
A robust model-based tracker combining geometrical
and color edge information

Antoine Petit, Eric Marchand, Keyvan Kanani

Abstract— This paper focuses on the issue of estimating the
complete 3D pose of the camera with respect to a potentially
textureless object, through model-based tracking. We propose to
robustly combine complementary geometrical and color edge-
based features in the minimization process, and to integrate a
multiple-hypotheses framework in the geometrical edge-based
registration phase. In order to deal with complex 3D models,
our method takes advantage of GPU acceleration. Promising
results, outperforming classical state-of-art approaches, have
been obtained for space robotics applications on various real
and synthetic image sequences and using satellite mock-ups as
targets.

I. INTRODUCTION

Determining the complete 3D pose of the camera with
respect to the object is a key requirement in many robotic
applications involving 3D objects, especially in the case
of autonomous, vision-based and uncooperative space ren-
dezvous with space targets or debris [3], [15]. Based on
the knowledge of the 3D model of the target, common
approaches address this problem by using either texture [2] or
edge features [5], [6], [10], [15]. Edge features offer a good
invariance to illumination changes or image noise, conditions
which can be encountered in space environments and are
particularly suitable for poorly textured objects such as space
objects. For such class of approaches, the pose computation
is achieved by minimizing the distance between the projected
edges of the 3D model and the corresponding edge features in
the image, using weighted numerical nonlinear optimization
techniques like Newton-Raphson or Levenberg-Marquardt.
But though they have proven their efficiency, this technique
requires an image extraction process which can involve out-
liers and, contrary to feature points which can be specifically
described, suffer from having similar appearances. It can
result in ambiguities between different edges, leading to
tracking failures, particularly in the case of complex objects
like satellites or space debris. Thus we propose a method to
improve the accuracy and the robustness of 3D model-based
tracking, while preserving reasonable computational costs.

A. Related works

In the recent literature could be distinguished three differ-
ent kinds of approaches tackling this problem:
• One solution is to combine the information provided

by edges with information provided by other features,

A. Petit is with INRIA Rennes - Bretagne Atlantique, Lagadic Team,
France, Antoine.Guillaume.Petit@inria.fr

E. Marchand is with Université de Rennes 1, IRISA, Lagadic Team,
France, Eric.Marchand@irisa.fr

K. Kanani is with Astrium, Toulouse, France

such as interest points [16], [17], [19], color [13], or by
additional sensors [8].

• Some researches have focused on the low-level ro-
bustness. To reject outliers in the edge matching pro-
cess, methods like RANSAC [2], [4] or the use of
M-Estimators such as the Tukey estimator [5], [19]
are common trends to make the algorithm robust to
occlusions and illumination variations. Also, instead of
handling a single hypothesis for a potential edge in the
image, multiple hypotheses are extracted and registered
in the pose estimation [18], [19].

• Other studies have considered Bayesian filters such as
Kalman filter [21] and more recently particle filters [4],
[9], [18]. For such methods, a set of hypotheses on the
camera pose is propagated with respect to a dynamic
model. The pose is then estimated by evaluating the
likelihood of the hypotheses in the image. In [18] the
particle set is efficiently guided from edge low-level
hypotheses. A limitation of these methods often lies in
their execution time.

We propose, in the spirit of [13], to integrate geometrical and
color features along edges in the pose estimation phase. The
general idea is to combine in the criterion to be optimized a
geometrical information provided by the distances between
model and image edges with a denser color information
through object/background color separation statistics along
the model edges. A low-level multiple hypotheses edge
matching process is also embedded in our framework. Like in
our previous work [15], the model projection and model edge
generation phase relies on the graphics process units (GPU)
in order to handle complex 3D models, of any shape and
to be reasonably time-consuming. We choose to restrict to a
single nonlinear minimization in our pose estimation tech-
nique due to computational limits fixed by our application,
but integrating our method into a particle filtering framework,
as in [4], [18] would also improve performances.

The remainder of the paper is organized as follows.
Section II presents the general pose estimation framework.
Section III and IV respectively describe how the geometrical
and color features are determined and combined. Finally
some experimental results are provided in Section V.

