
Preview Coordination: an Enhanced Execution Model for Online
Scheduling of Mobile Manipulation Tasks

Enea Scioni1,2, Markus Klotzbuecher2, Tinne De Laet2, Herman Bruyninckx2 and Marcello Bonfè1

Abstract— Task specification models define the activities to
be executed by a robot in order to achieve its goal. Classical
examples are the sequences involved in assembly or pick and
place tasks. This work introduces the preview coordination
execution model, an extension to the traditional way in which
the execution of such task specifications is coordinated at
runtime. Instead of taking activities one-by-one as defined in
the task specification model, preview coordination optimizes
the task scheduling based on knowledge about the likelihood
that not just the activities required by the current state can
be executed, but that also one or more of those related to
future states of the system can be activated. An experiment with
mobile manipulation tasks illustrates the benefits of preview
coordination.

I. INTRODUCTION

Coordination, sometimes called orchestration, is con-
cerned with managing computations so that a given compos-
ite system behaves as intended. As a special case, task (ex-
ecution) coordination executes and monitors the individual
steps of a task specification such that its goals are reached. A
wide range of formalisms have been applied for this purpose
in robotics, including Finite State Automata [1], Sequential
Function Charts [2], [3], Petri Nets [4] and Statecharts [5],
[6]. Complex formalisms like the Task Frame Formalism [7],
Stack of Tasks [8], iTaSC [9] or Manipulation Primitives [1]
have proven valuable by permitting humans to specify tasks
in more intuitive ways. In practice, software frameworks like
the ones provided by ROS (actionlib and SMACH [10])
or Orocos [11] (iTaSC and rFSM [12]) are often used as
generic software infrastructures for the modeling, execution
and monitoring of task specifications.

All of today’s task coordination formalisms permit defin-
ing sequential and/or parallel execution of activities, and
reacting to different sensor processing outcomes. However, to
the best of our knowledge, no framework explicitly permits
exploiting knowledge about possible future activities in order
to optimize the overall execution. This work addresses this
by introducing preview coordination execution model as an
extension to the statechart coordination model and its online
execution (or “scheduling”). A motivating example is given
in Figure 1 which shows a state machine to model the task
of grasping an object using a mobile manipulator, as the
KUKA youBot shown in Figure 2. This application involves
three basic steps: approaching the object, moving the arm to

1E. Scioni and M. Bonfè are with the Engineering Department (ENDIF),
University of Ferrara, 44122 Ferrara, Italy.

2E. Scioni, M. Klotzbuecher, T. De Laet and H. Bruyninckx are with the
Department of Mechanical Engineering, University of Leuven, Belgium

Corresponding Author: enea.scioni@unife.it

entry/grasp_object()

move_arm_to_grasp_pose

e_area_reached

move_base_to_grasp_area

entry/go_to_grasping_area()

grasp
entry/grasp_obj()

e_pose_reached

e_area_unreachable

replanning
entry/replanning()

e_new_path

Fig. 1. Simple sequential coordination FSM.

Fig. 2. KUKA youBot mobile manipulator

the grasp position and grasping the object. The transitions
to replanning models the possibility of encountering an
obstacle, in which case the path must be re-planned. The
key observation is that the first two nominal steps of moving
the robot and the arm to the grasp position can (often but
not always) be executed simultaneously. That way, the time
necessary for positioning the arm before grasping is reduced
or even completely eliminated.

The paper is structured as follows. Section II is a brief
overview on inspiring concepts and related work in different
scientific domains. Section III introduces the main con-
cepts behind the preview coordination model, and outlines
a solving approach using the Finite State Machine (FSM)
formalism as coordination model. Section IV presents a case
study and results obtained by an implementation subset of the
proposed execution model. A short discussion and possible
extensions will be provided by Section V.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5779

II. RELATED WORK

The connection between robot coordination based on a
FSM model and task specification formalisms is still a hot
research topic. An early attempt to describe assembly tasks,
using manipulation primitive nets, has been made in [1].
Without directly introducing a task formalism, the combi-
nation of the actionlib library and SMACH library [10] offer
a FSM based coordination inside the ROS framework [13].
iTaSC [14] is another task specification and execution frame-
work, in which the coordinator role is modeled by so-
called skills [15], that contain parameter configurations of
different motion specifications. A task optimization schedul-
ing based on the Stack of Tasks approach [16] has been
presented in [17] and [18], however no explicit coordi-
nation action is included. Furthermore, resource allocation
and task scheduling is a well-known problem in embedded
system design and several solutions have been proposed
by the Operations Research community. In particular [19]
offers a constraint-programming solution for the schedul-
ing of so-called Conditional Task Graphs (CTG), directed
acyclic graphs whose nodes represent activities, linked by
arcs representing precedence relations. Although CTGs have
similarities with FSM coordination models, these techniques
are not directly applicable in the robotics context, because of
the following reasons: (i) in CTGs scheduling, the problem is
defined and solved offline, while robotics applications often
require runtime adaptations due to uncertain knowledge of
the environment; (ii) the CTGs task model is time-based,
while a robotic task specification model does not always
involve time constraints and, even in that particular case, task
duration commonly depends on other physical constraints,
such as acceleration and velocity limits.

