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Abstract— This paper studies the underwater localization
problem for a school of robotic fish, i.e., a kind of Autonomous
Underwater Vehicles with limited size, power and payload.
These robotic fish cannot be equipped with traditional under-
water localization sensors that are big and heavy. The proposed
localization system is performed by using a single surface
mobile beacon which provides range measurement to bound
the localization error. The main contribution of this paper lies
in twofold: 1) Observability of single beacon based localization
is first analyzed in the context of nonlinear discrete time system,
deriving a sufficient condition on observability. 2) Moving
Horizon Estimation is then integrated with Extended Kalman
Filters for three-dimensional localization using single beacon,
which can reduce the computational complexity, impose various
constraints and make use of previous range measurements
for current estimation. Extensive numerical simulations are
conducted to verify the observability and high localization
accuracy of the proposed underwater localization method.

I. INTRODUCTION

Recently, small and simple AUVs are increasingly adopted
in many real-world applications in order to reduce costs
and simplify design complexity. Their localization problem
is acknowledged as an essential capability of these AUVs
and has attracted an enormous attention [1]. Traditional
underwater localization techniques, such as dead-reckoning
and acoustic baseline systems, suffer from unbounded local-
ization errors, expensive setting up, restricted operating area,
etc. Therefore, some new underwater localization schemes
have been proposed to overcome these drawbacks based on
single mobile surface beacon and acoustic ranging technique
[2]–[5].

In a single beacon based localization system, AUVs rely
on range measurements from a surface vehicle to bound
errors accumulated by dead-reckoning. Specifically, in [5]
and [6], the centralized Extended Kalman Filter (EKF) and
the decentralized Extended Information Filter (EIF) are pro-
posed for both off-line and real-time localizations of AUVs
equipped with highly accurate sensors, such as Doppler
Velocity Log (DVL). In [2] and [3], three approaches based
on EKF, Particle Filter (PF) and Non-linear Least Squares
optimization (NLS) are proposed to perform cooperative
localization in the absence of DVL. The NLS method has
best performance yet increased computational complexity as
all the previous calculated states and observed measurements
are involved in the optimization. In [7], Wang et al. develop
a finite-horizon H∞ filtering for on-line robot localization
without increasing the problem size over time. However,
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none of these methods considers constraints of state variable
and process uncertainty. In [8] and [9], Moving Horizon
Estimation (MHE), i.e. a Maximum a Posteriori (MAP)
method, is used to formulate the robot localization problem
into a fixed window optimization incorporating constraints.
MHE is designed for two-dimensional localization problem
with the aid of several static beacons or landmarks.

Since only range measurements from a single mobile
beacon are used in our method to bound localization error of
a group of AUVs, observability which determines the robot
localizability should be investigated first. In [10]–[12], the
rank of an observability matrix is used for observability anal-
ysis of linear systems or linearized nonlinear systems. But
the original localization systems are usually non-linear and
the linearization may cause wrong decision to observability
[3]. Therefore, observability rank condition derived from Lie
derivative for a nonlinear continuous time system is used in
[3], [13], [14] to study the observability of robot localization.
However, all these studies transform discrete time systems
into continuous time systems for observability analysis under
the assumption that the sample time is small enough, and no
research has considered the observability of robot localiza-
tion using nonlinear discrete system directly. Actually, most
of localization systems and popular modern robot control
systems are discrete-time system. Consequently, it is worth
analyzing the observability of localization in the context of
its discrete representation.

To address the aforementioned problems, a novel underwa-
ter localization scheme is proposed in this paper to provide
the real-time localization capability for a school of robotic
fish. The main contribution of this paper lies in twofold:
1) A straightforward method which is able to directly analyze
observability of the single beacon localization in discrete
time systems is proposed. A sufficient condition for the
observability is also derived. 2) A localization algorithm
which combines EKF and MHE to perform underwater
localization in real-time is developed, avoiding unbounded
computation increase and considering physical constraints.
To the best knowledge of the authors, the method proposed in
this paper is the first implementation of MHE in the context
of single beacon based three-dimensional localization, using
inaccurate model and measurements suffering low bandwidth
and high latency.

The rest of this paper is organized as follows. Section
II outlines the research problem and analyzes the observ-
ability. In Section III, the proposed localization algorithm is
described. Section IV presents simulation results to evaluate
the performance of the proposed algorithm. Finally, the
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conclusion and future work are presented in Section V.

