
  

  

Abstract— We present a vision based method for the 
autonomous geolocation of ground vehicles and unmanned 
mobile robots in forested environments. The method provides 
an estimate of the global horizontal position of a vehicle strictly 
based on finding a geometric match between a map of observed 
tree stems, scanned in 3D by sensors onboard the vehicle, to 
another stem map generated from the structure of tree crowns 
observed in overhead imagery of the forest canopy. This 
method can be used in real-time as a complement to the Global 
Positioning System (GPS) in areas where signal coverage is 
inadequate due to attenuation by the forest canopy, or due to 
intentional denied access. The method presented in this paper 
has two key properties that are significant: i) It does not 
require a priori knowledge of the area surrounding the robot. 
ii) It uses the geometry of detected tree stems as the only input 
to determine horizontal geoposition.  

I. INTRODUCTION 

Traditional geolocation of terrestrial vehicles has primarily 
utilized GPS in different modes to achieve accuracies in the 
decimeter range (e.g. Differential and Real-time Kinematic 
techniques) [1]. Despite advances in GPS accuracies and 
measurement methods, attenuation of GPS signals in dense 
forest environments renders the service unreliable for 
continuous and real-time localization purposes. Geolocation 
of rovers without the use of GPS focuses on dead reckoning 
techniques that use Inertial Measurement Units (IMU) [2]. 
Such approaches are prone to continuous drifts in measured 
position, which can be problematic for rovers operating in 
close proximity to points of interest. 

Techniques such as Simultaneous Localization and Mapping 
(SLAM) have been successfully utilized to localize rovers in 
a variety of settings and scenarios [3,4]. SLAM focuses on 
building a local map of landmarks as observed by a rover 
and using it to estimate the rover’s local position in an 
iterative way [3,4]. Position errors could be initially high but 
tend to converge as more landmarks are observed and as 
errors are filtered. Therefore, SLAM does not require           
a priori knowledge of the locations of landmarks or that of 
the rover. The method presented in this paper is different 
from SLAM in that it provides a non-iterative estimate of the 
global position of a rover by comparing landmarks, in this 
case tree stems observed on the ground, to tree stems 
detected in overhead georeferenced imagery of the forest 
canopy. The presented method is envisaged to be 
complementary in nature to traditional SLAM frameworks 
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where it could be invoked on-demand by the rover as the 
need arises.  

The envisioned operational scenario of the presented method 
is summarized as follows. A rover is initially assumed to be 
driving autonomously or via teleoperation in a forested area. 
The rover is anticipated to initially use GPS for localization. 
However, in situations where the GPS service becomes 
inaccessible or unreliable, the rover is expected to utilize the 
method discussed in this paper for the duration of the GPS 
blackout. In essence, the proposed method is envisaged to 
act as a backup whenever the primary localization service is 
down. Alternatively, and to enable real-time redundancy in 
geoposition estimation, the presented method could be used 
in tandem with the primary localization service. 

The localization method presented in this paper requires two 
types of input data. The first are 3D scans of the 
environment surrounding the rover by onboard Light 
Detection and Ranging (LiDAR) sensors. At a minimum, the 
rover is expected to employ a LiDAR sensor with 360° 
horizontal Field-Of-View (FOV) to completely image the 
geometry of tree stems surrounding the rover. The second 
data input is an overhead high-resolution image of the 
exploration site. The overhead image can be acquired either 
by satellite or aerial means and needs to be orthorectified 
and georeferenced. The following is a summary of the 
sequence of operations required to geoposition a vehicle 
using the vision based localization method: 

1. At a particular pose, a ground LiDAR scan is taken 
of the area surrounding the rover.  

2. LiDAR data is processed to detect and to label tree 
stems. Tree stem center locations are subsequently 
estimated to create a map of the horizontal 
locations of tree stem centers relative to the rover.  

3. The overhead georeferenced image of the forest 
canopy above the rover is processed in order to 
delineate individual tree crowns and estimate tree 
centers. A map is subsequently generated that 
contains the absolute horizontal locations of tree 
stem centers. 

4. Maps of tree stem centers estimated from LiDAR 
and from overhead imagery are matched in this 
step. The closest match is selected and used to 
calculate the rover’s horizontal geoposition. 