Scheduling activities is also considered a hot research
topic in robotics. Solutions based on “motion primitives”
have been investigated in [20]. In addition, commercial soft-
ware frameworks as ABB RAPID or KUKA Robot Language
(KRL) already evaluate several lines of code ahead, in order
to interpolate commands and perform the optimal “blending”
of subsequent motion primitives. Finally, the concept of
preview as next state prediction is available in the domain of
systems and control. For instance, Model Predictive Control
(MPC) [21] relies on system models to predict possible
future behaviors of the system, from which the optimal input
control signals are selected.

III. PREVIEW COORDINATION
The main idea of preview coordination is to exploit

the robot platform capabilities, by executing non-conflicting
future activities concurrently with the current activity. The
requirements needed to achieve the previous are a complete
separation between the coordination model and the execution
model and a continuous monitoring of the activities during
execution. An overview of the execution model is illustrated
in Figure 3.

The first step is to determine a candidate sequence of
likely next states (i.e. preview state list), starting from the
coordination model and the current state. During this process,

FSM
Coordination

Model

Current
Activity

Next
Likely
Activity

Next
Likely
Activity

.....

Next
Likely
Activity

Current
Activity

Next
Likely
Activity

Next2

Likely
Activity

.....

NextPH

Likely
Activity

Index [0] Index [1] Index [2] Index [PH]

Preview
State List

Activity Conflict
Reasoning

Allocation

Scheduling
 - Monitoring
 - Task Activation Policy

GripperBase Arm 1 Arm 2

X

(Agents)

Base
Arm 1

progress
Task 1

Gripper

Task 2

Task 4

Task 5
Task 7

Task 8
Arm 2 Task 3 Task 6

S1 S2

S3
Likely Models

Environment
Updates

Fig. 3. Preview Coordination Model Overview

environment variability is taken into account through likely
models (see in Section III-C). Secondly, an activity conflict
reasoning is applied (Section III-B) to remove conflicting
activities described by the preview state list. Finally, the
activities are scheduled in accordance with the robot platform
used and tasks are continuously monitored to decide when
to execute them (task activation policy).

In literature, the terms task and activities are often in-
terchangeable, sometimes they assume different meanings.
The goal of this work is not to introduce a new definition of
task or a particular task specification model. On the contrary,
the preview coordination execution model is intended to be
independent from a specific task model. Thus, the term task
assumes the meaning of the chosen task specification model
and it represents what is actually executed at each step. In the
trivial case this could be, for instance, a direct command to
a trajectory generator for moving the robot to a given pose.
Another class of task specification formalisms is constraint-
based: the command is not embedded in the specification,
but only the constraints that have to be satisfied. A typical
example is an obstacle avoidance task.

The term activity calls the concept of executable entity
defined by a set of tasks instances and their configurations.
An activity could also provide additional information, such as
activity preconditions (conditional constraints to be verified
before that the activity is executable) and activity postcon-
ditions (constraints related to the end of the activity).

A. Preview State List: a probabilistic approach

Given a FSM coordination model, the first challenge is
to determine the most likely path of future states, so-called
preview state list, for which activities may be executed
concurrently with the current state activity. The key idea
is to associate a probabilistic value to each transition of
the FSM model (Figure 4), which represents the likelihood
to become active at the next update. In this sense, a FSM
coordination model is transformed in a Probabilistic Finite-
State Automata (PFA) [22]. Because of the coordination

5780

nature of the FSM model, the current state is known at every
step, hence the transformation produces a particular case of
PFA, the Deterministic Probabilistic Finite-State Automata
(DPFA) [22], whose definition is the following:
Definition 1 DPFA is a tuple A = 〈QA,

∑
, δA, IA, FA, PA〉,

where:
• QA is a finite set of states;
• Σ is the alphabet;
• δA ⊆ QA ×Σ ×QA is a set of transitions;
• IA : QA → R+ (initial-state probabilities);
• PA : δA → R+ transition probabilities;
• FA : QA → R+ final-state probabilities;
•

∑
q∈QA IA(q) = 1;

• ∀q ∈ QA, FA(q) +
∑
a∈Σ,q′∈QA PA(q, a, q′) = 1;

• ∃q0 ∈ Q, such that I(q0) = 1 (initial state known);
• ∀q ∈ Q, ∀a ∈ Σ, |{q′ : (q, a, q′) ∈ δ}| 6 1.

Recalling from [22], a stochastic language D is a probability
distribution over the set of finite-strings Σ∗ (in this context,
a string x ∈ Σ∗ is a finite and ordered sequence of letters in
the alphabet Σ). PrD(x) indicates the probability of a string
x ∈ Σ∗ under the distribution D. The most probable finite
string problem of a DPFA consists of the following:

arg max
x∈Σ∗

PrA(x). (1)

In this probabilistic context, determining the preview state list
is analogous to the problem reported above. Once that the
most probable finite string is known, it is trivial to identify
the (likely future) states from the sequence of transitions
generated by the string.