II. COMBINING GEOMETRICAL AND COLOR EDGE-BASED
FEATURES IN 3D MODEL-BASED TRACKING

Our problem is restricted to model-based tracking, using
a 3D model of the target. The goal is to estimate the camera
pose r by minimizing, with respect to r, the error ∆ between
the observed data s∗ and the current value s(r) of the same

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3719

features projected in the image according to the current pose:

∆(r) =
∑
i

ρ(si(r)− s∗i) (1)

where ρ is a robust estimator, which reduces the sensitivity
to outliers. This is a non-linear minimization problem with
respect to the pose parameters r. We follow the Virtual
Visual Servoing framework [5], similar to the Gauss-Newton
approach. In this sense, we consider a robust control law
which computes the virtual camera velocity skew v in order
to minimize s(r)− s∗:

v = −λ(DLs)+D(s(r)− s∗) (2)
where Ls

+ is the pseudo inverse of Ls, the interaction (or
Jacobian) matrix of the feature vector s, which links v to
the velocity of the features in the image. λ is a proportional
gain and D is a weighting matrix associated to the Tukey
robust estimator. Finally, the new pose rk+1, represented by
its homogeneous matrix ck+1Mo, can be computed using the
exponential map [11]:

ck+1Mo = ck+1Mck

ckMo = e−vck Mo (3)
Our challenge is to combine geometrical edge-based fea-

tures with a complementary type of features in order to
overcome the limitations of classical edge-based approaches.
Since we deal with potentially textureless 3D objects, com-
bining this information with texture features would not be
suitable. Besides, our idea is to avoid any image extraction
or segmentation that would lead to outliers and mismatches
and that would make some information lost. We propose to
rely on denser and more accurate features. In this sense, we
follow [13], for which color features are integrated with clas-
sical geometrical edge-based features. These features refer to
the Contracting Curve Algorithm [7], which is designed to
optimize the separation of color statistics collected on both
sides of the projected edges of the 3D model. ∆ can then be
rewritten as:

∆ = wg∆g + wc∆c (4)
∆g refers to the geometrical error function and ∆c stands

for the color-based one. wg and wc are weighting parameters.
Both kinds of features rely on the projection of the 3D model,
in the vicinity of the projected model edges.

III. GEOMETRICAL EDGE FEATURES

A. Model projection and generation of model edge points

As in our previous work [15], we propose to automatically
manage the projection of the model and to determine the
visible and prominent edges from the rendered scene, by
considering the direct use of a complete model, which can
be textured or not. By using the graphics process units
(GPU) and a 3D rendering engine, we avoid any manual
pre-processing.

For each acquired image Ik+1, the model is rendered with
respect to the previous pose rk. The goal is to obtain a
set of 3D points Xi that belong to target rims, edges and
visible textures from the rendered scene. By processing the
depth buffer through a Laplacian filter, we can determine
the discontinuities which suit the geometrical appearance
of the visible scene, resulting in a binary edge map. We

have implemented the filtering computations on the GPU
through shader programming, reducing computational time.
In the case of a textured 3D model, we propose to combine
the depth discontinuities with texture discontinuities. The
rendered textures are passed through a Canny edge algorithm
and the obtained edges are added to the ones generated from
the depth buffer. We can sample this set of edge points along
the x and y coordinates of the image in order to keep a
reasonable number points xi. The 3D coordinates of the
determined edge points in the scene are retrieved using the
depth buffer and the pose used to project the model. Besides,
the computation of both the edge and color based objective
functions requires the orientation of the edge underlying a
point xi. For the texture edges, it is done within the Canny
algorithm on the rendered textures. For the depth edges,
we compute the Sobel gradients along x and y on a gray-
level image of the normal map of the scene, filtered using a
Gaussian kernel, since the rendering phase can suffer from
aliasing. These basic image processing steps are processed
on the GPU, optimizing computations.

B. Feature computation and interaction matrix

The edge-based function ∆g is computed in a similar way
to [15]. From the model edge points we perform a 1D search
along the normal of the underlying edge of each xi(rk). A
common approach is to choose the pixel with the maximum
gradient as the matching edge point x′i in the image. Once
correspondences are established, we consider the distance
between the projected 3D line li(r) underlying the projected
model edge point xi(r) (projected from the 3D point Xi)
and the selected matching point x′i in the image. ∆g can be
written as:

∆g =
∑
i

ρg(sgi (r)− sgi
∗) =

∑
i

ρg(d⊥(li(r),x′i))) (5)

with sgi = d⊥(li(r),x′i)), sgi
∗ = 0 and ρg is a Tukey robust

estimator. This function improves the approaches in [4], [13],
[20], which consider the distance between xi(r) and x′i
along the 2D normal vector to the edge underlying xi(rk),
determined at the model projection phase. A key requirement
to our method is to compute the 3D equation of the line li in
the world frame in order to perform its projection during the
minimization process and to compute the interaction matrix
Ld⊥ , related to the point to line distance. This is addressed
through the knowledge of the edge orientation during the
rendering phase and the knowledge of the normal to the
surface underlying li, retrieved with the rendered normal
map. For the complete computation of Ld⊥ , see [5].