The vision based localization algorithm is composed of three 
main components: 

• Tree Crown Identification, Delineation and 
Center Estimation from Overhead Imagery: 
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Delineates tree crowns and estimates tree centers 
from the geometric profile of the delineated tree 
crowns.  

• Tree Stem Center Estimation from Rover 
LiDAR Data: 

Identifies tree stems and estimates their centers 
from their 3D profiles. 

• Matching of Tree Centers from Overhead 
Imagery and LiDAR Data: 

Estimates the rover’s horizontal geoposition by 
matching tree center maps generated from LiDAR 
to those obtained from overhead imagery. 

An important aspect in the above formulation of the 
algorithm is an assumption about the growth profile of trees. 
In particular, the tree center estimation algorithms for the 
LiDAR and overhead image assume that the center of the 
tree crown coincides or is in close proximity to the center of 
the stem. This implies that for the purposes of this paper, 
tree crowns are assumed to have an elliptical profile along 
the horizontal, while tree stems are assumed to have an 
upright vertical profile. 

This paper is comprised of four main sections. Section II, III 
and IV discuss the different components of the presented 
localization algorithm, its properties and constraints. In 
Section V, test results based on real-world data obtained 
from an outdoor test campaign are presented and discussed. 
Concluding remarks are presented in Section VI. 

II. TREE CROWN IDENTIFICATION, DELINEATION AND 
CENTER ESTIMATION FROM OVERHEAD IMAGERY 

This component involves creating a map of the horizontal 
locations of tree stem centers using a high-resolution 
orthophoto of the forest canopy. The purpose of this map is 
to provide a basis for comparison to the map generated from 
the ground LiDAR data. Several automatic tree crown 
delineation algorithms have been previously developed. 
Wang et al utilize a multi-step approach where Near Infra-
Red (NIR) images are first used to mark tree centers, 
followed by intensity based segmentation to extract 
individual tree crowns [5]. Although effective, this approach 
was not followed because we were interested in developing 
an algorithm that works with visible imagery only.  

The main hypothesis that guided the development of the 
algorithm is the fact that the horizontal location of a tree 
center in an overhead image can be estimated from the 
geometric centroid of the delineated crown. Therefore, if a 
tree crown is detected and delineated, the location of a tree 
center can in principle be deduced with a horizontal 
accuracy limited by the pixel resolution of the image. Wang 
et al follow the same hypothesis but augment their algorithm 
with NIR intensity data of the tree canopy [5].  

Figure 1 outlines the process of tree delineation and center 
estimation using a sample image. First, non-green pixels (i.e. 
non-vegetation) are filtered out using a simple auto threshold 
approach. Second, the resultant color image is converted to a 
grayscale image with 8-bit resolution. With treetops as the 
only visible feature in the resulting image, a copy binary 

image is created in order to calculate the Euclidean distance 
transform for all objects in the image. The Euclidean 
distance transform d between two points (pixels), p and q, is 
defined as follows (in 2D): 

! !, ! =    !! − !! !!
!!!          (1) 

The next step involves applying watershed segmentation to 
the 8-bit grayscale image with the distance transform as 
input. The purpose of the distance transform and watershed 
segmentation is to segment any cluster of treetops into their 
constituent trees. This step is necessary in the case of dense 
forests that have touching tree crowns.  

Following the segmentation step, the resultant image is 
composed of delineated tree crowns. The image is 
subsequently analyzed to estimate centers of trees by 
calculating the Euclidean centroid of each delineated object. 
The final product is a map composed of the pixel 
coordinates (x, y) of the centroid of each detected crown.  

A walkthrough of the algorithm using a sample overhead 
image is shown in Figure 1. The overhead image is of a pine 
forest located northeast of Lake Mize in Florida, USA. The 
image is an orthophoto with 0.3 m resolution (Source: 
USGS). 

 
Figure 1: Example Showing Tree Center Estimation Using a 

Sample Overhead Image of a Pine Forest 

Figure 1 shows that for a relatively dense cluster of trees, a 
visually correct result in terms of the locations of tree 
centers is obtained. Based on the above, the following are 
some general constraints: 

• Accuracy of estimated tree centers depends on the 
view angle (perspective) of the image. Therefore 
for best results and to reduce the effect of parallax, 
the area of the forest of interest needs to be as close 
as possible to the nadir of the image.  

