
On Robot Dynamic Model Identification through Sub-Workspace
Evolved Trajectories for Optimal Torque Estimation

Nicola Pedrocchi1, Enrico Villagrossi1,2, Student Member, IEEE, Federico Vicentini1, Member, IEEE
and Lorenzo Molinari Tosatti1

Abstract— Model-based control are affected by the accuracy
of dynamic calibration. For industrial robots, identification
techniques predominantly involve rigid body models linearized
on a set of minimal lumped parameters that are estimated
along excitatory trajectories made by suitable/optimal path.
Although the physical meaning of the estimated lumped models
is often lost (e.g. negative inertia values), these methodologies
get remarkably results when well-conditioned trajectories are
applied. Nonetheless, such trajectories have usually to span the
workspace at large, resulting in an averagely fitting model.
In many technological tasks, instead, the region of dynamics
applications is limited, and generation of trajectories in such
workspace sub-region results in different specialized models
that should increase the predictability of local behavior. Besides
this consideration, the paper presents a genetic-based selection
of trajectories in constrained sub-region. The methodology
places under optimization paths generated by a commercial
industrial robot interpolator, and the genes (i.e. the degrees-of-
freedom) of the evolutionary algorithms corresponds to a finite
set of few via-points and velocities, just like standard motion
programming of industrial robots. Remarkably, experiments
demonstrate that this algorithm design feature allows a good
matching of foreseen current and the actual measured in
different task conditions.

I. INTRODUCTION

Trajectory optimization for excitatory patterns plays a
dominant role in most of methods of dynamic calibration in-
dustrial robots (IRs). Since early examples [1], [2], [3], many
calibration methods involve linear reduction of the rigid-body
model into a set of dynamical parameters to be estimated in
the sense of overdetermined systems from sampled torques
along such excitatory trajectories. As a consequence, the
accuracy of model estimations stands upon the conditioning
properties of the kinematics function (regressor) that maps
the to-be-estimated parameters into torques [4], [5]. Such
implicit calibration procedure aims at attaining good average
estimation properties in the whole workspace by building an
extensively well-conditioned regressor, i.e. able to excite all
linearly reduced dynamical parameters.

Within this general methodology, the optimization of
excitatory trajectories has been addressed in many differ-
ent approaches, e.g. optimization of trajectory parameters
for polynomial [6] or Fourier series [7], [8]. The well-
conditioning of such patterns have been often expressed
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through the conditioning number and the singular values [9],
[10], [11], [12] of trajectory regressors to be optimally
inverted. Some works [13], [14] soft-coded such properties in
fitnesses functions for evolutionary-based techniques, which
is also the case of the present work, but for oscillatory joint-
space trajectories under optimization.

For such identification methods, the dynamical param-
eters observation produces the predicted torques with a
configuration-dependent accuracy, i.e. the single average set
of parameters is a tradeoff in the sense of least-squares or
of optimal observers [11]. Drawbacks arise when the task
patterns substantially differ from the original excitatory ones,
since if the operation spans a limited sub-region of the
workspace, it may happen that the corresponding regressor
maps into the residuals of the estimated parameters. In
other words, it could be inferred that the local validity of a
calibration procedure in a sub-region of the workspace could
benefit from a dedicated excitatory pattern. Such model is
in general not valid at large and could even be potentially
physically inconsistent with the system dynamics but well
matching the numerical linear reduction of the dynamic
parametrization. This useful loss of generality is of course
suitable only in case of tasks performing very well defined
classes of trajectories, as it may be the common case for
a number of technological tasks, where the manipulator
configuration is likely to change very little, i.e. the gravity
term behaves as a nearly constant bias in the excitation.