C. Multiple-hypotheses framework

Regarding the geometrical edge registration process, a
novel multiple-hypotheses solution is proposed to improve
robustness. This approach extends the one presented in [15],
[19] by taking advantage of some elements proposed by [18].
In [15], the idea was to consider and register different
hypotheses corresponding to potential edges. They corre-
spond to different local extrema of the gradient along the
scan line. But the projected model edge points are treated

3720

independently, regardless their membership to primitives
such as lines or particular curves. To overcome this issue,
the idea is to cluster the model edge points into different
primitives and to register different hypotheses consistently
with these primitives. Here, we restrict to line primitives, for
computational reasons.

a) Clustering model edge points into lines: from the
edge map provided by the projection of the 3D model, a set
of Nl 2D line segments {li}Nl

i=1 is extracted using a Hough
line detector. A model edge point xk for which the distance
to the closest line is under a certain threshold is associated
to this line. We obtain a set of clusters {Ci}Nl

i=1 of model
edge points corresponding to the extracted lines {li}Nl

i=1.
b) Multiple-hypotheses registration: for each cluster

Ci, we process in a similar manner to [18]. For a point
xi,j in Ci, we consider several edge hypotheses x′i,j,l (see
Figure 1). These candidates are then classified into ki sets of
points or classes {cim}

ki

m=1 using the k-mean algorithm, each
cim being represented by a mean line lim, which best fits the
points of cim, and a corresponding weight wim. wim represents
the likelihood of class cim with respect to the others in Ci.

x'i,j,0

xi,j(rk)

x'i,j,1

x'i,j,2

Model projected
edge

Extracted line li

Cla
ss

 c
i

1
 L

in
e

li 1

Cla
ss

 c
i

0

Lin

e
li 0

C
la

ss
 c

i
2

Li
ne

 l
i

2

Corresponding
image edge

Fig. 1: Multiple hypotheses framework. Points xi,j (blue dots) form
the cluster Ci corresponding to the extracted line li. For a point
xi,j , several hypotheses x′

i,j,l are registered, and are used to build
classes ci

m tied to lines lim. The hypotheses in the class ci
1 (red dots),

which matches li, will have higher weights than the hypotheses of
classes ci

0 and ci
2 (green and light blue dots), which correspond

to clutter. Thus model edge points xi,j will more likely converge
towards the hypotheses of class ci

1.

In [18], random weighted draws are then performed in
order to get several hypotheses on the pose. Since it is time
consuming, here, we simply use the weights wim to determine
the probability πi,j,l of a candidate x′i,j,l to belong to a line.
If ciml

denotes the class including x′i,j,l, we have:

πi,j,l = p(ciml
∩ x′i,j,l) = p(ciml

)p(x′i,j,l | ciml
) (6)

with p(ciml
) ∝ wiml

and where the probability p(x′i,j,l |
ciml

) is related to the distance between x′i,j,l and the mean
line liml

associated to ciml
. The function corresponding to

the points xi,j clustered into the line classes {Ci}Nl

i=1 can
be written as:

∆g
0 =

∑
i

∑
j

ρg0(min
l
πi,j,l(d⊥(li,j(r),x′i,j)))) (7)

with li,j the projected line, for pose r, underlying xi,j .
For the remaining points xi which have not been classified
into line clusters, we apply the multiple hypotheses approach
proposed in [15], giving:

∆g
1 =

∑
i

ρg1(min
j
d⊥(li(r),x′i,j)) (8)

∆g = ∆g
0 + ∆g

1 (9)

IV. COLOR FEATURES

The color-based function ∆c is elaborated to characterize
the separation between both sides of projected model edges,
by relying on color information. In order to compute ∆c, as
in [13], we restrict ourself to silhouette edges, since it makes
more sense than for crease or texture edges and it limits the
computational burden.