• The average diameter of a tree crown is 
recommended to be at least an order of magnitude 
larger than the pixel resolution of the input image 
[5]. For example, the pixel resolution of an input 
image needs to be around 0.3 m in order to 
adequately detect 3 m crowns. 
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III.  TREE STEM CENTER ESTIMATION FROM ROVER LIDAR 
DATA 

As discussed in Section I, the ground vehicle is expected to 
acquire LiDAR data of the forest grounds for use by the tree 
stem center estimation algorithm. It is noted that the 
algorithm discussed in this section is based on prior work by 
McDaniel et al [6].  

Based on input LiDAR data such as that shown in Figure 2, 
the ground plane is first estimated in order to constrain the 
search space. This is accomplished by tessellating the 
LiDAR point cloud into 0.5x0.5 m cells across the horizontal 
plane. Each cell is identified by a unique (row, column) 
index. Based on the cluster of points within each cell, the 
point with the lowest height is initially labeled as ground.   

 
Figure 2: Sample Data Showing a LiDAR Scan of Trees [6] 

Due to underbrush, not every point selected in the previous 
step represents true ground. Therefore, a classifier is utilized 
to filter data using metrics such as: the number of 
neighboring points, their geometry and ray tracing scores. 
Filtered data is then provided to another classifier that 
utilizes Support Vector Machine (SVM). If a cell contains a 
point labeled by the classifier, it is treated as true ground. 
Interpolation is performed for cells that do not have points 
labeled by the classifier.  

The next step involves identifying the vertical extents of 
stems using thresholding and clustering methods. To identify 
which LiDAR point belongs to the main stem, a simple 
height-above-ground filter is used. Any points below the 
selected height threshold are discarded and classified as 
underbrush. Based on the dataset obtained, the team 
empirically determined that a height threshold of 2 m is 
adequate. Filtered data is then clustered following a single-
linkage clustering method, which classifies two points to 
belong to a single cluster if they are in close proximity to 
each other (within a predefined distance threshold) [7].  

 
Figure 3: Example Showing Cylinder Fitment [6] 

Finally, cylinders primitives are fit to the LiDAR data using 
a least squares scheme (Figure 3). R denotes the radius of the 
cylinder primitive while r denotes the estimated radius of 
curvature of the stem transect containing LiDAR data. The 
fit between the cylinder primitive and data is found by 
solving the following minimization problem where n is the 

number of points in a cluster, x is the transect containing 
LiDAR points pertaining to the identified stem and fi is the 
distance from the ith point to the surface of the cylinder 
primitive.  

arg!"#!∈ℜ! =
!
!
   !!! !!

!!!       (2) 

Following the minimization step, tree stem centers are 
estimated based on the curvature of each fitted cylinder. 
Lastly, the location of each estimated tree center in the 
horizontal plane is incorporated into a tree center map that is 
used by the matching algorithm discussed in section IV. 

IV. MATCHING OF TREE CENTERS FROM OVERHEAD 
IMAGERY AND LIDAR DATA 

The last component of the algorithm involves matching tree 
center maps obtained from the LiDAR and overhead image 
in order to estimate the horizontal geoposition of the rover. 
Prior to invoking the matching process, both maps are 
converted to the WGS84 reference system. The datasets are 
then provided to an Iterative Closest Point (ICP) algorithm 
that estimates the horizontal translation and rotation vectors 
required to fit them together. More precisely, the tree center 
map derived from the overhead image is treated as the 
baseline upon which the LiDAR based tree center map is 
matched to. This is because the map obtained from the 
overhead image is usually larger than the local map 
generated from the LiDAR dataset.  

The ICP implementation follows the Besl-McKay (point-to-
point) framework given as follows [8,9]: 

argmin  Ε!,!∈ℜ! =   
!
!

!×!! + !   −   !!
!!