The methodology proposed in this work aims at selecting
a number of locally-optimal trajectories (task-oriented), for
the estimation of robot dynamic parameters. The selection
criteria is based on the evaluation of the excitation power
on robot dynamic of each trajectory. Trajectories are defined
likely in most manufacturing tasks, and, most importantly,
encompass the standard task-space user-level programming
of trajectories in most of commercial industrial controllers,
i.e. a general trajectory is described by a set of discrete poses
to be internally interpolated by the robot interpolator itself
on the basis of global tunable parameters (fly-by accuracy,
velocity profiles, etc). Since trajectories are obtained from
an array of poses (and transit velocities), the template task
description has a very limited complexity and is suitable
for being embodied in an evolutionary optimization process
where genomes directly code for such templates. As a result,
the calibration problem is turned into a local speciation of the
generalized excitatory acceleration able to provide the cor-
respondingly speciated dynamical model. The evolutionary
pressure will be, in fact, not on the real dynamical model
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Fig. 1: Set of locations (left) where sub-regions of the workspace (A, B, C) are used to bound the spanning of K via-points,
expressed as poses. Trajectories (right) are interpolated by the IRs controller along the via-points and according to motion
laws coded into the genome in form of interpolation velocity.

but rather on the local set of best matching parameters in
a given configuration. The speciation is seeked in 3 sub-
regions of the same quadrant of the workspace (see Fig. 1).
Such an experimental procedure aims at investigating the
influence of the location where speciation takes place, in a
fairly comparable robot conditions.

Section II will report the problem formulation in terms of
linear system reduction, while the speciation methods will
be outlined in Section II-B. Section III reports the results of
the procedure applied to two differentn sub-regiorns of the
task space. Section IV reports final considerations.

II. MOTIVATION AND METHODOLOGY

In most of dynamical parameters identifications, excitation
trajectories are fairly different from those commonly used
in industrial procedures, which are often characterized by
classes of trajectories defined as sets of joined simple geo-
metric entities (e.g. lines and circles), performed at constant
regime velocity along the path. Alternatively, high accuracy
in torques prediction could be obtained by Iterative Learning
Control (ILC) techniques [15] resulting in implicit dynamics
calibration, i.e. without the need of any model. Nevertheless,
ILC algorithms prevent the possibility to extend (extrap-
olate) results for a given trajectory to similar ones, and
are rarely used in tasks where robots have to interact with
the environment [16]. Therefore, a sound algorithm for the
local dynamics estimation requires both a proper dynamics
model and a design method for excitatory trajectories that
takes into account the constraints imposed by ranging within
a small sub-region of the whole workspace in procedural
mild-dynamics conditions. In addition, once designed and
optimally computed, several trajectories representative of due
tasks/sub-regions can be stored and loaded for re-calibration.

Notation
qs =

[
q1s , .., q

dof
s

]t
Joint positions at s-th sample time.

q̇s, q̈s, τs Velocities, accelerations, torques.
Q ≡ {q1, ..,qS} Joint position time series of S dif-

ferent time samples.
{Q, Q̇, Q̈ } Trajectory.
(̃·), (̂·), (·)∗ Measured, estimated value and op-

timum estimation respectively.

A. Dynamics modeling and estimation
Making use of rigid multi-bodies dynamics [17], the robot

dynamics can be reduced [18], [19] to:

τ = φ0 (q̈, q̇,q)π0 (1)

where π0 is a base set of dynamical parameters and matrix
function φ0 should be considered as generalized accelera-
tions. The base set π0 includes only those parameters that
give contribution to joint torques and are observable along
any excitatory trajectory1 that generates φ0. The minimal
size Nπ of the base set π0 is demonstrated [11] to be
40 for a 6-dof anthropomorphic manipulator, in addition of
which other Nf coefficients of the friction model yield the
compound parameters set π. The selected friction model [20]
provides the j-th joint friction torque in the form:

τ jf = f j0 sign(q̇j) + f j1 q̇
j + f j2 sign(q̇j)

(
q̇j
)2
, (2)

requiring Nf = 3 × dof additional parameters2. For trajec-
tory {Q, Q̇, Q̈ } of S-samples, (1) is so expanded:

T ≡

 τ1
...
τS

 =

 φ1 (q̈1, q̇1,q1)
...