II. LOCALIZATION WITH A SINGLE BEACON

A. Problem Description

In this localization system, there are a school of robotic
fish (RF) and a single beacon [15]. Each RF is equipped
with a low-cost pressure sensor, an Inertial Measurement
Unit (IMU) and an acoustic modem. Whereas, for the
single beacon, the Global Positioning System (GPS) or some
powerful and precise sensors are installed to make sure the
reference position can be provided for the submerged RF.
The RF can measure the ranges to the surface beacon by
acoustic modem.

1) Kinematic Model: Because the underwater RF can
neither access its velocities directly like mobile robots using
odometry or AUVs with DVL nor can be modeled as
accurate as its counterparts driven by propeller, the kinematic
model of AUVs used in [5] is adopted and slightly changed
in this paper. Consider position sk and attitude ϕk (roll,
pitch and yaw) of RF in the global coordinate frame as
state xk = [sTk ,ϕ

T
k ]T to be estimated at time k, where

sk = [xk, yk, zk]T and ϕk = [φk, θk, ψk]T . The control
input is uk = [vTk ,ω

T
k ]T where vk = [uk, νk, wk]T and

ωk = [pk, qk, rk]T are the body-frame linear and angular
velocities of RF respectively. Then, under the assumption
that sampling time interval is ∆T , the process model for RF
can be represented as:

xk+1 = f(xk,uk) = xk + ∆TJ(xk)uk (1)

where

J(x) =

[ [
a1
1×3

T
a2
1×3

T
a3
1×3

T
]T

03×3

03×3

[
b11×3

T
b21×3

T
b31×3

T
]T
]

=


cψcθ cψsθsφ−sψcφ cψsθcφ+sψsφ 0 0 0
sψcθ sφsψsθ+cψcφ sψsθcφ−sφcψ 0 0 0
−sθ cθsφ cθcφ 0 0 0

0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ
0 0 0 0 sφ/cθ cφ/cθ


is the transformation matrix and 0 denotes the zero matrix of
compatible dimensions. Since uk cannot be perceived in the
absence of DVL, it is set to be constant herein. However, it
is still assumed to be affected by an additive Gaussian noise
wk ∼ N (0,Q).

2) Measurement Models: The system model (1) cannot
provide accurate movement prediction due to the random
characteristics of control input uk. Therefore, the on-board
IMU and pressure sensor are employed to refine the predicted
attitude and depth of RF. However, the error of dead-
reckoning increases unboundedly over time. Then, a single
beacon is introduced to reduce the uncertainty and error of
the localization by providing acoustic range measurement.
The position of mobile beacon can be directly provided
by GPS when surfacing, or estimated by SLAM when
submerged [16]. This scheme where no expensive equipment
is deployed on the RF can substantially reduce the hardware
and energy cost of the whole system, especially for a shoal
with enormous RF. The measurement model of RF with three
types of measurements (range zr, attitude za and depth zd)
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Fig. 1. Drawback of local observability using single static beacon.

is
zk = h(xk) + µk =

[
zr,k zTa,k zd,k

]T
(2)

where µk ∼ N (0,R) is Gaussian noise. The details of these
three measurements are below:

a) Range measurement: The single beacon broadcasts
its position periodically via an acoustic modem for the RF
to estimate the range by means of Time of Arrival. Denote
the position of single beacon at time k as (xbk, y

b
k, z

b
k). Then,

the range measurement is

zr,k =
√

(xbk − xk)2 + (ybk − yk)2 + (zbk − zk)2 + µr,k. (3)

We denote Hr,k as the Jacobian matrix of this equation with
respect to x, and Rr as the variance of range measurement.

b) Attitude measurement: The IMU measurement is
used to estimate the attitude by

za,k = Ha,kxk + µa,k =
[
03×3 I3×3

]
xk + µa,k (4)

where I denotes the identity matrix of compatible dimen-
sions. The covariance of IMU measurement is Ra.

c) Depth measurement: The depth measured by pres-
sure sensor is related to the vertical position of RF. Then,
the depth is

zd,k = Hd,kxk + µd,k =
[
0 0 1 01×3

]
xk + µd,k (5)

with the variance Rd.
The single beacon based multi-RF localization problem is

how to simultaneously and accurately localize several RFs
modeled as (1) with the aid of the measurement model
(2). Because this system is nonlinear and discrete-time,
the inherent nonlinear and discrete features are considered
in the subsequent observability analysis and MHE based
localization method.