!!!      (3) 

Where E is the mean squared distance error between both 
maps. R and t are the rotation and translation vectors 
respectively. p and q are points in the tree center maps from 
the LiDAR and overhead image datasets respectively. N is 
the total number of points in the LiDAR tree center map. A 
match is found by determining the minimum of the error 
expression E. Figure 4 shows a sample run of ICP at a single 
rover pose using data acquired from the Lake Mize site. 

 
Figure 4: Sample ICP Run for a Single Rover Pose 

In Figure 4, the circles denote stem centers generated from 
the overhead image. The plus signs denote stem centers 
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Figure 4. Hand-labeled point clouds of (a) baseline, (b) sparse, (c) moderate, (d) dense1, and (e) dense2 scenes.

comparison to diameters estimated by the LiDAR stem
modeling algorithm. To identify which diameter corre-
sponded with which tree, a rough map of the trees was cre-
ated in the field. The X-Y position of each tree in the LiDAR
reference frame was identified afterward based on manual
examination of the LiDAR point clouds.

2.4. Data Processing

To quantify the accuracy of the algorithms presented, the
LiDAR data were hand-labeled using Quick Terrain Mod-
eler, a software package developed by Applied Imagery
(Quick Terrain Modeler, 2009). Each data point was clas-
sified into one of the following categories: (1) ground, (2)
bushes/shrubs, (3) tree main stems, and (4) tree canopy.
When the class of the LiDAR point was unclear, pho-
tographs of the environment (shown in Figure 3) were used

to assist in classification. For the work in this paper, the
key distinction is between “ground” and “not ground,” and
this information is used to train the classifier. Other classes
are used only to get a fine-grained analysis of classification
results. Figure 4 shows the hand-labeled LiDAR data pro-
jected into a global reference frame, with the location of the
LiDAR marked with a star and trees labeled with letters to
show correspondence to Figure 3.

2.5. Ground Plane Estimation Algorithm

Given a set of LiDAR data points in Cartesian space, the
goal of ground plane estimation is to identify which of
those points belong to the ground. The approach proposed
here divides the ground plane estimation task into two
stages. The first stage is a local height-based filter, which
encodes the fact that, in any vertical column, only the
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where (xi , yi , zi ) is the ith data point in cylinder-centered
coordinates and r is the radius of the cylinder being fit.

To obtain least-squares cylinder results that are more
realistic for trees, it is useful to constrain the optimiza-
tion parameter search space. For example, the cylinder axis
should be near vertical, and the radius should be con-
strained to prevent tree models with excessively large radii.
For this work, the upper bound of the radius was set to
0.75 m. This upper bound was chosen based on the largest
trunk that was measured for this work, which had a radius
of 0.531 m.

The cylinder axis is more difficult to constrain due to
the transformation of the cylinder axis’ direction cosines,
a = [ax , ay , az], into the optimization parameters, è = [α,
β]. To speed the optimization, α and β are constrained
rather than directly constraining az. From experimental re-
sults, it has been determined that a constraint of |az| > 0.9
yields good modeling results. A direction cosine of 0.9 cor-
responds to an angle of approximately 26 deg from the ver-
tical. Trees do not grow perfectly straight, and this con-
straint is meant to prevent gross errors where the axis is
very far from vertical. Thus, because az = cos(α) cos(β), for
az to be constrained to be greater than 0.9 means that α and
β will each be constrained to the ranges [−arccos(0.9), arc-
cos(0.9)], or [−0.45, 0.45] radians.

A similar process is used to perform least-squares opti-
mization and constraints for cones. We would expect a frus-
tum of a cone to be a better model for the breast-height slice
of a tree stem due to the natural taper of a tree stem. Here,
each cone is specified by eight degrees of freedom. These
include three degrees for the direction cosines of the cone
axis, a = [ax , ay , az], three degrees for a point on the cone
axis, pinit = [xinit, yinit, zinit], one degree for the cone’s ra-
dius, r , at point pinit, and one degree for the cone’s vertex
angle, ϕ (half of the included vertex).

The cone axis is constrained in the same way that the
cylinder axis is constrained. The upper bound of the cone
angle is set to 0.1 radians (≈6◦) and the lower bound is zero.
These bounds were selected based on empirical observa-
tions. This is significantly larger than the taper expected at
breast height for average trees (Li and Weiskittel, 2010).

