Navigability Analysis of Natural Terrains with Fuzzy Elevation Maps from Ground-based 3D Range Scans

Jorge L. Martínez, Anthony Mandow, Antonio Reina, Tomás J. Cantador, Jesús Morales and Alfonso García-Cerezo
Dpto. Ingeniería de Sistemas y Automática, Universidad de Málaga, 29071 Málaga, Spain
Email: jlmartinez@uma.es, Tel: (+34) 951 952322.

Abstract—Mobile robot navigation through natural terrains is a challenging issue with applications such as planetary exploration or search and rescue. This paper proposes navigability assessment of natural terrains scanned from ground-based 3D laser rangefinders. A continuous model of the terrain is obtained as a fuzzy elevation map (FEM). Based on this model, the proposed solution incorporates terrain navigability both in terms of uncertainties of the 3D input data and slope of the fuzzy surface. Moreover, the paper discusses the application of this method for local path planning. For this purpose, the Bug algorithm has been adapted to compute local paths on the navigable region of the FEM. The method has been applied to actual 3D point clouds on two different experimental sites.

I. INTRODUCTION

Three-dimensional (3D) point clouds provide valuable information in mobile robotics applications such as planetary exploration [1] [2] [3] [4], urban search and rescue [5] [6], and navigation on natural terrain [7]. However, as point cloud maps require coping with a huge amount of spatial information [8] [9], a simplified and compact representation of navigable terrain is necessary for motion planning [1] or tele-operation [10].

Elevation maps offer a compact two dimensional model of terrain surface. In robotics, these maps have been represented as regular grids [11] [12] and as irregular triangular meshes [4] [13]. Removal of artifacts (i.e., triangles in concavities and sensor shadows) and mesh simplification algorithms, like JADE mesh decimation [14] and QSlim vertex clustering [15], provide more compact and reliable maps [1]. Nevertheless, tessellated models have limitations in the face of incomplete and uncertain sensor data, as well as in scalability. Alternatively, the use of Adaptive Neural-based Fuzzy Inference System (ANFIS) [16] was proposed in [17] to model natural terrain as a continuous Fuzzy Elevation Map (FEM).

For tessellated terrain representations, the path planning problem can be formulated as a graph-search problem to minimize a cost function that combines distance and terrain difficulty [4] [18]. Path planning in outdoors has also been addressed with Voronoi diagrams to maintain the robot far from non-traversable zones [19] and potential fields based on harmonic functions to avoid local minima [20].

Nevertheless, terrain assessment is a relevant problem that has to be solved prior to path planning and it is very dependent on the environment model. In outdoor environments, terrain difficulty has been quantified in terms of slope and roughness [4] [19]. Besides, a major difficulty arises from propagating uncertainties of 3D data to path planning [18] [21].

This paper proposes navigability assessment in natural terrains represented by FEMs obtained from ground-based 3D laser scans. The assessment captures both model reliability in terms of 3D data availability as well as terrain slope. The proposed processing of the FEM can be useful for local path planning, as illustrated with examples from actual 3D scans.

The paper is organized as follows. Next section reviews natural terrain modeling with FEMs. The extraction of the navigable area on FEMs is proposed in Section III. Section IV presents local path planning on assessed traversable terrain. Section V discusses experimental results. Last section is devoted to conclusions and future work.

II. FUZZY ELEVATION MAPS

This section briefly reviews the computation of a local FEM from a single range image taken from an onboard laser scanner [17]. The method, which is outlined in Fig. 1, assumes that:

- The local frame of the 3D rangefinder has its Y and Z axes pointing forwards and upwards, respectively.
- The ground surface can be represented as a function $z = H(x, y)$, where x and y are the Cartesian coordinates on the XY plane and z is the corresponding elevation.
- The FEM is defined in the universe $U_x = [-u_{max}, u_{max}]$ for variable x, and $U_y = [0, u_{max}]$ for y, which corresponds to a $2u_{max} \times u_{max}$ rectangular area in the forward direction of the sensor.

The method uses ANFIS [16] to identify rule parameters from a set of training Cartesian points (see Fig. 1). Representative training points are subsampled from the raw scan by selecting the maximum height point within grid cells of a sufficiently high resolution δ. In [17], first-order Sugeno inference was used, which requires identifying three consequent parameters per rule.

An uneven membership function distribution provides an appropriate fuzzy structure if the density of MFs for variables x and y is specified depending on the distance to the sensor. Thus, higher detail is captured for the regions that are closest to the robot where the next movements will take place.
Subsampling ANFIS Training ANFIS Training

Reduced 3D Point Cloud

Fuzzy Elevation Map

Fuzzy Reliability Mask

Binary Occupancy Matrix

Fig. 1. Overview of the method to obtain a FEM from a raw scan [17].