The principle is to compute local color statistics (means
and covariances) along the normal to the projected model
silhouette edges, on both sides. Then for each pixel along the
normal, we determine a residual representing the consistency
of the pixel with these statistics, according to a fuzzy
membership rule to each side. A first contribution we propose
is to use a robust M-estimator in the computation of ∆c.
Another contribution consists in adding consistency with
respect to the color statistics computed on the previous frame.

A. Computation of color local statistics

Given the set of projected silhouette model edge points
xi(r), determined from Xi (see Section III), we compute
color statistics up to the 2nd order, on both side of the edge
(object O and background B) using 2D+ 1 pixels along the
edge normal ni, up to a distance L (see Figure 2). For the
object side, we have:

ν0,O
i =

D∑
j=−D

µOi,j ν1,O
i =

D∑
j=−D

µOi,jI(yi,j) (10)

ν2,O
i =

D∑
j=−D

µOi,jI(yi,j)I(yi,j)
T (11)

yi,j = xi(r) + Ldni are the pixels located on both sides.
d = j

D is the normalized signed distance to xi(r). I(yi,j) is
the RGB color vector of pixel yi,j and µOi,j are local weights
giving a higher confidence on the object side, close to the
edge (see [7]). As in [13] these statistics are then blurred
with respect to the other silhouette points, and normalized,
to define RGB means I

O

i and covariances R
O

i for xi(r):

ν̃i
k,O =

∑
j

e−λ|i−j|νk,Oj , k = 0, 1, 2 (12)

I
O

i =
ν̃i

1,O

ν̃i
0,O

and R
O

i =
ν̃i

2,O

ν̃i
0,O

(13)

We proceed the same way for the background B.

B. Feature computation and interaction matrix

The consistency of observed color components of pixels
yi,j according to the computed color statistics are evaluated
using a function a(d) as a fuzzy membership rule to the
object, with:

a(d) =
1
2

(erf(
d√
2σ

+ 1), d = −1..1 (14)

3721

Background

Object

x i(r)

y i , j

L

ni

Ī i
B , R̄i

B

Ī i
O , R̄i

O

Model silhouette
projected edge

Fig. 2: Collection of local color statistics on both the background
(B) and object (O) sides.

erf is the error function [1]. σ is a standard deviation
defining the sharpness of the membership rule. Both object
and background statistics can thus be mixed:

Îi(r) = a(d(r))I
O

i + (1− a(d(r)))I
B

i (15)

R̂i(r) = a(d(r))R
O

i + (1− a(d(r)))R
B

i (16)

and the error eci,j(r) = Îi(r) − I(y)
i,j is normalized to

define the color feature sci,j(r) as:

sci,j(r) =
√

eci,j(r)T R̂−1
i eci,j(r) (17)

Îi(r) represents a desired color value for the jth pixel yi,j
on the normal ni, wether it is on the object O or background
side B, with j = Dd(r). The idea is to optimize the position
d(r) of the membership rule a along the normal, so that the
desired value Îi(r) best matches the actual value I(yi,j),
minimizing eci,j(r) and sci,j(r). The dependence of R̂i(r) on
to the pose r is neglected to reduce computations.
In order to cope with possible outliers and to improve
robustness, we propose to integrate a M-estimator in ∆c,
which becomes:

∆c =
∑
i

∑
j

ρc(sci,j(r)− sci,j
∗) (18)

=
∑
i

∑
j

ρc(
√

eci,j(r)T R̂−1
i eci,j(r))

with sci,j
∗ = 0. As for ∆g , we choose a Tukey estimator.

The interaction matrix Lsc
i,j

can be computed as follows:

Lsc
i,j

=
∂sci,j(r)
∂r

=
1
sci,j

(
∂eci,j(r)
∂r

)
T

R̂−1
i eci,j(r) (19)

and the interaction matrix Lec
i,j

= ∂ec
i,j(r)

∂r is computed as:

Lec
i,j

=
∂Îi(r)
∂r

= (I
O

i − I
B

i)
∂a(d(r))
∂d

∂d

∂r
(20)

As in [4], [13], ∂d∂r = 1
LnTi Lxi

with Lxi
= ∂xi(r)

∂r being the
interaction matrix of a point, which is given by:

Lxi
= K

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z (1 + y2) xy −x

]
(21)

with
K =

[
fx 0
0 fy

]
(22)

the focal ratio parameters of the camera. (x, y) denotes the
meter coordinates of the image point xi, and Z the depth of
the corresponding 3D point.