2.6.4. Rejection Criteria for Tree Models
The final step in the tree modeling algorithm is to deter-
mine the quality of the least-squares fits and reject models
that are unrealistic or poorly fit the data. Four heuristically
inspired constraints to characterize poor fits are described
below. If any of these criteria are met for a given tree, it will
be rejected as a poor fit. The following explanations specifi-
cally refer to cylinder fits, but the same criteria are also used
for cone fits. For criteria that are based on radius, the radius
of the cone at a height of 130 cm above the ground is used.

Rejection Criterion 1: Distance from center of fit to centroid
of data. The first rejection criterion discriminates based on

(a)   

r

R

(b)

r

R

Figure 8. Examples of overhead views for good cylin-
der/cone fits.

the ratio of the cylinder radius, R, to the distance, r , from
the center of the cylinder to the centroid of the data (in the
X-Y plane). Figures 8 and 9 show examples of overhead
views to illustrate the reasoning for this criterion. In each
plot, the main stem data are gray and cylinder cross sec-
tions (at breast height) are in black. In addition, the centroid
of the data is marked with an asterisk and the center of the
cylinder cross section is marked with a “+.”

The plots in Figure 8 exemplify the variability in
resolution and shape of data among different trees. In
Figure 8(a), almost the entire visible surface (from the static
position of the LiDAR) of the main stem has LiDAR returns,
which gives the data a semicircular shape. In Fig. 8(b), only
the front surface of the stem has LiDAR returns, which
gives the data a “flat” look. The plots in Fig. 8 are not from
the same scene and are not scaled equally. However, given
the input data, both of these cylinder fits look reasonable.
Also note that the distance from the center of the cylinder
to the centroid of the data is slightly less than the radius in
both of these cases. The ratio of the radius to the distance
from the center to the centroid is approximately 1.46 for the
left example and 1.21 for the right.

r

R

Figure 9. Bad ratio of radius to distance from cylinder center
to distance centroid.

Journal of Field Robotics DOI 10.1002/rob

1434



  

generated from a single LiDAR scan at a particular rover 
pose. The asterisk denotes the estimated rover position as a 
result from ICP. As seen in Figure 4, the closeness of the 
points in both datasets shows that a good match was found. 
In fact, the match was found with a reported average point-
pair distance error of ~0.9 m (3 pixels). It is noted that in 
Figure 4, the axes represent easting and northing with 
respect to a local predefined reference point for that dataset. 

The ICP algorithm implemented as part of this paper has the 
following properties: 

• The search space is constrained to a 35x35 m box 
centered on the last known position of the rover and 
projected onto the baseline dataset (stem centers 
from overhead imagery). The optimum search 
space size was determined following an empirical 
investigation of the accuracy and processing-time 
performance of ICP using different search space 
sizes and shapes. In particular, a 35x35 m search 
space enabled us to maximize matching accuracy 
while minimizing processing time.  

• The ICP algorithm always provides a result and 
produces the best-found match along with a mean 
error metric (parameter E in eq. 3). Good candidate 
matches produce low E while inadequate matches 
result in a large E. The error metric E depends on 
the final geometric configuration of both maps and 
the number of points in the LiDAR stem center 
map. 

V. RESULTS 

The vision based localization algorithm was completely 
developed in Matlab and was tested with real-world data. 
Survey-grade LiDAR data was collected at a test site located 
northeast of Lake Mize in Florida, USA (Coordinates: 
N29.738°, W82.216°). The data was acquired by a Leica 
ScanStation-2 LiDAR system that was provided by the 
University of Florida. The LiDAR was placed at multiple 
survey stations within the area bounded by the rectangular 
box in Figure 5. The area is approximately 110x110 m and 
the LiDAR dataset was collected with an average spatial 
resolution of approximately 5 cm. The area is exclusively 
comprised of pine trees with moderate to dense underbrush. 
It is noted that 561 tree stems were manually identified and 
labeled within the bounded area. 

In total, 4 high-resolution orthorectified images of the test 
site were acquired from USGS. The images were provided in 
GeoTiff format and were all captured in the visible 
spectrum. All images were provided in the UTM coordinate 
system. 