B. Observability Analysis

Observability which is related to localizability in the
context of robot localization is a necessary but not sufficient
condition. Therefore, to successfully localize the robot, all
the states have to be observable with respect to the measure-
ment model. Observability analysis of nonlinear system is
analyzed in this subsection since that of linearized system
may result in wrong decision [3].

The criteria based on codistributions for observability of
nonlinear discrete time system [17] is adopted to analyze the
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observability and derive sufficient condition of this single
beacon based localization. Consider the observation space
Θ =

⋃
k≥1 Θk constructed by the set of functions

Θ1 = {h}
Θk = {h ◦ fu1 ◦ · · · ◦ fuj , 1 ≤ j ≤ k − 1}, k ≥ 2

(6)

where fu(x) = f(x, u) and ◦ denotes the function compo-
sition, i.e., g ◦ f(x) = g(f(x)). According to the criteria
in [17], nonlinear discrete time system is locally weakly
observable if dim dΘ = n where dΘ is the differential of
space Θ and n is the system order.

For the system described above, the number of system
state variables to be tested is 6. According to (2) and (6), it
yields

Θ1 =
[

hr1 φ θ ψ z
]T

zr za zd

(7)

where hr1 =
√

(xb − x)2 + (yb − y)2 + (zb − z)2. Then,
the gradient of the measurement with respect to the system
state x is

∇Θ1 =


xb−x
hr1

yb−y
hr1

zb−z
hr1

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

 (8)

It can be seen that the minimum rank of ∇Θ1 is 4. In order
to guarantee the local observability of the system by keeping
the full rank of dΘ, the first two columns of ∇Θ should be
independent of each other. The composition Θ2 = h ◦ f is

Θ2 =
[
hr2 φ+ ∆B1 θ + ∆B2 ψ + ∆B3 s3

]T (9)

where

hr2 =
√

(xb − s1)2 + (yb − s2)2 + (zb − s3)2

s1 = x+ ∆Ta
1v, s2 = y + ∆Ta

2v, s3 = z + ∆Ta
3v

∆Bi = ∆T b
iω, i = 1, 2, 3.

Therefore, by calculating the gradient of Θ2, we have

∇Θ2 =


xb−s1
hr2

yb−s2
hr2

∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗

 (10)

where ∗ are the equations whose specifics are ignored for
clarity. Consequently, from (8) and (10), an observability
submatrix formed by extracting the first two columns is

O =

[
xb−x
hr1

yb−y
hr1

xb−x−∆Ta1v
hr2

yb−y−∆Ta2v
hr2

]
(11)

In order to satisfy dim dΘ = n, the determinant of O must
be nonzero. Under the assumption that the measured range
cannot be zero, i.e., hr 6= 0, the sufficient condition for
observability is

(yb − y)∆Ta
1v − (xb − x)∆Ta

2v 6= 0. (12)

Because a1 and a2 in (1) are related to ϕ, the observability
of the system is determined by ϕ, v and the relative
position between the beacon and the RF. Since the sufficient
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Fig. 2. System description between two steps.

condition (12) can only ensure local observability rather
than global one, some trajectories of RF and beacon are
not distinguishable using a single static beacon as shown
in Fig. 1. A solution is to design appropriate path planning
[18], improving the observability. The observability analysis
verifies that the measurement (2) is sufficient for localization.

C. State Constraints

Some available prior knowledge of system and environ-
ment can be applied to constrain the state variables and
noises. The constraints usually exist in the form of equality
or inequality. Suppose the state variables, control inputs and
disturbances satisfy the following q constraints:

gi(x,u,w) ≤ 0, i = 1, · · · , q. (13)

When performing the state estimation, these constraints
which can be accessed from the prior knowledge or geometry
of the environment should be taken into account to make sure
the results are reasonable and accurate.

III. EKF AND MHE BASED LOCALIZATION ALGORITHM

With the system model described above, attitude, depth
and range measurement could be fused together to perform
localization. However, since attitude and depth data from
IMU and pressure sensors is obtained rapidly and range mea-
surements are updated at a low rate, several filters are utilized
to fuse data asynchronously. Specifically, EKF is used to
update the prediction using attitude and depth measurements,
which serves as dead-reckoning. Once a range observation
is available, current position is ameliorated by MHE, which
can not only restrain the noise and smooth the estimate but
also consider constraints on the operating environment and
physical system. The reason for why both EKF and MHE
are employed lies in that the real-time feature of EKF is
suitable for high frequency update (attitude and depth) while
MHE incorporates several previous range measurements at
one estimation, compensating for single range measurement.