A DPFA has the interesting feature that the computational
cost of the parsing process (i.e. evaluation of PrA(x))
depending only on |x| length of the string (in details O(|x|)).
Both backward and forward algorithms could be used for the
parsing process. However, the latter is preferred (Eq. 2), due
to the prior knowledge of the current state (as initial state of
the parsing)

PrA(x) =
∑
q∈QA

αx(|x|, q) · FA(q), (2)

where:
αx(0, q) = IA(q),
αx(i, q) =

∑
q′∈QA

αx(i− q, q′) · PA(q′, xi, q), 1 ≤ i ≤ |x|.
(3)

Furthermore, the ending condition of the parsing process is
not guaranteed in general, since the length of the string x
is unknown. Introducing the Preview Horizon (PH) as the
number of likely states considered in the preview execution
and Maximum Preview Horizon (MPH) as the maximum PH
allowed (in general PH ≤ MHP), it is straightforward to see
the relationship between |x| and the MHP.

To ensure the completion of the parsing process, two
alternative solutions can be proposed:

1) Limit on MPH: the MPH is assumed a priori, fixing
the length of the string in the forward algorithm.

2) Encounter a Steady-State as ending condition for the
forward algorithm. A state q ∈ QA is defined Steady-
State if one of the following conditions is true: (i)

given a threshold on the final-state probability (FT (q)),
if F (q) ≥ FT (q), or (ii) given a threshold on the
transition probability (PAT

(q, a, q′)), if ∀q′ ∈ QA,
∀a ∈ Σ: PA(q, a, q′) ≤ PAT

(q, a, q′).
Even though the first solution looks simpler, the second will
actually be considered in this work. In fact, setting the MPH
value a priori is not trivial and it may reduce (MPH too
small) the activity parallelization of the preview execution
or, even worse, an expensive and inefficient reasoning phase
later (Section III-B). Instead, using Steady-States as ending
condition allows a dynamic MPH adaptation, without bound-
ing the final result. By tuning the thresholds it is possibile to
specify whether the current information is strong enough or
not to be used for the preview execution. In addition, some
states of the FSM are implicitly modeled as Steady-States
(see Section III-C).

Obviously, the operations previously described are only
possible when all the information on the transitions involved
in the parsing are complete. This problem will be treated in
Section III-C.

task/move_arm()

moving_arm_to_drop_pose

e_area_unreachable

e_area_reached
likely = 0.6

moving_base_to_drop_area

task/move_base()

replanning
task/replanning()

e_new_path

likely = 0.2

dropping

task/drop()

F(q) = 0.2

likely = 0.8
e_armpose_reached

F(q) = 0.2

Fig. 4. Snapshot of simple coordination FSM model executed by preview
execution model. Green and yellow states indicate, respectively, the current
state and the next likely states computed by the preview coordination

For comparison, a similar approach has been used in [19],
but since CTGs are acyclic graphs defined a priori, the
bounding problem does not occur.

In conclusion, the outcome of this first step is a preview
state list, in the form of an ordered data structure of activities,
starting from the current activity (which will be executed
immediately) and terminated by the last predictable future
activity obtained by the FSM coordination model analysis.
Each of these activities fully describes the tasks to be
executed on the robot platform.

B. Activity Conflict Reasoning

The activity conflict reasoning is a mechanism to deter-
mine logical conflicts on the activities in the preview state
list, based on activities precondition and postcondition. These
constraints, associated to semantic meanings of the activities,
could be expressed symbolically or specified manually. In the
first case, a symbolic reasoner implementation is required
(e.g. CRAM software toolbox [23]). Searching activity con-
flicts can be done by iterating the preview state list and
verifying if the constraints of a target activity are satisfied
with respect to all previous activities. If a conflict is detected,

5781

the target activity will not be considered in the allocation and
scheduling problem.

A motivating example is illustrated by a dropping op-
eration (Figure 4). Assuming moving base to drop area as
current state, the preview state list includes also mov-
ing arm to drop pose and dropping states. It is straightfor-
ward to note that the activity described in the state dropping
(composed of the only task drop()) can not be executed in
advance because of its preconditions. In fact, since the object
has to be dropped in a specific pose, the activity is logically
constrained in having the gripper in that pose (precondition).
The described reasoning plays a relevant role in large-scale
applications. Formalizing the details of this reasoning step
is not part of the contribution of this paper, hence it will be
considered part of the future work.

C. Determine transition probability values from FSM coor-
dination models (Likely Models)

In Section III-A the discussion has been oriented to pro-
pose a method to determine the preview state list. However,
a solution to compute the probability values online has
not been described yet. Before introducing such solution,
it is important to define the meaning of a probabilistic
value associated to transitions in the scope of a chosen
FSM coordination model. Without loss of generality, in this
work rFSM Statecharts [12] (a STATEMATE flavored UML
FSM model) are used as coordination model. Since the
transition probability is defined as the probability that the
transition becomes active, in rFSM context the same concept
is identified as the possibility that one event is triggering the
transition and its guard condition is true.