C. Temporal consistency
For more accuracy, we introduce a temporal constraint to

the objective function by considering the information of past
frames. The idea is to integrate the color statistics computed
on the previous frame P I for the silhouette edge points
xi(rk) at the first iteration of the minimization process.
eci,j(r) becomes:

eci,j(r) = αÎi(r) + β(P Îi(r))− I(yi,j) (23)
with α+ β = 1, and we have:

Lec
i,j

= α
∂Îi,d(r)
∂r

+ β
∂P Îi(r)
∂r

(24)

= (α(I
O

i − I
B

i) + β(P I
O

i − P I
B

i))
∂a(d(r))
∂r

D. Combination with geometrical features
The combination of the geometrical features and color

features sgi (r) and sci,j(r) in the Virtual Visual Servoing
framework is achieved by stacking these features into a
global feature vector s and their corresponding interaction
matrix into a global interaction matrix:

s =
[
wgsg1 · · · wgsgNg

wcsc1,1 · · · wcscNs,2D

]T
(25)

Ls =
[
wgLg1 · · · wgLgNg

wcLc1,1 · · · wcLcNs,2D

]T
with Ng the number of geometrical features. Ns refers to
the number of model edge points belonging to the silhouette
of the projected model, so that Nc = 2DNs accounts for
the number of color features, with D the range along the
normals to the edge points. s is a Ng +Nc vector and Ls is
a (Ng +Nc)× 6 matrix. Regarding the weighting matrix D,
it is written as D = blockdiag(Dg,Dc), where Dg and Dc

are the weighting matrices associated to the robust estimators
ρg and ρc.

V. EXPERIMENTAL RESULTS

In this section we validate the proposed method, both
qualitatively on real images and qualitatively on synthetic
images and the advantages of our contributions are verified.

A. Implementation
The rendering process of the 3D polygonal and textured

model relies on OpenSceneGraph, which is flexible 3D
rendering engine. As presented in Section II.B, we have
considered shader programming for some image processing
steps during the rendering and edge generation phases. This
is done using OpenGL Shading Language (GLSL). The
remainder of the algorithm has been implemented thanks to
the C++ ViSP library [12]. Regarding hardware, an NVIDIA
NVS 3100M graphic card has been used, along with a
2.8GHz Intel Core i7 CPU. For all the following tests, our
algorithm has been initialized manually. Besides, since it is
not available online, we have not implemented the algorithm
of [13] exactly the same way as in the paper. Instead we
have equivalently tested our new solution without the M-
Estimators for both edge-based and color-based objective
functions, without the multiple-hypotheses framework and
without the temporal consistency for the color-based func-
tion.

3722

B. Results on synthetic images

We have achieved a quantitative evaluation of our al-
gorithm on synthetic images, using a realistic ray-tracing
simulator developed by Astrium for space environments. We
present the same sequence as in [15], which features a Spot
satellite and which is provided with ground truth. For space
debris removal concerns, we consider an arbitrary rotation
for the target attitude and a chaser spacecraft is supposed
to be located on a similar orbit, with a slightly different
eccentricity in order to make the chaser fly around the target.
We have investigated the performances of our algorithm
comparatively to our former solution [15], which we denote
as the Nominal Mode (NM) and to our implementation of
the method presented in [13], denoted by PM (see provided
video). The results can be seen on Figure 4 where the accu-
racy of rotation and translation components of an estimated
camera pose r̂ with respects to the true pose r∗ is determined
throughout the sequence, through error plots on the pose
parameters. For our new solution and for NM, the tracking
is properly performed, as depicted on the image sequence
on Figure 3. In terms of pose errors, the approach presented
in this paper shows better performances, especially when the
satellite is far, with low luminosity (between frame 1200 and
1500). With PM, the tracking fails, mainly due to the absence
of a multiple hypothesis framework and to the absence of M-
estimators for both edge-based and color-based functions.

Fig. 3: Tracking for the Spot sequence with the proposed method.