Without access to a real rover, and to simulate the envisaged 
operational scenario, a ground vehicle was simulated in 
Matlab traversing a 4-sided polygonal path and using the 
acquired LiDAR data as input. The simulated rover path is 
illustrated in red as shown in Figure 5. More specifically, the 
acquired LiDAR data from the Lake Mize site was gridded 
and incrementally fed at each pose to the vision based 
localization algorithm. Figure 6 shows the simulated rover 
path and all identified stem centers in the LiDAR dataset. It 

is noted that the rover path is composed of 234 poses that are 
spaced at 0.5 m intervals. 

 
Figure 5: Test Site Northeast of Lake Mize (Source: USGS) 

 
Figure 6: Simulated Rover Path and LiDAR Based Stem 

Centers  

Table 1 summarizes the key properties of the acquired 
imagery and LiDAR data such as size, resolution and 
accuracy. It is noted that Aerial Image 1 and Aerial Image 2 
were taken of the same area but with different sensors and at 
different dates. 

Table 1: Properties of Input Data  

Dataset 
Type 

Properties Horizontal  
Accuracy  

RMS 
Aerial 

Image 1 
Visible, 5000x5000 pixels,  
0.3 m resolution 

2.1 m 

Aerial 
Image 2 

Visible, 5000x5000 pixels,  
0.3 m resolution 

2.1 m 

Aerial 
Image 3 

Visible, 8000x8000 pixels,  
0.5 m resolution 

2 m 

LiDAR 5 cm resolution (Average) 0.01 m 
 

Based on the simulation setup, several tests were conducted 
using the same ground based LiDAR dataset but with 3 
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different overhead images as listed in Table 1. Since the 
LiDAR dataset is of high accuracy (1 cm RMS), it was 
treated as the ground truth to which geoposition estimates 
from the localization algorithm are compared against. More 
specifically, for each test run, the algorithm’s estimated 
rover position is graphed with the corresponding GPS 
location, which is derived from the overlay of the simulated 
rover path onto the LiDAR data. To assess the accuracy of 
position estimates, the horizontal position error between the 
result provided by the localization algorithm and the GPS 
estimate is calculated. It is noted that due to the convergence 
properties of ICP, the matching algorithm requires an initial 
estimate of the location of the rover in order to avoid 
converging to an incorrect local minimum. Therefore, the 
GPS location of the first pose of the simulated rover is given 
to ICP as a seed upon which matching is initiated. For 
subsequent poses, the latest position estimates by ICP are 
used as seeds. In cases where large jumps are observed in 
position estimates provided by ICP, the latest estimate with 
the least deviation from the average is selected. 

4 test runs in total were performed. 3 tests were fully 
automated (i.e. processing and labeling of input data were all 
conducted by the vision based algorithm in an end-to-end 
fashion). One test bypassed the tree crown delineation and 
center estimation algorithm and instead used a manually 
handpicked tree center map using Aerial Image 2. This test 
allowed us to decouple the vision based tree crown 
delineation and center estimation algorithm from the overall 
accuracy performance of the matching algorithm.  

Figure 7 and Figure 8 show results from an automated test of 
the localization algorithm using Aerial Image 2. Figure 9 
and Figure 10 show results from the manual test that also 
used Aerial Image 2. The mean position error and the 
standard deviation for all test runs are summarized in Table 
2. Considering the automated test using Aerial Image 2, the 
mean rover position error is 4.76 m, which is about 14% of 
the linear dimension of the 35x35 search space box. In 
particular and as seen in Figure 8, the majority of rover 
poses (107 to be specific) resulted in less than 2 m positional 
error between GPS and the estimation provided by the 
matching algorithm. This is a good result considering that 
the spatial accuracy of Aerial Image 2 is 2.1 m RMS. It is 
noted that due to occlusion by underbrush, some tree stems 
were not detected at several poses. These poses were 
therefore discarded and shown as gaps in the rover path as 
seen in Figure 7 and Figure 9.  