For the sake of terminology simplification, a transition is
called likely if the probability associated to the transition is
the largest of the probabilities associated to each transition
with the same source state. Formally, given a state q ∈ QA,
a transition (q, a∗, q∗) is likely if

PA(q, a∗, q∗) = arg max
a∈Σ,q′∈QA

PA(q, a, q′). (4)

Furthermore, the term likely value refers to the runtime value
of the transition probability (i.e. PA(q, a∗, q∗)). Finally, a
likely model is a computational model responsible to evaluate
the likely value of an associated transition. Defining a likely
model is not a trivial task and it has to be analyzed case by
case. On the other hand, it is at least possible to define some
classes of likely models.

The first class of likely model is directly related to prior
information, thus this information is already specified in the
FSM coordination model. In most of the cases, this likely
model is used when a transition is activated by an event (and
eventually a guard condition) directly related to the “proper”
end of the activity which belong to the source state. In other
words, it is marked as likely a transition having as target state
the next nominal state in the context of the application. A
particular case of prior information is when a transition is the
only one having a particular state as source state. In this case,
the transition is likely and the next likely state is immediately

identified by its target state. An example is given in Figure 4
by the outgoing transition from moving arm to drop pose
state to dropping state.

Another interesting class of likely model is related to
environment changes, thus this information is introduced by
perception updates. Considering the example in Figure 4,
the outgoing transition from moving base to grasp to re-
planning state is triggered by the event e area unreachable,
information raised by a sensor update. The presence of one
obstacle detected along the planned navigation path may
increase the probability of transitioning towards the target
state replanning. According to the definition of DPFA, a
direct consequence is that the likely value of the transition
going to moving arm to grasp pose decreases. A possible
effect is to prevent the execution of a future activity in favor
of another one. Furthermore, modern perception algorithms
(especially if based on visual features) already provide
confidence information related to the main data which are
provided. For instance, a simple shape detector could provide
number, pose and confidence on the pose of an object
identified with a particular shape feature. It is trivial to use
such a confidence information to evaluate the likely value of
the transition related to that information.

Obliviously, likely models based on both prior information
and perception exist. However, prior likely models are static,
instead perception likely models are dynamic and they require
an environment update to be evaluated. As a remark, in
all the examples previously reported the likely values are
mutually exclusive. Mainly this is caused by a prior mutual
information or due to a perception likely model attached
to the the same perception feature. However, non-mutual
exclusive cases are possible. In such cases, a weighted
normalization of the likely values is required.

If the runtime information and the likely models do not
allow to evaluate a transition as likely, its source state be-
comes a Steady-State (by definition, see III-A). The previous
guarantee the robustness of the preview approach: in the
worst case, no future states are selected and the final behavior
does not change with respect to the traditional FSM coor-
dination model execution. Finally, some states are implicitly
Steady-States because of the activities that they describe. For
instance, a robot in stand-by, waiting for a command to start
an application is a Steady-State. A complete example and
further details will be discussed in Section IV.

D. Allocation and Scheduling Problem

This section will show how to determine the task alloca-
tion and scheduling from a given preview state list.

1) Allocation Problem: a robotic platform is composed
of several, heterogeneous agents, which interact with each
others. Each agent is identified by a particular kinematic
chain of the robot, and its design is specified to accomplish
different operations in the operational space. A serial ma-
nipulator could be considered as single agent. A gripper
mounted on the serial manipulator is another agent, that
may have itself one or more degrees of freedom. Another
example could be a wheeled robotic platform base. In case

5782

of legged robots, each leg can be considered as a separate
agent. Sensors, especially if equipped with actuators to
select the desired Region of Interest (ROI), are agents too.
Furthermore, two different instances of the same agent can
co-exist (i.e. dual arm systems). The agents composition fully
define the whole kinematic structure of the robot. In other
words, a robot is a composite agent. The choice to define a
robot as a composition of agents is not only justified by a
kinematic chain definition, but also by a different semantic
meaning associated to each agent. Practically speaking, an
agent could be provided by a different vendor, it could
implement working modes, its control algorithm may run at
a different frequency and it may have an internal behavior.
For instance, because of internal reasons (e.g. a fault on an
actuator), an agent could be temporarily unavailable.

The allocation problem consists in assigning a task to a
proper, available agent with respect to the platform capabili-
ties. Therefore, a task specification should include the type of
agent (or a composition of agents) involved in its execution
(e.g. arm, base, gripper and so on).