The FEM filters sensor noise and interpolates missing data from small shadowed areas. However, it can provide completely erroneous estimations in larger regions with no input data. These shadowed regions are frequent in ground-based scans of natural terrain. To solve this problem, a fuzzy reliability mask was proposed as a continuous function computed from the subsampled scan points. This matrix corresponds to the FEM for computation efficiency.

For simplicity, let rule parameters be systematically defined by triangular sets with standard fuzzy partition (SPF) [22] as well as zero order Sugeno-type inference. SPF triangular MFs \(\mathbf{F}_i \) for a given variable \(u \) in the universe \(U \) are defined as:

\[
\mu_{\mathbf{F}_i}(u) = \begin{cases}
\frac{u-f_{i-1}}{f_i-f_{i-1}} & \text{if } f_{i-1} \leq u < f_i, \\
\frac{f_{i+1}-u}{f_{i+1}-f_i} & \text{if } f_i \leq u < f_{i+1}, \\
0 & \text{otherwise,}
\end{cases}
\]

where \(f_i \) is the peak parameter, i.e., \(\mu_{\mathbf{F}_i}(f_i) = 1 \). In the proposed FEM solution, \(i = -k, \ldots, 0, 1, \ldots, k \) for the \(x \) variable and \(i = 0, 1, \ldots, k \) for \(u = y \). This definition yields \((2k + 1)\) MFs for \(x \) and \((k + 1)\) MFs for \(y \). Note that for the upper limit of \(U \), where \(f_k = u_{\max} \), the second case in (1) does not apply. Similarly, the first case in (1) does not apply for the lower limit of \(U \).

Uneven SPF MFs are defined by computing the peak elevation \(\mu \) and \(\theta \) of the terrain. Even if the proposed assessment can be applied to the complete universe of discourse, the analysis can be restricted to the reliable regions of the FEM for computation efficiency.

\[
f_i = \text{sign}(i) \left(\frac{r|i|-1}{r^k-1} \right) u_{\max},
\]

where \(r > 1 \) is the expansion ratio.

Using zero-order Sugeno consequents \(G_{ij} \) for the rule that relates \(F_i(x) \) and \(F_j(y) \) requires just one parameter \(a_{ij} \):

\[
G_{ij}(x, y) = a_{ij}.
\]

The firing strength of each rule \(\omega_{ij} \) can be calculated using the product operator:

\[
\omega_{ij}(x, y) = \mu_{F_i}(x) \mu_{F_j}(y),
\]

where SPF MFs satisfy:

\[
\sum_{\forall i,j} \omega_{ij}(x, y) = 1.
\]

Thus, the elevation \(z \) associated to \((x, y)\) can be calculated from the FEM as:

\[
z = H(x, y) = \sum_{\forall i,j} \left(\omega_{ij}(x, y) \ a_{ij} \right).
\]

Then, the gradient \(\nabla H \) for every \((x, y)\) can be directly calculated as:

\[
\nabla H(x, y) = \begin{bmatrix}
\frac{\partial z}{\partial x} \\
\frac{\partial z}{\partial y}
\end{bmatrix} = \begin{bmatrix}
\sum_{\forall i,j} \left(\frac{\partial \mu_{F_i}(x)}{\partial x} \mu_{F_j}(y) \ a_{ij} \right) \\
\sum_{\forall i,j} \left(\mu_{F_i}(x) \frac{\partial \mu_{F_j}(y)}{\partial y} \ a_{ij} \right)
\end{bmatrix},
\]

where:

\[
\frac{\partial \mu_{F_i}(u)}{\partial u} = \begin{cases}
\frac{f_{i-1}-f_{i-1}}{f_i-f_{i-1}} & \text{if } f_{i-1} \leq u < f_i, \\
\frac{f_{i+1}-u}{f_{i+1}-f_i} & \text{if } f_i \leq u < f_{i+1}, \\
0 & \text{otherwise.}
\end{cases}
\]

The value given by (7) is a representation of terrain inclination. Therefore, non-traversable areas can be identified if their gradient magnitude

\[
|\nabla H(x, y)| = \sqrt{\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2},
\]

is above a threshold value \(h \) that depends on the locomotion mechanism of the mobile robot. Even if the proposed assessment can be applied to the complete universe of discourse, the analysis can be restricted to the reliable regions of the FEM for computation efficiency.
IV. LOCAL PATH PLANNING

The proposed FEM navigability assessment can be useful for local path planning on natural terrain. This is illustrated in this section, where we propose a simple solution based on the well known Bug algorithm [23] to plan a continuous path towards a goal point by avoiding non traversable areas. An overview of the proposed approach is presented in Fig. 2.