φS (q̈S , q̇S ,qS)

π = Φπ, (3)

where Φ is the observation matrix. Actually, experimental
sampling T̃, Φ̃ includes also measurements noise ν:

T̃ = Φ̃π̂ + ν, ν ∼ N (0, σν) . (4)

Several techniques are known [21], [22], [23] for the pseudo-
inversion solution of (4), and the weighted least-squares
technique [24] has been here implemented. Denoting as W
the weight matrix, the system is solved as

π̂ =
[
(Φ̃tW Φ̃)−1Φ̃tW

]
T̃. (5)

Hence, the generation of an optimal excitation trajectory
{Q?, Q̇?, Q̈? } able to provide the best regression conditions
for (4) leads the optimum parameters estimation.

1Dynamic calibration does not aim at estimating the full set of link figures
(masses, inertias, friction coefficients) but to minimize the prediction error
of the model w.r.t. the real behavior of the robot.

2For small movements friction has a remarkable relevance, overwhelming
the contribution by other parameters and a standard linear friction, including
the static and the viscous terms, appears to be inaccurate.
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Fig. 2: The model estimation procedure (mid-layer) com-
putes the parameters using an optimized excitatory, which is
pre-computed in through GA (top-layer). The obtained model
is then evaluated along random trajectories (bottom-layer).

Fig. 3: Genetic Algorithm optimization results. Each fitness
function fA, fB , fC refers to the corresponding sub-regions
of the workspace in Fig. 1.

B. Optimal Excitation Trajectory

The optimization problem formulation, i.e. identification
of Φ? = Φ(Q?, Q̇?, Q̈?), is derived from the requirements
and constraints of industrial setups (see Fig. 1) :

1) finding a sub-optimal set of K via-points P ∗;
2) finding the interpolation velocity V ∗ along which a

trajectory is calculated by standard IR motion planner.
Hence, the optimization grounds on the definition of a
workspace sub-region that bounds the K desired interpolated
via-points. Hereafter, the optimization goal will be indicated
as the set {P ?1 , . . . , P ?K , V ∗}.

The optimal via-points and the interpolation velocity are
obtained from a Genetic Algorithm (GA hereafter) search
over sets of candidate individuals {Pn1 , . . . , PnK , V n} (the
superscript n indicates the individual index), whose interpo-

lated trajectory and derived regressors Φn are evolved over
generations (see top layer in Fig. 2). The 6D coordinates
of each of K via-points and the interpolation velocity are
concatenated along a single individual genome of (6K + 1)
genes ranging in [0, 1] ∈ R. Genotypes are linearly mapped
into physical trajectory parameters according to particular
ranges defined for each position/orientation coordinate and
for minimum and maximum moving velocity. The population
contains N = 150 genotypes (individuals), each carrying full
information to code a trajectory. Generations following the
first one are produced by a combination of selection with
elitism, recombination and mutation [25]. The selection of
individuals is made on a fitness function, commonly applied
criteria are D-optimal or A-optimal fitnesses [13].

Drawback of such approaches relies on pure-kinematic
nature of the regressor. In fact, generalized accelerations in
Φ could occasionally give comparable torques despite the
relative exploitation of the maximum torque of different-
sized actuators. Scaling the regressor with axis-wise ratios
of nominal-over-maximum τ = maxi(τ

i
nom) in order to nor-

malize contributions of different actuators seems reasonable,
and a torque-normalization of the regressor H(Φ) whould
remove dynamical biases due to the different motor contri-
bution. Hence, denoting as d = diag(τ1nom/τ , . . . , τ

6
nom/τ),

the observation matrix scaled results:

H (Φ) = diag (d, . . . ,d) Φ. (6)

Finally, in this case D-optimal fitness was considered max-
imizing the determinant of a quadratic form associated with
H(Φn) of each n-th individual trajectory, i.e.

fn (Φn) = log10 ‖ det
[
Ht (Φn) H (Φn)

]
‖. (7)

III. VALIDATION AND RESULTS

Method implementation and experiments are shown using
a COMAU NS16 manipulator (see Fig. 1), with the C4G
controller and the virtualizer of its interpolator ORL - Open
Realistic Robot Library. The method has been validated in
three different sub-regions of the workspace as displayed in
Fig. 1.