A list of tasks to be executed (task execution list) is
associated to each available agent. At runtime, a task is
allocated to a specific agent by inserting the task description
into the task execution list of the target agent. Once inserted
in the list, a task still conserves its activity membership by
priority assignment: tasks having membership to the current
activities have higher priority, while tasks associated to future
activities have decreasing priority. Without loss of generality,
we indicate with i ∈ N both activity index and its priority. As
convention, i = 0 for the current activity (higher priority),
an increasing value (low priority) for future activities. In
case of a simple task specification model (e.g. embedded
command), the task execution list could be limited to a
single element. More advanced task specification models
(e.g. constraint-based) allow a larger number of tasks to
be inserted in the list. However, a Task Solver capable
of executing these tasks “as good as possible”, exploiting
redundancy and solving conflicting constraints according to a
priority/weight mechanism is required. Approaches described
in the previous sections belong to this task solver category
(iTaSC [9], Stack of Tasks [16] and so on).

2) Scheduling Problem: the method described above
solves the allocation problem in a deterministic way. How-
ever the scheduling problem (deciding when execute a given
task) is still unsolved. In fact, the allocated tasks belong to
different activities (current and futures), and their execution
must not affect the current activity tasks. For this purpose,
the following parameters are introduced:
• Activity Progress Parameter (ξ): for each activity i

allocated (i.e. at least one task of the activity allocated),
an activity progress parameter (ξ(i) ∈ [0; 1]) is defined
as dimensionless distance between the activity progress
status and the achievement of the activity postcondi-
tions. In a nutshell, ξ(i) is a measure on how far the
i-activity execution is with respect to the ending of the
execution. In most cases, ξ is linked to the execution of
one “dominant” task described by the activity.

• Task Execution Cost (C): A cost related to the exe-
cution of the task. This cost could be known a priori
(static cost), or it can be computed online through a
function specified in the task specification model (e.g.
estimated energetic cost to move the end-effector from
a starting pose to a goal pose).

Furthermore, we denote by task(i, j) the jth task of the
ith activity (j ∈ [1; Ji], where Ji is the number of tasks
described by the ith activity). Therefore, the activation of a
future task (∀i ≥ 1) can be evaluated from an utility function

Utask(i,j) = f(Ctask(i,j), ξ(i− 1), PA(q, a∗, q∗)), (5)

trade-off of the arguments indicated:
• Task Execution Cost Ctask(i,j): a lower cost encour-

ages the execution of the future task. In fact, in case
the prediction made by the preview coordination is
wrong, the cost represents the amount of energy waisted
because of the wrong prediction.

• Progress Parameter of the previous activity ξ(i−1):
in some cases could be useful to activate future tasks
only when the ending of the previous (or current)
activity is close to be terminated.

• Likely value PA(q, a∗, q∗): the activation depends on
how much the preview coordination is confident about
the activation of the transition going to the next likely
state.

As remark, the previous does not hold for the tasks with
membership to the current activity (i = 0), which are always
executed by definition. The decision making process around
the result of the utility function is called task activation
policy. An example of task activation policy is provided by
the following:{

task(i, j) active if Utask(i,j) ≥ UT task(i,j)

task(i, j) inactive otherwise,
(6)

where UT task(i,j) is a fixed threshold. In particular, the task
activation policy above is called discrete due to the boolean
behavior of the task activation. In conclusion, the scheduling
problem has been solved through a continuous monitoring of
the activities (and the related tasks) already activated in order
to decide whenever to activate future tasks.

IV. CASE STUDY

In this section we present a case study (Figure 5) and the
results obtained from a basic preview coordination imple-
mentation. Experiments have been conducted on a KUKA
youBot (see Figure 2) mobile manipulator, composed of a
holonomic mobile platform and a serial manipulator, with a
total of eight degrees of freedom. The software architecture
is based on Orocos [11] framework: it includes existing
Orocos components to control the youBot, such as standard
PID position controllers and trajectory generators to control
arm and base. The used trajectory generators create a time
constrained path, in accordance with the maximum velocities
and accelerations allowed on the youBot.

5783

B-box

A B

CyouBot

C-box

Fig. 5. Experimental Scenario

releasingObject
task/move_gripper(open)

movingArmToB-box
task/move_arm(B-box)

movingArmToC-box
task/move_arm(C-box)

tuckingArm
task/move_arm(tuckpose)

goingToA
task/move_base(A)

goingToB
task/move_base(B)

goingToC
task/move_base(C)

graspingObject
task/move_gripper(close)

homingArm
task/move_arm(homepose)

idle
task/waiting

e_start

e_move_arm_done

e_move_base_done

e_move_arm_done

e_gripper_closed

e_gripper_opened

e_move_arm_done

e_move_arm_done

e_move_base_donee_move_base_done
[box_available=true]

e_move_base_done
[box_available=false]

Fig. 6. FSM Coordination Model of the experimental scenario. Transition
behaviors (events and guard conditions, in red) are expressed in UML
fashion. The latter depends from the FSM coordination model used (rFSM).

A. The Experimental Scenario

Starting from a pose A, a mobile manipulation has to
release an object (given by a user) into a box placed in
location B (called B-box for simplicity). However, dropping
an object into the B-box could be not possible due to many
factors, among which box closed, box unavailable, box full
and so on. If that is the case, the object will be dropped in a
box located in C (C-box), which is always available. After the
dropping, the serial manipulator has to move into a tuck pose
before navigating back to the original starting pose A. Once
the pose A is reached, the manipulator will be positioned
into a homing pose, waiting to receive another object to be
dropped. The B-box status could be provided either by an
external sensor, an on-board sensor (e.g. camera), by the box
itself (i.e. a smart box) or a human.