We have also examined and verified the effectiveness and
benefit of some of our contributions which are:
• Incorporating line primitives into our multiple-

hypotheses framework for the edge-based registration
process, what is described in Section III.B. This
contribution is denoted by C1.

• Integrating the color-based objective function to the
global function, denoted by C2.

• Temporal consistency for the color-based function (C3),
presented in Section IV.C.

The results are represented on Table I by root mean square
errors on the pose parameters between frame 1200 and 1500,
which is the most challenging phase, to better enhance the

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

E
rr

o
r

(m
)

Image

Position / x

PM
NM

Proposed solution
-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 200 400 600 800 1000 1200 1400 1600

E
rr

o
r

(r
ad

.)

Image

Rotation / x (Pitch)

PM
NM

Proposed solution

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 200 400 600 800 1000 1200 1400 1600

E
rr

o
r

(m
)

Image

Position / y

PM
NM

Proposed solution
-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600

E
rr

o
r

(r
ad

.)

Image

Rotation / y (Yaw)

PM
NM

Proposed solution

-10

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

E
rr

o
r

(m
)

Image

Position / z

PM
NM

Proposed solution

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

E
rr

o
r

(r
ad

.)

Image

Rotation / z (Roll)

PM
NM

Proposed solution

Fig. 4: Estimated camera pose parameters of the target over all
the sequence, along with the ground truth, for the nominal mode
(NM), the solution implemented from [13] (PM), and the proposed
solution.

TABLE I: RMS errors for the Nominal Mode (NM), along with the
different contributions (C1, C2, C3), for frames 1200-1500. tx, ty ,
tz (in meters) and Rx, Ry , Rz (in radians) respectively refer to
translation and rotation (Euler angles) parameters.

Mode tx ty tz Rx Ry Rz

NM 0.118 0.238 1.771 0.158 0.069 0.016
NM, C1 0.108 0.230 1.537 0.145 0.061 0.015
NM, C2 0.082 0.114 0.517 0.066 0.037 0.017

NM, C2, C3 0.076 0.090 0.486 0.055 0.038 0.014
NM, C1, C2, C3 0.073 0.045 0.425 0.027 0.037 0.005

advantages of the proposed methods. Execution times are
also given (Table II).
C. Results on real images

Soyuz sequence: this sequence shows the Soyuz TMA-
03M undocking from the International Space Station (ISS).
We also run on this sequence the Nominal Mode (NM) [15],
the algorithm presented in [13] (PM) and the one described in
this paper. As seen on Figures 5, the tracking is successfully
achieved, whereas it tends to fail for both NM (Figure 6a)
and PM (Figure 6b) modes.

Fig. 5: Tracking for the Soyuz sequence with the new proposed
solution

3723

TABLE II: Mean execution times for frames 1200-1500.

Mode Time (s)
NM 0.85

NM, C1 0.111
NM, C2 0.301

NM, C2, C3 0.306
NM, C1, C2, C3 0.344

a b
Fig. 6: Tracking for the Soyuz sequence with NM (a) and PM (b).

Mock-ups video sequences: two sequences are processed.
In a similar way to our former work [14], the first one has
been taken on the Lagadic robotic platform and Astrium
provided a 1/50 mock-up of Amazonas-2, a telecom satellite.
A six degrees of freedom robot has been used to simulate
a space rendezvous, with a camera mounted on the end-
effector of the robot, and enables to have regular and quite
realistic movements. Let us however note that the specific
dynamic of the chaser spacecraft is not considered in this
paper. Sun illumination is also simulated by a spot light
located around the scene. As the complete 3D model of the
satellite shows differences with respect to the mock-up, it has
been redesigned manually. Tracking results can be observed
on Figure 7(a-c). The second sequences has been provided
by Astrium and concerns a fly-around a mock-up of Envisat,
an observation satellite which can be now considered as a
space debris (Figure 7(d-f)).

a b c

d e f
Fig. 7: Tracking results for the sequences involving Amazonas (a-c)
and Envisat (d-f) mock-ups.

VI. CONCLUSION

In this paper we have presented a robust and hybrid
approach of 3D visual model-based object tracking. The
general idea was to combine in the global criterion to be min-
imized two complementary cues: a geometrical one, relying
on distances between edge features, and a intensity-based
one, relying on color features computed around silhouette
edges. For robustness purposes, we employed a new multiple
hypotheses framework taking advantage of line primitives,
along with M-estimators for both objective functions, and we

added temporal consistency for the color-based features. Our
approach has been tested via various experiments, on both
synthetic and real images, in which our contributions have
shown notable results and improvements in terms of accuracy
and robustness, with regards to state-of-the art approaches.

