
Online Trajectory Planning and Filtering for Robotic Applications
via B-spline Smoothing Filters

Luigi Biagiotti, Claudio Melchiorri

Abstract—In this paper, a novel technique for online gen-
erating trajectories in the 3-D space is presented. The tra-
jectory planner is based on cubic B-splines. However, while
the definition of B-splines requires the solution of a global
problem that involves the entire set of via-points to be interpo-
lated/approximated, and therefore it is not suitable for online
implementation, the proposed generator is able to approximate
spline functions with the prescribed precision on the basis of
local computations, which only need the knowledge of a very
limited number of via-points. FIR filters are the foundation
of this result. As a matter of fact the planner is composed
by a first FIR filter for the computation of the control points
from the sequence of desired via-points, followed by a chain
of moving average filters. Therefore, the generator combines
the characteristics of B-spline trajectories (smoothness and
minimum curvature) and those of FIR filters (simple structure
and computational efficiency). Moreover, besides standard cubic
curves, the so-called smoothing B-splines have been considered
for online trajectory generation. This allows to find a tradeoff
between the possibility of exactly crossing the given via-points
and the smoothness of the resulting trajectory. A simple
teleoperation task with a Puma 560 industrial manipulator
has been arranged for experimentally validating the proposed
method.

I. INTRODUCTION
Spline functions are one of the main mathematical tools

for designing trajectories for robotic systems, in particular in
the workspace where complex motions are generally defined
by the user by means of a (possibly very large) set of via-
points to be interpolated or approximated. The parameters
that define these functions (coefficients of the polynomial
form or control points of the B-form) are computed offline
by solving a global problem that requires all the given points
[1]. Additionally, these trajectories may be optimized with
the purpose of minimizing the total travelling time of robot
subject to constraints of velocity, acceleration and jerk [2],
or to globally minimize some quantities, such as acceleration
[3] or jerk [4]. More recently, in [5] an optimization of spline
trajectories in the frequency domain has been proposed in
order to suppress vibrations that may arise in those robotic
applications where compliance of links and joints are not
negligible. The proposed solution exploits the fact that spline
functions expressed in the so-called B-form can be efficiently
generated by means of a chain of linear filters properly fed
with the sequence of the control points that determine the
shape of the curves in the space. The trajectory generator

L. Biagiotti is with the Department of Engineering “Enzo Ferrari”,
University of Modena and Reggio Emilia, Via Vignolese 905, 41100
Modena, Italy, e-mail: luigi.biagiotti@unimore.it.
C. Melchiorri is with the Department of Electrical, Electronic and In-

formation Engineering “Guglielmo Marconi”, University of Bologna, Viale
Risorgimento 2, 40136 Bologna, Italy, e-mail: claudio.melchiorri@unibo.it.

devised in [6] is composed by p moving average filters
of order N and an algorithm that transforms the desired
points qj in the set of control points pj used for defining
the input sequence p(k) =

∑n

j=0
pjB

0(k − jN), where

B0(k) = B0(kTs) =

{
1, if k = 0, 1, . . . , N − 1

0, otherwise.
In Fig. 1 the sequence p(k) and the discrete-time spline
s(k) are shown for a simple one-dimensional case. Note
that the B-spline is defined by adopting a sampling period
Ts, that generally coincides with the sampling time of the
overall control system, while p(k) is a piecewise constant
sequence, in which the generic value pj is maintained for
T = N · Ts seconds. Moreover, as shown in Fig. 2, while
the spline evaluation is performed online, its definition (i.e.
the computation of the control points) is made offline. Aim
of this work is to remove this limitation of the trajectory
generator, by means of an additional filter that computes the
control points from the sequence of desired via-points to be
interpolated. In this way, the proposed trajectory generator
can be used in those applications where the the points to
be reached are not known a priori but are provided runtime.
Since cubic splines are considered, the generator behaves
like a filter that produces position profiles with continuous
velocities and accelerations. Moreover, by exploiting the
features of the so-called smoothing splines [1], a filter is
devised that allows to made the curve arbitrarily smooth by
acting on a free parameters.