A. Identified Excitation Trajectory

The identification of the excitatory trajectory resulted
similar for all the three different experiment in the three
different sub-regions of workspace (see Fig. 3) . They are
characterized by a plain evolutionary process where the first
generations show a fast convergence of the population to a
family of trajectories yielding well-conditioned regressors.
Along the saturation phase of the evolution, the best indi-
viduals and the population steadily improve their properties,
while retaining consistency. This should due to the selective
power of a fitness function that includes the scaling of
the the regressor on the basis of nominal axes torques,
avoiding major disruptions in terms of homogeneity in the
interpolated trajectory. The three experiments differ for the
maximum fitness value, nevertheless the optimized trajectory
attained an excellent value for the regressor determinant
(good mathematical conditioning of H).
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TABLE I: COMAU-NS16 robot.

Joint 1 2 3 4 5 6

Gear ratio 1/182 1/159 1/162 1/73 1/79 1/50

Torque Nom 3 Nm 6 Nm 3 Nm .7 Nm .7 Nm .7 Nm

B. Dynamic Parameters Estimation

For each of the three sub-regions of the workspace, the
genome (i.e. {P ?1 , . . . , P ?K , V ∗}) calculated from the GA, has
been loaded into NS16 interpolator obtaining the excitation
trajectory {Q?, Q̇?, Q̈? }. τ̃ , q̃ and ˜̇q have been sampled
directly in the robot controller with a rate fs =500 Hz (then
filtered with a 8th-order Butterworth filter with fc =30 Hz)
while accelerations ¨̃q have been numerically derived. Table
II reports the results of the inversion of the measured system
in (3), as in [24], for the three different experiment in the
sub-region A, B and C. Looking through the table, some
parameters show differences for many orders of magnitude
in the three sub-regions.

C. Model Validation

For each of the three different sub-regions of the
workspace displayed in Fig. 1, the validation of the evolved
trajectory and consequently estimated parameters π̂? is per-
formed by moving robot along 30 trajectories, each defined
by 6 via-points and interpolation velocity randomly calcu-
lated within the workspace sub-region as criteria described
in section I and shown in Fig. 1. Sampled torques measured
during each single trajectory test T̃ are then compared to
estimated torques T̂ figured out of the locally calibrated
model π̂? (see bottom layer in Fig. 2) obtained from
the optimal trajectory. The RMSE between estimated and
sampled torques corresponds to the best estimator for the
noise distribution in (4) and to a metric of the repeatability
of the estimation over random test trajectories. Due to
the inherently different contribution of each robot axis to
the generated torque, so to the estimation noise, and the
consideration of scaling discussed for the selected fitness
function, the RMSE is expressed as:

σ̂i,jν = ‖T̃i,j − Φi,j(˜̈q, ˜̇q, q̃)π̂?‖2 / S (8)

where S is the number of samples in each i = 1, . . . , 30
trajectories and j ∈ (1, . . . , 6) is the axis number. Then
σ̂i,jν has been normalized out of each corresponding motor
nominal torque transformed from motor side to joint side
(NS16 gearmotors data are reported in Table I):

σ̂i,jν|norm = σ̂i,jν / τ inom (9)

as in Fig. 8. Prediction error calculated in (8) is used in
Figs. 4, 5, 6 to compute the upper and lower bounds for the
predicted T̂ from T̂?, displaying the curves calculated as:

T̂i,j ± σ̂i,jν . (10)

D. Discussion

Analysis at a glance of Figs. 4, 5, 6, and of Table II
displays (i) the predictive power of the rigid-multi-body
model is extremely high, and (ii) the predictive power of
the model is preserved in all the three experiments despite
the parameters are strongly different in the three cases.
The difference in magnitude (and sign) of many dynamic
parameters in the different sub-regions A, B, C demonstrates
as the lumped-rigid model is a partial model for an IR.

The inaccuracies in the prediction of the torques are
partially relevant only for the last three axes (see Fig. 8)
even if it should mainly related the low value of nominal
motor torques (the magnitude error for the last three axis is
less than 5Nm, Fig. 7). The inaccuracies in torque prediction
should arise from an uncorrect friction model or from an
uncorrect excitation of the friction parameters, e.g. in Fig. 5d,
there is a significant error when actuator invert the rotation
direction. Different model of static friction should improve
the methods accuracy, although higher-model order should
make more complex the convergence of the GA, and non
linear models are not easy to be integrated in the method.