B. The FSM Coordination Model

A possible resulting FSM coordination model (Fig. 6)
has been obtained through task decomposition such that
every activity contains a single motion task. This unary
relationship simplifies the understanding but it does not affect
the generality of the approach.

C. The Likely Models

In accordance with the rFSM coordination model, tran-
sitions behaviors are modeled through events and guard
conditions. Most of the transitions are triggered by events
raised by a continuous monitoring of the ongoing activity.
Since each state (apart from goingToB) has a single outgoing
transition, it is trivial to associate such transitions to a prior
likely model. The required information is already available
in the original FSM coordination model, and the likely
value could be a function of the progress parameter ξ.
An exception are the out-coming transitions from the state
goingToB. Both transitions are triggered by the same event,
hence the guard condition become “dominant”. In this case
a perception likely model is needed, since the likely value
is determined only by a knowledge information (i.e. box
available or not). Furthermore, the transitions are mutually
exclusive, due to the common environment constraint: no
normalization is needed. In conclusion, the likely values
are directly associated to the perception information. Notice
that the value type depends on the information received:
if it is a boolean value, the likely values will switch to
its extreme values; if a sensor provides confidence on the
information, the likely values will be normalized based on
that information.

D. The Allocation and Scheduling problem

On the youBot platform, three agents are identified: Base,
Arm and Gripper. As a remark, the proposed approach fits
completely with the modularity of the youBot. In fact it is
possible to support a second serial manipulator, adding the
related agents. The task specification formalism adopted is
simple and a task instance embed directly the command argu-
ments required by the activity. For instance, move base(pose)
indicates a task that requires the Base agent to be executed,
while pose is the specific goal sent to the control components.
According to Section III-D, the task execution list is limited
to a single element for each agent. During the experiments,
the implemented utility function is based only on the evalu-
ation of the progress parameter ξ of the predecessor activity
(Utask(i,j) = f(ξ(i − 1)). The task activation policy used
is discrete (Eq. 6), hence the resulting behavior is an on/off
switching as result of the comparison between the utility and
a fixed threshold. In this particular case, a future task will be
executed after a certain percentage on the previous activity
already accomplished.

E. The results

The current implementation is a subset of the whole
preview coordination execution model. However, these as-
sumptions do not affect the proof of concept. On the con-
trary, these assumptions point out the effects of a different
coordination execution, otherwise not trivial to be verified
in a complex scenario and delegating the task execution
to an existing task solver. In general, it is not straightfor-
ward to evaluate the increasing efficiency of the preview
coordination execution and a more traditional execution. In
fact, the benefits are strongly related to the scenario, its

5784

e_m
ove_base_done

Base

Arm

Gripper

progress
e_st

art

e_grip
per_c

losed

e_m
ove_base_done

e_m
ove_arm

_done

e_grip
per_o

pened

e_m
ove_arm

_done

e_m
ove_arm

_done

B-box available

w

w

w

gr(open)gr(close)

move_base(B)

move_arm(B-box) move_arm(tuck)

move_base(A)

move_arm(home)

Green

Blue

Yellow Allocated, not Actived

Task Status Legend

Executing, Preview Effect

Executing
(as current activity)

P
re

v
ie

w
 C

o
o
rd

in
a
ti

o
n

 E
xe

cu
ti

o
n
,

B
-b

ox
 a

v
a
ila

b
le

e_m
ove_base_done

Base

Arm

Gripper

progress
e_st

art

e_grip
per_c

losed

e_m
ove_base_done

e_m
ove_base_done

e_grip
per_o

pened

e_m
ove_arm

_done

e_m
ove_arm

_done

B-box available

w

w

w

gr(open)gr(close)

move_base(B)

move_arm
(B-box)

move_arm(tuck)

move_base(A)

move_arm(home)

move_base(C)

move_arm(C-box)

B-box unavailable

e_m
ove_arm

_done

P
re

v
ie

w
 C

o
o
rd

in
a
ti

o
n

 E
xe

cu
ti

o
n
,

ch
a
n
g
in

g
 B

-b
ox

 s
ta

tu
s

move_base(A)

e_m
ove_base_done

Base

Arm

Gripper

progresse_st
art

e_grip
per_c

losed

e_m
ove_base_done

e_m
ove_base_done

e_grip
per_o

pened

e_m
ove_arm

_done

B-box available

w

w

w

gr(open)gr(close)

move_base(B)

move_arm(tuck) move_arm(home)

move_base(C)

move_arm(C-box)

