be considered as a candidate.

Q̂(i) :=

∥∥∥∆θ̇
−
(i+1)

∥∥∥∥∥∥∆θ̇
+

(i)

∥∥∥ (19)

We assumed, however, that the error norm of the angular
position is sufficiently smaller than that of the angular
velocity, i.e.

∥∥∥∆θ̇
±
(i)

∥∥∥ ≫
∥∥∥∆θ±

(i)

∥∥∥ holds. Note that Q̂(i) is
the transition equation not for the state error but for the state
error norm of the (i)th step. Therefore Q̂(i) is always positive
and is not useful for evaluating the convergence property,
speed mode or totter mode.

We further consider to compute the mean value of Q̂(i)

on the assumptions that Q̂(i) shows little change. Define Q̂

as the mean value of Q̂(i) for the first five steps, that is,

Q̂ :=
1

5

4∑
i=0

Q̂(i). (20)

The transition function of the state error for the collision
phase of the (i)th step is also defined as

R̂(i) :=

∥∥∥∆θ̇
+

(i)

∥∥∥∥∥∥∆θ̇
−
(i)

∥∥∥ . (21)

We then compute the mean value in the same way as

R̂ :=
1

5

4∑
i=0

R̂(i). (22)

B. Evolution of State Error in Typical Walking Gait

Fig. 2 shows the evolution of the state error norm in level
dynamic walking where T1 = 0.05, T2 = 0.15 [s] and β = 0
[rad]. The physical parameters were chosen as listed in Table
I. The PD gains were also chosen as KD = 60 and KP =
900. We can see that the stance phases are stable but the
collision phases are unstable and that the overall generated
gait is asymptotically stable. Specifically, the values of the
transition functions were Q̂ = 0.480, R̂ = 1.250, and Q̂R̂ =
0.60. The convergence property is classified into the speed
mode because of 0 < Q̂R̂ < 1. In a passive compass gait, the
stance phase is unstable but the collision phase is stable [13].
Interestingly, however, the roles of each phase are inverted
in this level gait with redundancy. As one of the authors
showed, in an underactuated bipedal gait with constraint on
impact posture, the stance phase is relatively higher than the
collision phase in stability [11]. This is achieved by the effect
of the trajectory tracking (output following) control during
the stance phases. The same is true in a level gait containing
non-instantaneous DLS motion.

C. Roles of SLS and DLS

Next, we analyze the roles of SLS and DLS motions in
detail. Let us divide the transition function Q̂ at instant of
transition from DLS to SLS, that is,

Q̂DLS(i) :=

∥∥∥∆θ̇
trans

(i)

∥∥∥∥∥∥∆θ̇
+

(i)

∥∥∥ , (23)

Q̂SLS(i) :=

∥∥∥∆θ̇
−
(i+1)

∥∥∥∥∥∥∆θ̇
trans

(i)

∥∥∥ . (24)

Here, ∆θ̇
trans

i ∈ R4 is the error vector of the angular velocity
at instant of transition from DLS to SLS. These functions
satisfy the relation Q̂(i) = Q̂DLS(i)Q̂SLS(i).
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Fig. 2. Evolution of state error norm with respect to step number

TABLE I
PARAMETER SETTINGS

mH 10.0 kg
m1 1.0 kg
m2 10.0 kg
α 0.6 rad
R 0.5 m

Tset 0.4 s

a1,a2 0.3 m
b1,b2 0.2 m
L1 0.5 m
L2 0.5 m
u1 10 N·m
u2 40 N·m
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We can change the ratio of the period of DLS to the
gait cycle by adjusting the control timing, T1 and T2, while
keeping Tset constant. Fig. 3 shows the evolutions of the state
error norms with respect to step number for three values of
DLS ratio without dividing the stance phases. Whereas Fig.
4 shows that dividing the stance phases. Here, T1 = 0.01
[s] and T2 = 0.08 [s] for DLS of 12%, T1 = 0.05 [s]
and T2 = 0.15 [s] for that of 22%, and T1 = 0.10 [s] and
T2 = 0.22 [s] for that of 30%. We can see that the stance
phases are stable but the collision phases are unstable in all
cases and that the convergence rate becomes faster with the
increase of DLS ratio. To perform numerical comparison,
we also compute the mean values of Q̂DLS(i) and Q̂SLS(i)

as follows.

Q̂DLS :=
1

5

4∑
i=0

Q̂DLS(i) (25)

Q̂SLS :=
1

5

4∑
i=0

Q̂SLS(i) (26)

Table II lists the values of the transition functions corre-
sponding to the three generated gaits in Figs. 3 and 4. From
the values of the DLS ratio and the Q̂, we can see that the
convergence rate monotonically improves with the increase
of the DLS ratio. The Poincaré return map, Q̂R̂, therefore
monotonically decreases with the increase of the DLS ratio
because R̂ is constant. Both the values of Q̂DLS and Q̂SLS

also monotonically decrease with the increase of the DLS
ratio and Q̂DLS > Q̂SLS. The high convergence rate in the
SLS might be achieved mainly by the effect of the tracking
control to the desired-time trajectories as in the case of the
compass gait [11].