Besides considerations on friction, Fig. 8 displays that
similar results are attained in all the three different sub-
regions of the workspace despite the great differences in
the fitness values (see Fig. 3). It could means that once the
determinat of the regressor get high-value (i.e. the system is
well conditioned) further increases do not affect the solution.
Consequently, a position point on the quality of the selected
fitness should be raised, and a different fitness improving the
selection of trajectories more exciting the friction properties
of the system should guarantee better performance.

Anyhow, pros and contras of the approach seems to
confirm that the use of a GA is effective, and such definition
of the genome (i.e. of the exciting trajectory as a series
of a limited number of via-points), allows a straightforward
representation of the task through its major template features,
i.e. pose to visit and task space constraints in task execution.

IV. CONCLUSIONS

A procedure for local dynamic calibration has been in-
troduced. Robot dynamic parameters are identified inside of
task-dependent workspace sub-region. Experimental results
confirm high accuracy in estimation of torques at joints,
moreover prediction errors display good repeatability in
parameters identification. The procedure is also easy to
perform, allowing to frequently reload the calibration, in
order to compensate parameters variations due to external
phenomena. Future works will compare the accuracy reached
through a local dynamic calibration and calibration defined
for the complete workspace.
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TABLE II: Parameters recombination is based on [11]. Denote as mi is the mass of link, mcri = mi r
i
i,ci

is the first-order
moment of link i, rii,ci is the position from the origin frame i to the mass center of link i, Ii is the inertia tensor of frame
i, Im,i is the inertia of ith actuator, f0,i, f1,i, f2,i are the coefficients for static and viscous friction of ith link. Constant
coefficients related to robot geometry, are expressed in numerical form, in order to simplify table description, highlighting
only dynamic parameters terms.

Index Dynamic Parameter Value

Sub-workspace A Sub-workspace B Sub-workspace C

1 mc2y 5.599 1.355 1.996
2 I2xy -7234.289 -79.214 -237.628
3 I2yz -8.791 -9.712 26.252
4 I3xy -438.170 15.741 21.617
5 I3yz -544.750 19.227 -3.556
6 I3m -125.395 16.563 7.874
7 mc4x 14.745 -0.007 1.399
8 I4xy -15.566 -3.858 -0.350
9 I4xz -113.245 -2.497 -2.049
10 I4m 1.791 1.934 1.068
11 mc5x 4.832 0.026 -0.020
12 I5xy 2.969 0.280 0.158
13 I5xz 4.457 -3.543 -0.884
14 I5yz 17.141 0.039 -0.128
15 I5m 15.853 3.223 2.936
16 mc6x - 4.631 0.003 -0.149
17 mc6y 0.510 0.000 -0.026
18 I6xy 0.615 0.169 0.140
19 I6xz 0.914 0.036 0.049
20 I6yz 0.652 -0.019 0.013
21 I6zz -1.122 -0.172 -0.171
22 I6m 1.628 1.685 1.735