B-box unavailable

e_m
ove_arm

_done

e_m
ove_arm

_done

Tr
a
d
it

io
n
a
l

 E
xe

cu
ti

o
n
,

ch
a
n
g
in

g
 B

-b
ox

 s
ta

tu
s

Fig. 7. Different scheduling results from the experimental scenario. w indicates the waiting task, while gr represents the task move gripper. Results are
not presented in a time-based fashion, but are normalized as a total execution progress (time dependent). From Top to Bottom: (i) preview coordination
execution, B-box available (best-case). Environment information does not change, hence the task move arm(B-box) has been allocated and then executed
in accordance with the task activation policy. The preview execution effect, as execution of future tasks, is highlighted in blue. (ii) preview coordination
execution, B-box initially available, then unavailable. The task move arm(B-box) has been allocated, then not executed but replaced by the task move arm(C-
box) due to environment changes. The mobile platform is still moving to B (as current activity), but the preview effect allows the arm to be in C-box pose
in advance. (iii) Traditional execution, without preview coordination, case B-box not available (worst case). Tasks are executed severally, requiring a larger
total execution time with respect to case (ii).

evolution, the task specification used, and the task activation
policy implemented. Furthermore, the objective is to increase
the whole efficiency of the robot platform, which is not
measurable by only one parameter. Obviously, the total time
execution seems the most suitable, but it has to be considered
as a consequence of the task scheduling parallelization.

As a remark, in the worst case the preview coordination is
reduced to the traditional execution of the FSM coordination
model and the original behavior is preserved.

Figure 7 shown the results obtained from the experimental
scenario in different environment conditions, highlighting
the effect of the preview coordination. The scheduling of
future activities speeds up the whole execution, even if an
environmental change occurs. Sometimes future activities are
terminated while the current activity is still in execution: the
time required for the future activities is eliminated and the
original desired behavior respected.

Videos of the experiments are available at
http://people.mech.kuleuven.be/~s0221775/Videos/Preview/.

V. DISCUSSION AND FUTURE EXTENSIONS

In this section some remarks are briefly reported, illus-
trating the known limitations of the proposed approach and
possible improvements.

1) Complex Scenarios and Likely Models: As previously
discussed, it is rather simple to associate a transition to its
likely model in the proposed scenario. Even if a classification
has been proposed, the association has been made manu-
ally. An interesting extension is to automate the association
process, fetching the proper likely model from an ontology
database.

2) Hierarchical FSM coordination models: The proposed
preview coordination execution model does not support Hi-
erarchical FSM coordination models. However, the ideas in-
troduced in this work are still valid in general and theoretical
support for hierarchical models already exists. Hierarchical
FSM models will be investigated in the future.

3) Task Solvers and Task Optimization Problem: In the
case study, tasks are always defined in the null-space of
the other ones, thus parallel tasks in execution are never
conflicting. The previous is not a limitation, since the preview
coordination execution model is not intended to be an
alternative solution to task constraint solvers. At the opposite,
the preview coordination is complementary with existing
Task Solvers already mentioned. The role of the proposed
execution model is to prepare online the optimal problem to
be solved, instead to be statically defined by a single activity
within a state. Integration with task solvers and performance
comparison will be addressed in the future.

5785

4) Scheduling and Task Activation Policy: In Section III-
D a task activation policy based on a utility function has
been introduced. However, in the presented case study only
the progress parameter ξ has been considered in the utility
function. In case of wrong scheduling of a future activity
(i.e. its membership state is considered as next likely state,
but a perception update remove it from the preview state
list), a descheduling operation could occur (for whose tasks
already activated). In general, a task descheduling operation
is not cost free. Future research will demonstrate that a
complex utility function will prevent task descheduling and
its cost. Furthermore, the task activation policy used is
purely discrete: a task could be (fully) activated or not. A
continuous activation policy, in the sense that the task is
executed with reduced configuration (e.g. accelerations and
velocities limited), could increase considerably the preview
coordination effect, reduce the descheduling cost, hence
improving total efficiency of the robot platform. Finally, a
Task Solver having a priority/weight mechanism implicitly
supports a continuous task activation policy.

VI. CONCLUSIONS

This paper introduces the idea of preview coordination
as a solution to increase the efficiency of a mobile ma-
nipulator. By separation between coordination model and
its execution, it becomes possible to execute activities of
future states interleaved with those of the current one. During
the selection of probable next states, dynamical information,
such as environment uncertainty and variability, have been
considered. A formalization of the idea has been proposed
and a subset of these have been implemented and validated
by an experimental scenario. The concepts behind preview
coordination permit to link cognitive robotics reasoning and
task specification formalisms, reinterpreting the role of the
coordination as task scheduler formalism. The final result
is a performance improvements with respect to the robot
platform capabilities. Integration with existing task solvers
and extensions will be investigated in the future future work.

ACKNOWLEDGMENT
This research was funded by the European Commission in the FP7

projects BRICS (2008-ICT-231940), RoboHow.Cog (FP7-ICT-288533),
SHERPA (FP7-ICT-600958), and by KU Leuven’s Concerted Research Ac-
tion Global real-time optimal control of autonomous robots and mechatronic

systems. Tinne De Laet is a Postdoctoral Fellow of the Fund for Scientific
Research–Flanders (F.W.O.) in Belgium.