In the following, we analyze the gait properties in more
detail by using various criteria and discuss the relation
between the convergence speed and the gait efficiency.

The walking speed, V [m/s], is defined as

V :=
∆Xg

T
, (27)

where T [s] is the step period and ∆Xg [m] is the step length
which is determined as

∆Xg = Rα+ 2(L1 + L2 −R) sin
α

2
. (28)

The cadence (gait frequency) which represents the number
of steps per minute is defined as

Cadence :=
V

∆Xg
=

1

T
. (29)

The cost of transport is evaluated in terms of specific
resistance (SR) defined as

SR :=
p

MgV
, (30)

where p [J/s] is the average input power given by

p :=
1

T

∫ T

0

3∑
i=1

∣∣∣ui

(
θ̇i − θ̇i+1

)∣∣∣ dt. (31)
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Fig. 3. Evolutions of state error norms with respect to step number for
three values of DLS ratio
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Fig. 4. Evolutions of state error norm with respect to step number for
three values of DLS ratio

TABLE II
VALUES OF TRANSITION FUNCTIONS IN CHANGE OF DLS RATIO

DLS [%] Q̂ [-] Q̂DLS [-] Q̂SLS [-] Q̂R̂ [-]
12.3 0.540 0.952 0.581 0.675
22.1 0.483 0.946 0.507 0.560
30.3 0.367 0.939 0.413 0.462

TABLE III
GAIT EFFICIENCIES WITH RESPECT TO DLS RATIO

DLS [%] v [m/s] Cadence [step/min] p [J/s] SR [-]
12 0.92 93.6 46.1 0.16
22 0.90 91.5 90.3 0.33
30 0.81 83.2 150.0 0.58

Table III lists changes in the criteria in the three generated
gaits of Figs. 3 and 4 with respect to the DLS ratio. It
is clear that the increase of the DLS ratio decreases the
walking speed and the energy efficiency. Considering the
results in Table II and III, we must conclude that there
is a trade-off between the convergence speed and the gait
efficiencies. To clarify these properties in more detail, we
conducted numerical simulations. Fig. 5 shows (a) the step
period and the walking speed and (b) the SR with respect to
the DLS ratio. From Fig. 5 (a), we can see that the step period
monotonically increases with the DLS ratio whereas the
walking speed monotonically decreases with it. As a natural
consequence, as shown in Fig. 5 (b), the SR monotonically
increases with it.

Asano and Kawamoto showed that an active viscoelastic-
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Fig. 5. Gait efficiencies with respect to rate of DLS period

legged rimless (VRW) wheel generates non-instantaneous
DLS motion through numerical simulations and experiments
[4]. They also found that the adaptability to irregular terrain
of the VRW is higher than the rigid-legged one although
the generated walking speed is slower [5]. This suggests
that non-instantaneous DLS motion also creates a trade-off
between the adaptability and the gait efficiency. These prop-
erties are summed up that non-instantaneous DLS motion
tends to improve the gait robustness in terms of return speed
but to worsen the gait efficiencies. The authors consider that
non-instantaneous DLS motion plays a role of placing feet
flat on the ground and this effectively resets or reduces the
state error.

The trade-off between the DLS ratio and the gait efficien-
cies is true for human walking. The change tendency that
the walking speed and cadence monotonically decrease with
the increase of the DLS ratio can be seen in human aging
[14][15]. Some control laws or mechanisms that shorten the
period of DLS would tend to improve the gait efficiency in
robot walking as well as human walking. Locking the knee
joints at the instant of landing of the fore leg would also
inhibit destabilization of the collision phase and avoid fall
caused by knee buckling in elderly people walking.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed the roles of non-instantaneous
DLS motion in stable gait generation of an underactuated
bipedal walker. Through numerical simulations, we clarified
the following qualitative characteristics.

• In a kneed walker that generates non-instantaneous DLS
motion by output following control, the stance phase is
stable but the collision phase is unstable.

• The convergence rate of the state error monotonically
increases as the ratio of the period of DLS to the gait
cycle increases.

• Both the SLS and DLS motions are stable and the
convergence rate in the former is faster than that in the
latter.

• The walking speed and cadence monotonically decrease
with the increase of the DLS ratio and this change
tendency is the same as human walking.

We must consider, however, our analysis results are just
some numerical examples. More detailed analysis, especially
mathematical explanations, are necessary to elucidate general
case. Nevertheless, we believe that the results obtained in this
paper give important basis for understanding human walking.
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