REFERENCES

[1] M. Abramowitz. Handbook of Mathematical Functions, With Formu-
las, Graphs, and Mathematical Tables,. Dover Publications, 1974.

[2] G. Bleser, Y. Pastarmov, and D. Stricker. Real-time 3d camera tracking
for industrial augmented reality applications. Journal of WSCG, pages
47–54, 2005.

[3] C. Bonnal, J.M. Ruault, and M.C. Desjean. Active debris removal:
Recent progress and current trends. Acta Astronautica, 85:51–60,
2013.

[4] C. Choi and H. I. Christensen. Robust 3d visual tracking using particle
filtering on the special euclidean group: A combined approach of
keypoint and edge features. Int. J. Rob. Res., 31(4):498–519, April
2012.

[5] A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-
time markerless tracking for augmented reality: the virtual visual
servoing framework. IEEE Trans. on Visualization and Computer
Graphics, 12(4):615–628, July 2006.

[6] T. Drummond and R. Cipolla. Real-time visual tracking of complex
structures. IEEE Trans. on Pattern Analysis and Machine Intelligence,
24(7):932–946, July 2002.

[7] R. Hanek and M. Beetz. The contracting curve density algorithm:
Fitting parametric curve models to images using local self-adapting
separation criteria. Int. J. of Computer Vision, 59(3):233–258, 2004.

[8] G. Klein and T. Drummond. Tightly integrated sensor fusion for robust
visual tracking. 22(10):769–776, 2004.

[9] G. Klein and D. Murray. Full-3d edge tracking with a particle filter. In
Proc. British Machine Vision Conference, BMVC’06, volume 3, pages
1119–1128, Edinburgh, September 2006.

[10] D.G. Lowe. Fitting parameterized three-dimensional models to images.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(5):441–
450, May 1991.

[11] Y. Ma, S. Soatto, J. Košecká, and S. Sastry. An invitation to 3-D
vision. Springer, 2004.

[12] E. Marchand, F. Spindler, and F. Chaumette. ViSP for visual servoing:
a generic software platform with a wide class of robot control skills.
IEEE Robotics and Automation Magazine, 12(4):40–52, December
2005.

[13] G. Panin, E. Roth, and A. Knoll. Robust contour-based object
tracking integrating color and edge likelihoods. In Proc. of the Vision,
Modeling, and Visualization Conference 2008, VMV 2008, pages 227–
234, Konstanz, Germany, October 2008.

[14] A. Petit, E. Marchand, and K. Kanani. Vision-based space autonomous
rendezvous : A case study. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, IROS’11, pages 619–624, San Francisco, USA,
September 2011.

[15] A. Petit, E. Marchand, and K. Kanani. Tracking complex targets for
space rendezvous and debris removal applications. In IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, IROS’12, pages 4483–4488,
Vilamoura, Portugal, October 2012.

[16] M. Pressigout and E. Marchand. Real-time hybrid tracking using edge
and texture information. Int. Journal of Robotics Research, IJRR,
26(7):689–713, July 2007.

[17] E. Rosten and T. Drummond. Fusing points and lines for high
performance tracking. In IEEE Int. Conf. on Computer Vision,
volume 2, pages 1508–1515, Beijing, China, 2005.

[18] C. Teulière, E. Marchand, and L. Eck. Using multiple hypothesis in
model-based tracking. In IEEE Int. Conf. on Robotics and Automation,
ICRA’10, pages 4559–4565, Anchorage, Alaska, May 2010.

[19] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge and texture
information for real-time accurate 3d camera tracking. In ACM/IEEE
Int. Symp. on Mixed and Augmented Reality, ISMAR’04, pages 48–57,
Arlington, VA, November 2004.

[20] H. Wuest and D. Stricker. Tracking of industrial objects by using cad
models. Journal of Virtual Reality and Broadcasting, 4(1), April 2007.

[21] Y. Yoon, A. Kosaka, and A. C. Kak. A new kalman-filter-based
framework for fast and accurate visual tracking of rigid objects. IEEE
Trans. on Robotics, 24(5):1238–1251, October 2008.

3724