A. Prediction and Update using Attitude and Depth

Prediction and update on attitude and depth comprise
dead-reckoning. Traveled displacement and direction change
with respect to the previous pose are estimated.
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Fig. 3. MHE with fixed-size window.

1) Prediction: The state x is propagated by using model
(1), and the covariance matrix P at time k is obtained by

P k = F kP k−1F
T
k +GkQkG

T
k (14)

where F k and Gk are the Jacobian matrices of (1) with re-
spect to xk andwk respectively. This prediction is conducted
using constant velocity due to the absence of DVL, which
produces serious errors as time goes.

2) Update using Attitude and Depth Measurements:
IMU and pressure sensor are introduced to reduce the error
accumulation of the prediction. Because both measurements
can be acquired much faster than range measurement, the
prediction is updated by attitude and depth measurements
at a high rate. Once an attitude or depth measurement is
received, EKF is used to update their state and covariance
using (4), (5) or (14) without noises. Technical detail of EKF
design is omitted here due to its straightforward steps.

B. MHE based Update using Range Measurement

When a range measurement is received by RF, the current
state propagated by dead-reckoning is updated by MHE.
According to the observability analysis in Subsection II-B,
update on x and y highly relies on this range observation.

Assuming the nosies are Gaussian, the NLS method pro-
posed in [2] can be formed as the following optimization
problem in the context of our system model:

argmin
x0:k

k−1∑
t=0

‖wt‖2Q−1
r,t

+
k∑
t=1

‖µr,t‖2R−1
r

(15)

where ‖z‖2A := zTAz, and Qr,t is covariance of the process
noise at time t. Since the range measurements obtained
from the beginning are all incorporated into this optimization
problem to calculate the state set {xk

0} = {x0, · · · , xk}, the
number of the state variables and computational complexity
increase over time.

MHE is adopted to overcome the drawbacks of NLS.
Moreover, the constraints on state, control input, noise, etc.
can be imposed to refine the localization results. Consider the
MAP derivation and the MHE theory in [19]. The objective
function Φk({xk

0}) of MHE which is similar to (15) can be
represented by separating the time interval into two sections

tu

Predicti

on (1)

i

tu

tP

tst

Position 1+ts

Attitude

1+tG1+tF

Covariance
1+tP

Attitude ta 1+,z

Depth
1+tdz ,
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Fig. 4. Scheme of localization algorithm.

{t : 0 ≤ t ≤ k −N} and {t : k −N + 1 ≤ t ≤ k}:

Φk({xk
0}) =

k−1∑
t=k−N

‖wt‖2Q−1
r,t

+
k∑

t=k−N+1

‖µr,t‖2R−1
r

+

k−N−1∑
t=0

‖wt‖2Q−1
r,t

+
k−N∑
t=1
‖µr,t‖2R−1

r
+ ‖x0 − x̂0‖2Q−1

r,0

where N is the size of estimation window and x̂0 is the
initial position. Since the shadowed part only relies on the
states {xk

k−N} and the range measurements {zkr,k−N+1}, the
optimization can be transformed into a problem with fixed-
window size, as shown in Fig. 3, by approximating the rest
part of the objective function to an arrival cost. By denoting
the set {wk−1

k−N} as the input disturbances from time k−N to
time k−1, the states of interest can be calculated by process
model (1). Therefore, the MHE at time k considering the
constraints (13) is

argmin
xTs ,{w

k−1
Ts
}

k−1∑
t=Ts

‖wt‖2Q−1
r,t

+
k∑

t=Ts+1

‖µr,t‖2R−1
r

+ ZTs(xTs)

s.t. gi(x,u,w) ≤ 0, i = 1, · · · , q
(16)

where Ts = k − N is the starting time of MHE window,
and ZTs is the approximation of arrival cost at time Ts. The
arrival cost ZTs

is essential in the MHE because it bounds the
original optimization problem into fixed size. Then, the key
is how to properly approximate the past data. By employing
the EKF approximation in [19], the arrival cost is given by

ZTs
(xTs

) = ‖xTs
− x̂Ts

‖2
P−1

Ts

(17)

where the covariance P is propagated by

P k+1 = GkQkG
T
k+

F k(P k − P kH
T
r,k(Rr +Hr,kP kH

T
r,k)
−1Hr,kP k)F

T
k .