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T

p0 p1 p2

p3

p4

p5

p6

p7 p8 p9

p
(k
)

(a)

0 T 2T 3T 4T 5T 6T 7T 8T 9T

q0 q1 q2
q3

q4

q5

q6

q7

q8

q9

s
(k
)

(b)

Fig. 1. Piecewise constant sequence p(k) (a) generating the discrete-time
spline s(k) that interpolates the given points qj (b).

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5668

0 T 2T 3T 4T 5T 6T 7T 8T 9T

Interpolation/approximation
problem solver

Sequencer

Offline Online (Ts)

p
k

s
k

pk sk{qj} {pj} 1

N

1− z−N

1− z−1

1

N

1− z−N

1− z−1

︸ ︷︷ ︸
p blocks

Fig. 2. Structure of the filter for B-spline trajectories planning proposed in [6].

II. ONLINE COMPUTATION OF CUBIC B-SPLINES
CONTROL POINTS

In [6], it has been shown that the control points pk defining
a cubic B-spline interpolating a set of via-points qk, k =
0, . . . , l in uniformly spaced time instants tk = k ·T , can be
obtained by solving the linear system obtained by stacking
the equations

ss(kT) =
1

6
pk−1 +

4

6
pk +

1

6
pk+1 = qk, k = 0, . . . , l (1)

for all the given points, i.e.⎡
⎢⎢⎢⎢⎢⎣

4 1 0 · · · 0
1 4 1 0 · · · 0
...

. . .
...

0 · · · 0 1 4 1
0 · · · 0 1 4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

p1

p2

...
pl−2

pl−1

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

6q1 − q0

6q2

...
6ql−2

6ql−1 − ql

⎤
⎥⎥⎥⎥⎥⎦ (2)

being the first and the last control point coincident with
initial and final via-point. Although a solution of (2) can
be calculated in a very efficient manner, being the system
matrix tridiagonal, it is clear that such a solution can only be
found once all the via-points qk are known. However, when
the via-points are given progressively, it may be desirable
that control points are calculated runtime by approximating,
if possible, the ideal solution. To this purpose, it is worth
noticing that relationship (1) between control points and via-
points can be rewritten in terms of Z-transforms as

P (z)

Q(z)
=

6

z + 4 + z−1
= H3(z). (3)

Unfortunately, equation (3), that represents a simple linear
filter, cannot directly been used for control points calculation
since the poles z1,2 = −2 ± √

3 do not lie both within the
unit circle, and consequently the filterH3(z) results unstable.
However, it is worth noticing that, if α denotes the stable
pole, i.e. α = −2 +

√
3, the instable one is given by its

reciprocal, that is 1/α = −2 − √
3 and the filter’s transfer

function can be factorized into a product of complementary
causal and anticausal terms, i.e.

H3(z) = H3
c (z) ·H3

c (z
−1) (4)

with
H3

c (z) =
1

1− α z−1
.

Note that H3(s) represents a so-called zero-phase (non-
causal) filter, whose output can be computed by applying
the stable filter H3

c (z) to the input sequence, then time

reversing the filtered data, applying again the filter H3
c (z)

and time reversing one more time the output. Unfortunately,
also this procedure can be performed when the input data are
completely known and it is therefore suitable only for offline
filtering. An expression alternative to (4), that can lead to an
online implementation of H3(z) consists of a summation of
simple partial fractions, i.e.

H3(z) =
1− α

1 + α

(
1

1− α z−1
+

1

1− α z
− 1

)
(5)

1− α

1 + α

(
H3

c (z) +H3
c (z

−1)− 1
)
.