REFERENCES

[1] B. Finkemeyer, T. Kröger, and F. M. Wahl, “Executing assembly tasks
specified by manipulation primitive nets,” Advanced Robotics, vol. 19,
no. 5, pp. 591–611, 2005.

[2] T. C. . International Electrotechnical Commission, IEC 61131-3 Ed. 2:
Programmable controllers — Part 3: Programming Languages. IEC,
2003.

[3] A. Hellgren, M. Fabian, and B. Lennartson, “Modular implementation
of discrete event systems as sequential function charts applied to
an assembly cell,” in Proceedings of the 2001 IEEE International
Conference on Control Applications, 2001, pp. 453–458.

[4] H. Costelha and P. U. Lima, “Robot task plan representation by Petri
nets: modelling, identification, analysis and execution.” Journal of
Autonomous Robots, vol. 33, no. 4, pp. 337–360, 2012.

[5] J. C. Marty, A. E. K. Sahraoui, and M. Sartor, “Statecharts to specify
the control of automated manufacturing systems,” International Jour-
nal of Production Research, vol. 36, no. 11, pp. 3183–3215, November
1998.

[6] M. Klotzbuecher, R. Smits, H. Bruyninckx, and J. De Schutter,
“Reusable Hybrid Force-Velocity controlled Motion Specifications
with executable Domain Specific Languages,” in Proceedings of the
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. San Francisco, California: IROS2011, 2011, pp. 4684–4689.

[7] H. Bruyninckx and J. De Schutter, “Specification of Force-Controlled
Actions in the “Task Frame Formalism”: A Survey,” IEEE Transac-
tions on Robotics and Automation, vol. 12, no. 5, pp. 581–589, 1996.

[8] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A Versatile
Generalized Inverted Kinematics Implementation for Collaborative
Working Humanoid Robots: The Stack of Tasks,” in Proceedings of
the 2009 International Conference on Advanced Robotics, Munich,
Germany, 2009.

[9] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-Based Task
Specification and Estimation for Sensor-Based Robot Systems in the
Presence of Geometric Uncertainty,” The International Journal of
Robotics Research, vol. 26, no. 5, pp. 433–455, 2007.

[10] J. Bohren and S. Cousins, “The SMACH High-Level Executive,”
Robotics Automation Magazine, IEEE, vol. 17, no. 4, pp. 18–20, dec.
2010.

[11] H. Bruyninckx, “Open Robot Control Software: the OROCOS project,”
in Proceedings of the 2001 IEEE International Conference on Robotics
and Automation. Seoul, Korea: ICRA2001, 2001, pp. 2523–2528.

[12] M. Klotzbuecher and H. Bruyninckx,̀ “Coordinating Robotic Tasks
and Systems with rFSM Statecharts,” JOSER, vol. 3, no. 1, pp. 28–
56, 2012.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[14] D. Vanthienen, T. De Laet, W. Decré, R. Smits, M. Klotzbuecher,
K. Buys, S. Bellens, L. Gherardi, H. Bruyninckx, and J. De Schutter,
“iTaSC as a unified framework for task specification, control, and
coordination, demonstrated on the PR2,” demonstration IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, September
2011.

[15] R. Smits, “Robot skills: design of a constraint-based methodology
and software support,” Ph.D. dissertation, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium, May 2010.

[16] N. Mansard and F. Chaumette, “Task Sequencing for High-Level
Sensor-Based Control,” Robotics, IEEE Transactions on Robotics,
vol. 23, no. 1, pp. 60–72, Feb.

[17] F. Keith, N. Mansard, S. Miossec, and A. Kheddar, “Optimization
of tasks warping and scheduling for smooth sequencing of robotic
actions,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009. IROS 2009., Oct. 2009, pp. 1609–1614.

[18] F. Keith, P.-B. Wieber, N. Mansard, and A. Kheddar, “Analysis of the
discontinuities in prioritized tasks-space control under discreet task
scheduling operations.” in IROS. IEEE, 2011, pp. 3887–3892.

[19] M. Lombardi and M. Milano, “Allocation and scheduling of Con-
ditional Task Graphs,” Artificial Intelligence, vol. 174, no. 7-8, pp.
500–529, 2010.

[20] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and W. Reif,
“Instantaneous Switching between Real-Time Commands Continuous
Execution of Complex Robotic Tasks,” in IEEE International Confer-
ence on Mechatronics and Automation, 2012, pp. 1329–1334.

[21] V. Duchaine, S. Bouchard, and C. Gosselin, “Computationally Efficient
Predictive Robot Control,” Mechatronics, IEEE/ASME Transactions
on, vol. 12, no. 5, pp. 570–578, Oct.

[22] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C.
Carrasco, “Probabilistic finite-state machines—Part I,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 27, no. 7, pp.
1013–1025, 2005.

[23] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM—A Cognitive
Robot Abstract Machine for Everyday Manipulation in Human Envi-
ronments,” in Proceedings of the 2010 International Conference on
Advanced Robotics, 2010, pp. 1012–1017.

5786