23 I1yy + I1m + 0.090 m2 + I2yy + 0.580 m3
+I3zz + 0.614 m4 + 0.614 m5 + 0.614 m6

17000.087 -519.146 -106.332

24 mc2x + 0.700 m3 + 0.700 m4 + 0.700 m5 + 0.700 m6 48.251 69.585 69.772

25 I2xx − I2yy − 0.490 m3 − 0.490 m4
−0.490 m5 − 0.490 m6

5671.557 500.779 -12.764

26 I2xz + 0.700 mc3y -58.448 -10.330 -3.755
27 I2zz + I2m + 0.490 m3 + 0.490 m4 + 0.490 m5 + 0.490 m6 403.981 104.790 121.765
28 mc3x + 0.185 m4 + 0.185 m5 + 0.185 m6 47.010 10.768 8.776
29 mc3z +mc4y + 0.624 m5 + 0.624 m6 -33.218 13.335 14.261
30 I3xx − I3zz − 0.034 m4 + I4zz + 0.355 m5 + 0.355 m6 -18709.585 373.346 272.356
31 I3xz − 0.185 mc4y − 0.115 m5 − 0.115 m6 15379.696 -4.285 90.878
32 I3yy + 0.034 m4 + I4zz + 0.423 m5 + 0.423 m6 231.925 7.668 22.682
33 mc4z −mc5y 3.207 -0.078 0.066
34 I4xx − I4zz + I5zz -76.050 -18.763 -44.040
35 I4yy + I5zz -49.652 0.248 -0.124
36 I4yz + 0.624 mc5y -8.221 0.539 -0.234
37 mc5z +mc6z 19.046 0.458 1.369
38 I5xx − I5zz + I6yy 46.813 9.082 2.923
39 I5yy + I6yy -19.608 0.044 -0.399
40 I6xx − I6yy -0.578 0.496 0.058
41 f0,1 16.146 40.510 54.952
42 f0,2 4.783 1.242 1.299
43 f0,3 55.554 63.050 64.111
44 f0,4 1.825 2.590 2.418
45 f0,5 37.579 44.440 42.601
46 f0,6 1.531 1.101 1.047
47 f1,1 5.044 6.251 7.218
48 f1,2 -0.043 0.104 0.054
49 f1,3 8.861 8.376 10.104
50 f1,4 0.509 0.284 0.261
51 f1,5 3.488 6.633 7.292
52 f1,6 -0.016 0.073 0.067
53 f2,1 21.871 -9.946 1.694
54 f2,2 -13.890 -17.852 -10.439
55 f2,3 19.751 -14.765 -4.847
56 f2,4 6.157 4.954 7.541
57 f2,5 4.658 3.094 5.138
58 f2,6 2.659 6.054 8.073
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(a) Axis 1.

(b) Axis 2.

(c) Axis 3.

(d) Axis 4.

(e) Axis 5.

(f) Axis 6.

Fig. 4: Sub-workspace A (see Fig. 1).
Measured torques T̃ in one of the
30 trajectories compared with the es-
timated one T̂. In addition bound
curves calculated in (10) is displayed.

(a) Axis 1.

(b) Axis 2.

(c) Axis 3.

(d) Axis 4.

(e) Axis 5.

(f) Axis 6.

Fig. 5: Sub-workspace B (see Fig. 1).
Measured torques T̃ in one of the
30 trajectories compared with the es-
timated one T̂. In addition bound
curves calculated in (10) is displayed.

(a) Axis 1.

(b) Axis 2.

(c) Axis 3.

(d) Axis 4.

(e) Axis 5.

(f) Axis 6.

Fig. 6: Sub-workspace C (see Fig. 1).
Measured torques T̃ in one of the
30 trajectories compared with the es-
timated one T̂. In addition bound
curves calculated in (10) is displayed.
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(a) (b) (c)

Fig. 7: Validation: 30 randomly generated trajectories. Distribution of prediction error σ̂ν for each motors as (8).

(a) (b) (c)

Fig. 8: Validation: 30 randomly generated trajectories. Distribution of normalized prediction error σ̂ν for each motors as (9).

REFERENCES

[1] P. K. Khosla and T. Kanade, “Experimental evaluation of nonlinear
feedback and feedforward control schemes for manipulators,” The Int.
J. of Robotics Research, vol. 7, no. 1, pp. 18–28, 1988.

[2] P. Chiacchio, L. Sciavicco, and B. Siciliano, “The potential of model-
based control algorithms for improving industrial robot tracking per-
formance,” in Intelligent Motion Control, 1990. Proc. of the IEEE Int.
Workshop on, vol. 2, aug 1990, pp. 831 –836.

[3] F. Caccavale and P. Chiacchio, “Identification of dynamic parameters
and feedforward control for a conventional industrial manipulator,”
Control Engineering Practice, vol. 2, no. 6, pp. 1039 – 1050, 1994.

[4] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial
parameters of manipulator loads and links,” The Int. J. of Robotics
Research, vol. 5, no. 3, pp. 101–119, 1986.