Three factors play a major role in determining the positional 
accuracy of the vision based algorithm: i) Accuracy of the 
input datasets (aerial and LiDAR). ii) Validity of tree stem 
centers estimated from aerial imagery, and iii) Validity of 
tree stem centers estimated from LiDAR. The second and 
third factors are very important in that they can easily affect 
the positional accuracy reported by the algorithm. If several 
tree centers were mislabeled, the matching algorithm would 
have difficulties finding the true matches. In cases where 
erroneous tree centers are present in a dataset, ICP would 
certainly provide a biased result. Online filtering techniques 
could be used to mitigate this issue. This is part of the scope 
of upcoming work on the algorithm.  

 
Figure 7: Result from Automated Test using Aerial Image 2 

 
Figure 8: Histogram of Automated Test Using Aerial Image 2 

 
Figure 9: Result from Manual Test Using Aerial Image 2 

 
Figure 10: Histogram of Manual Test Using Aerial Image 2 
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To further understand the effect of mislabeled tree centers on 
the accuracy of geoposition estimates, a manual test was 
conducted as discussed previously for benchmarking 
purposes. Figure 9 and Figure 10 show the accuracy 
performance of the matching algorithm using a manually 
handpicked tree center map that was generated from Aerial 
Image 2. As seen in Figure 9 and Figure 10, geoposition 
error figures from the manual test show an improved 
performance compared to results obtained from the 
automated test. In fact, the mean position error reported by 
the manual test was reduced by almost 50% compared to the 
results from the automated test. Results from all tests are 
summarized in Table 2. 

Table 2: Summary of Test Results 

Aerial 
Image 

Type of 
Test 

Average 
Position Error 

(m) 

Standard 
Deviation 

(m) 
1  Automated 5.41 4.42 
2  Automated 4.76 3.97 
2  Manual 2.79 3.38 
3  Automated 6.83 5.63 

 

From Table 2, it is clear that as the aerial image resolution 
worsens, the mean position error increases. This is the case 
with Aerial Image 3. The increase in reported geoposition 
error could also be attributed to color contrast. Qualitatively 
speaking, a lower Red-Green-Blue (RGB) contrast in an 
aerial image could reduce the accuracy of tree crown 
delineation and center estimation. This has the potential to 
degrade the map matching performance of the algorithm and 
hence reduce the accuracy of position estimates. 

The difference in performance observed between the 
automated and manual tests points out that the tree crown 
delineation and center estimation algorithm produces some 
mislabeled tree centers. Qualitatively speaking, this behavior 
can be attributed to multiple factors, mainly: i) Tree crowns 
tend to merge in dense forests rendering the task of 
delineation somewhat tricky and not without uncertainty. ii) 
Some trees that are visible in the LiDAR dataset may not 
have visible crowns in aerial imagery due to occlusions by 
taller trees. iii) Some trees that are visible in the aerial image 
may not be visible in the LiDAR dataset due to occlusions 
by other trees, underbrush or other obstructions. Therefore, 
operations in dense forests will usually result in some 
uncertainty in the estimation of geoposition. Nevertheless, 
considering situations when GPS is unavailable or 
unreliable, the benefit of being able to localize using the 
method of this paper is expected to outweigh its reduced 
accuracy performance.  

VI. CONCLUSIONS AND FUTURE WORK 

In conclusion, the localization algorithm presented in this 
paper has the following properties that make it significant: i) 
It enables rover position estimation by matching vision data 
from ground LiDAR and overhead visible imagery of the 
area of interest. ii) Does not require external georeferenced 
landmarks to tie data together or perform corrections. iii) 
Furnishes a positioning capability that is completely 

decoupled from GPS to allow on demand localization in 
situations when GPS becomes unreliable or inaccessible.  

The algorithm presented in this paper is considered a 
prototype that has constraints and limitations. In this phase 
of the project, the utility of the algorithm has been verified 
to provide reasonable horizontal position estimates using 
real-world data. Future improvements to the positioning 
accuracy of the algorithm are planned. These will involve 
improvements to the accuracies of the tree crown delineation 
and center estimation algorithm as well as to the LiDAR-
based tree stem estimation algorithm. Aerial imagery with 
higher resolution and accuracy will be acquired to increase 
the accuracy of position estimates. In addition, online 
filtering techniques will be used to smooth position 
estimates and to discard anomalies. The end goal of the 
project is to develop the vision based localization algorithm 
to a level where it could reach accuracies that are 
comparable to current GPS standards. 
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