In particular, the Bug0 algorithm [24] heads towards a goal point until it reaches an obstacle; then, the obstacle is circumnavigated until the goal point is visible again. This local path planning strategy is compatible with global paths composed of distant way points that are meant to be reached in straight line motion from the current robot pose [25] [26]. Bug0 requires computing a 2D binary representation of the environment that distinguishes between non navigable and navigable areas from the 2.5D FEM. Thus, non-navigable areas are treated as obstacles and the rest as free space. Furthermore, as the robot is not punctual, the Minkowski sum is applied to enlarge obstacles. The resulting binary representation may have unconnected free space zones that cannot be reached from the robot pose (i.e., $x = y = 0$). Thus, only the reachable area will be considered for computing the local path.

Moreover, the goal point may fall beyond the range of the reachable area, so a subgoal has to be established. In the proposed solution, this subgoal is chosen as the point on the border of the reachable region that minimizes the distance to the global goal point. Then, the objective of Bug0 is heading towards this subgoal.

V. EXPERIMENTAL RESULTS

This section discusses the application of the proposed navigability assessment for local path planning. For this purpose, two natural terrains have been scanned (see Fig. 3) with a 3D rangefinder [27] built by pitching a Hokuyo UTM-30LX 2D rangefinder whose maximum range is 30 m. The laser sensor is mounted 0.7 m above the ground on the 4-wheel skid-steer mobile robot Quadriga [28] (see Fig. 4). Besides, Quadriga has an inertial measurement unit with inclinometers and a Global Positioning System with Differential corrections (DGPS). Inclinometers can be employed to check tipover stability during navigation. Furthermore, the DGPS can provide the distance and heading with respect to the next way point in outdoor missions.

The point clouds from both scans are shown in Fig. 5. The FEMs computed from these scans with $k = 9$, $r = 1.3$, $u_{max} = 10$ m and $\delta = 0.1$ m have been overlaid on this figure, and as a top view in Figs. 6(a) and 7(a). Red and blue colors mean higher and lower elevations, respectively. In both cases, the complete terrain model is represented with only 190 rules and a total of 219 floating point parameters. These fuzzy surfaces contain artifacts with extreme elevation values in regions without training data, as those around the white patches in the top view.

The fuzzy reliability mask computed for both scans is shown in Figs. 6(b) and 7(b). Red and blue colors mean higher and lower reliability, respectively, according to the availability of training data. The application of the masks on their corresponding FEMs with a threshold of $v_t = 0.1$ can be observed in Figs. 6(c) and 7(c). Discarded areas are represented in white.

![Fig. 3. The first (top) and second (bottom) experimental sites.](image)

![Fig. 4. Quadriga mobile robot with onboard 3D rangefinder.](image)
The gradient magnitude $|\nabla H|$ computed with (9) for both scans is shown in Figs. 6(d) and 7(d). Red and blue colors mean higher and lower sloped regions, respectively. The application of a threshold of $h = 0.5$, which corresponds to a maximum slope of $\arctan(h) = 26.6^\circ$, can be observed in Figs. 6(e) and 7(e). Discarded areas are represented in white.

The navigable areas in the FEMs are shown in Figs. 8(a) and 9(a). The color difference between both figures is explained by general terrain inclination of the experimental sites, which is downwards (blue) in the first case and upwards (green) in the second.

The reachable regions for both FEMs after applying the Minkowski sum for the largest robot dimension and eliminating unconnected areas are shown in Figs. 8(b) and 9(b). Two different local path planning examples are illustrated in each figure with distant goal points at $\pm 30^\circ$ headings, which are shown as discontinuous red lines. The corresponding subgoals for Bug0 are denoted as ‘o’s. A 3D representation of the resulting paths on their corresponding FEMs is presented in Figs. 8(c) and 9(c).

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes navigable area assessment from fuzzy elevation maps (FEMs) of natural terrain obtained from a ground-based 3D laser scan. This solution incorporates terrain navigability both in terms of uncertainties of the 3D input data and slope of the fuzzy surface.

The proposed processing of the FEM can be useful for local path planning. For this purpose, the Bug algorithm has been adapted for obtaining local paths on the navigable areas.
Fig. 7. Processing of the second scan: (a) Top view of the FEM, (b) fuzzy reliability mask, (c) FEM with reliability \(v > 0.1 \), (d) FEM gradient, and (e) FEM with \(|\nabla H| < 0.5 \).

Fig. 8. First experimental site: Navigable area (a), local planned paths with two hypothetical headings for the goal points (b), and 3D view of the paths (c).

region of the FEM. This has been applied to actual 3D scans on two different experimental sites.

Future work includes navigation tests with the Quadriga mobile robot. Moreover, we are currently working on an improvement of FEM-based navigability assessment by removing overhanging objects like tree branches.

ACKNOWLEDGMENTS

This work was partially supported by the Spanish CICYT project DPI 2011-22443 and the Andalusian project PE-2010 TEP-6101.

REFERENCES