[5] M. Gautier and W. Khalil, “On the identification of the inertial
parameters of robots,” in Decision and Control, 1988., Proc. of the
27th IEEE Conf. on, vol. 3, dec 1988, pp. 2264 –2269.

[6] ——, “Exciting trajectories for the identification of base inertial
parameters of robots,” The Int. J. of Robotics Research, vol. 11, no. 4,
pp. 362–375, 1992.

[7] J. Swevers, C. Ganseman, D. Tukel, J. de Schutter, and H. Van Brussel,
“Optimal robot excitation and identification,” Robotics and Automa-
tion, IEEE Transactions on, vol. 13, no. 5, pp. 730 –740, oct 1997.

[8] K.-J. Park, “Fourier-based optimal excitation trajectories for the dy-
namic identification of robots,” Robotica, vol. 24, no. 5, pp. 625–633,
2006.

[9] B. Armstrong, “On finding exciting trajectories for identification
experiments involving systems with nonlinear dynamics,” The Int. J.
of Robotics Research, vol. 8, no. 6, pp. 28–48, 1989.

[10] C. Presse and M. Gautier, “New criteria of exciting trajectories for
robot identification,” in Rob. and Aut., Proc., IEEE Int. Conf. on, may
1993, pp. 907 –912 vol.3.

[11] G. Antonelli, F. Caccavale, and P. Chiacchio, “A systematic procedure
for the identification of dynamic parameters of robot manipulators,”
Robotica, vol. 17, no. 04, pp. 427–435, 1999.

[12] X. Hong, C. Harris, S. Chen, and P. Sharkey, “Robust nonlinear model
identification methods using forward regression,” Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 33, no. 4, pp. 514 – 523, july 2003.

[13] G. Calafiore, M. Indri, and B. Bona, “Robot dynamic calibration: Op-
timal excitation trajectories and experimental parameter estimation,”
J. of Robotic Systems, vol. 18, no. 2, pp. 55–68, 2001.

[14] N. D. Vuong and M. H. J. Ang, “Dynamic model identification for
industrial robots,” Acta Polytechnica Hungarica, vol. 6, no. 5, pp. 51–
68, 2009.

[15] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” Control Systems, IEEE, vol. 26, no. 3, pp. 96 –
114, june 2006.

[16] A. Visioli, G. Ziliani, and G. Legnani, “Iterative-learning hybrid
force/velocity control for contour tracking,” Robotics, IEEE Trans-
actions on, vol. 26, no. 2, pp. 388 –393, april 2010.

[17] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. Wiley, 2006.

[18] B. Raucent and J. C. Samin, “Minimal parametrization of robot
dynamic models,” Mechanics of Structures and Machines, vol. 22,
no. 3, pp. 371–396, 1994.

[19] P. Fisette, B. Raucent, and J. C. Samin, “Minimal dynamic character-
ization of tree-like multibody systems,” Nonlinear Dynamics, vol. 9,
pp. 165–184, 1996, 10.1007/BF01833299.

[20] M. Indri, G. Calafiore, G. Legnani, F. Jatta, and A. Visioli, “Optimized
dynamic calibration of a scara robot,” in IFAC ’02. 2002 IFAC
Internation Federation on Automatic Control, 2002.

[21] M. Gautier and W. Khalil, “Direct calculation of minimum inertial
parameters of serial robots,” Robotics and Automation, IEEE Trans-
actions on, vol. 6, no. 3, pp. 368–373, 1990.

[22] F. Benimeli, V. Mata, and F. Valero, “A comparison between direct
and indirect dynamic parameter identification methods in industrial
robots,” Robotica, vol. 24, no. 5, pp. 579–590, Sept. 2006.

[23] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter
identification of robots,” Robotics and Computer-Integrated Manufac-
turing, vol. 26, no. 5, pp. 414 – 419, 2010.

[24] M. Gautier, “Dynamic identification of robots with power model,” in
Rob. and Aut., Proc., IEEE Int. Conf. on, vol. 3, 1997, pp. 1922 –1927.

[25] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA, 1989.

2376