The current estimate x̂k can be yielded by substituting the
obtained xTs and {wk−1

Ts
} and the set of control input

{uk−1
TS
} into (1) recursively. An intuitive idea to incorpo-

rate {uk−1
TS
} is to augment the optimization variables by

including the positions x̄j
i , i = Ts, . . . , k − 1 maintained

by dead-reckoning, see Fig. 2. However, this is extremely
high computational complexity. Therefore, we employ the
accumulation

∑n
j=1 ū

j
t between two consecutive range mea-

surements t and t + 1 as the approximate control input ut.
The scheme of the designed whole localization method can
be seen in Fig. 4.
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(a) Static beacon (b) Mobile beacon (c) Mobile beacon with constraints

Fig. 5. Localization trajectories of dead-reckoning, EKF and MHE with static or mobile surface beacons.
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(a) Single static beacon
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(b) Single mobile beacon
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Fig. 6. Localization errors of dead-reckoning, EKF and MHE with single static or mobile surface beacon.

IV. SIMULATION RESULTS

In this section, the performance of the proposed localiza-
tion algorithm is evaluated through simulation. The simulated
data is sampled by using Robot Operating System. For
comparison, the localization trajectories and errors of the
dead-reckoning, EKF and MHE in three different scenarios
are presented. The 52m×52m×20m blue boundary in Fig.
5(a) shows the operating field with channel and obstacles.
It takes about 20 minutes for the RF to travel the whole
trip in simulation. According to the specification of Tritech
micron acoustic modem, the range update frequency is set
to be 1 Hz and Rr = (0.2m)2. The frequencies of IMU and
pressure sensor are both 100 Hz with Ra = (0.36rad/s)2I
and Rd = (0.2m)2. Note that the localization algorithms are
all fed with the same control input and observations.

Fig. 5 shows the ground truth of RF and the correspond-
ing localization trajectories using dead-reckoning, EKF and
MHE with the aid of the single static beacon, mobile beacon
and mobile beacon with constraints. In Fig. 5(a), where a
single static beacon is used, the dead-reckoning gradually
diverges from the ground truth, which means the errors on x
and y are accumulated. In contrast, the result of EKF which
fuses the range measurements is accurate in certain periods
with bounded errors although it is worse than that of the
MHE (see Fig. 6(a)). The reason is that only single range

observation is available for each step and the observability
cannot be improved effectively. Since several previous range
measurements are used in one estimation, the MHE method
is able to converge to the ground truth with high accuracy.
However, as shown in the enlargements in Fig. 5(a), the
trajectory of MHE crosses the boundary occasionally, which
is not reasonable in reality.

Using a single surface mobile beacon , the localization
accuracy of EKF is improved as described in Fig. 5(b) and
6(b), which validates that the beacon mobility increases the
observability. However, the performance of EKF in terms
of localization accuracy is still inferior to MHE. Although
the mobile beacon is employed, the problem of MHE that
trajectory is beyond the boundary has not been solved yet.
After introducing the boundary constraints into MHE, all the
estimates are confined in the channel as can be seen from
the magnified parts in Fig. 5(c). These numerical evaluations
verify that the MHE method can produce more accurate
localization estimation than EKF in the context of single
beacon and it is more suitable for single beacon based
localization.

The overall uncertainty of the position estimate in three di-
mension is proportional to the square root of the determinant
of the covariance on x, y, z, i.e.,

√
detPx,y,z . According

to this relation, the spatial uncertainties of dead-reckoning,
EKF and MHE methods in one trial are presented in Fig.
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7. As expected, the uncertainty of dead-reckoning grows
monotonically without bound while these of EKF and MHE
are not increased over time. The initial large uncertainties
of EKF and MHE are also decreased and converged. The
uncertainties of orientation of three methods are all bounded
thanks to the IMU, which can be analyzed similarly.

Corresponding to Fig. 7, Fig. 8 shows the localization
errors on x, y, z of MHE against their respective ±3σ
confidence intervals. All the errors are within their lower
and upper confidence bounds with extra allowance, which
indicates that the estimation of this MHE based localization
is reliable and the proposed algorithm is effective.

V. CONCLUSIONS

This paper proposes a novel 3D underwater localization
system with a single beacon, which combines EKF and
MHE. It uses dead-reckoning and range measurements to
provide accurate location with bounded errors for the small
AUVs. The observability of single beacon based localization
is analyzed in the context of a nonlinear discrete time
system, producing the sufficient condition for single beacon
based localization. Compared with EKF, the high localization
accuracy and effectiveness of the proposed approach are
validated by simulation in different scenarios. Our future
work will focus on the implementation of the proposed
method on real robotic fish in a lake or sea.
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