Equation (5), properly converted in a finite-difference equa-
tion, can be adopted for efficient (offline) control points
calculations, see [7], while the algorithm for online control
points computation can be deduced by approximating (5)
with a FIR filter [8]. The most straightforward methods for
implementing such a filter is to truncate the ideal impulse
response by windowing. By anti-transforming (5) the impulse
response results

h3(k) =
1− α

1 + α

(
αk u(k) + α−k u(−k)− δ0(k)

)
=

1− α

1 + α
α|k| (6)

where

δ0(k) =

{
1 if k = 0
0, if k �= 0

, u(k) =

{
1 if k ≥ 0
0, if k < 0

are the discrete unit impulse and unit step sequence re-
spectively. In Tab. I the numerical values of the sequence
h3(k), for |k| = 0, . . . , 5 are reported (consider the case
λ = 0). Note that the magnitude of the samples, that
decays exponentially, goes to zero very quickly as |k| grows,
therefore the FIR filter with (truncated) impulse response

h3
T (k) =

{
h3(k) k = −M, . . . ,M
0 otherwise, (7)

provides an excellent approximation of H3(z) also for small
values of M .
In order to guarantee a unit static gain, as in the original

filter H3(z), the samples of the impulse response h3
T (k),

that are the coefficients of the FIR filter, are normalized by∑M

n=−M h3
T (n). Therefore, the final expression of the FIR

5669

|k| 0 1 2 3 4 5
λ = 0 1.7338 -0.4646 0.1245 -0.0334 0.0089 -0.0024
λ = 1/144 1.5310 -0.3062 0.0462 -0.0062 0.0008 -0.0001
λ = 1/24 1.0952 0.0000 -0.0499 -0.0000 0.0023 0.0000
λ = 1/10 0.8478 0.1385 -0.0450 -0.0193 0.0003 0.0016
λ = 1 0.4018 0.2424 0.0841 0.0041 -0.0174 -0.0140
λ = 10 0.1952 0.1666 0.1183 0.0714 0.0350 0.0112
λ = 100 0.1252 0.1191 0.1056 0.0886 0.0706 0.0535

TABLE I
NUMERICAL VALUES OF THE IMPULSE RESPONSE h3

λ
(k) OF SMOOTHING

B-SPLINE FILTERS FOR DIFFERENT λ.

filter for control points calculation becomes

H3
FIR(z) =

M∑
n=−M

h3
T (n) z

−n

M∑
n=−M

h3
T (n)

=

M∑
n=−M

h3
FIR(n) z

−n (8)

Note that that H3
FIR(z) still represents a non-causal system,

but with a simple time-shift it is possible to make it feasible.
As a matter of fact H3

FIR(z) can be rewritten as

H3
FIR(z) = zM

2M∑
n=0

h3
FIR(n−M) z−n =

P (z)

Q(z)

and therefore

z−MP (z) =

2M∑
n=0

h3
FIR(n−M) z−nQ(z)

that corresponds to the finite-difference equation

p(k −M) =
2M∑
n=0

h3
FIR(n−M) q(k − n). (9)

From (9) it comes out that at a generic time instant k, the FIR
filter H3

FIR(z) fed with the last 2M +1 via-points q provides
the value of the control point p at time k−M . The choice of
M is therefore quite critical, since it must be the result of a
tradeoff between the precision in control points calculations
the and the delay introduced by the filter.

III. SMOOTHING B-SPLINE FILTER
In many robotics applications, it is not required that the

given via-points are exactly crossed but it is preferable a
trajectory with lower curvature and therefore lower acceler-
ation. In these cases, smoothing B-splines are the ideal tool
[1], being the curves s(τ) that, in the discrete time-instants
τ = k T minimize

L :=

l∑
k=0

|s(kT)− qk|2 + λ

∫ lT

0

∣∣∣∣d
2s(τ)

dτ2

∣∣∣∣
2

dτ (10)

where λ is a parameter which can be freely chosen in order
to control their smoothness. In the case of uniform B-splines,
the minimum value of the cost function (10) can be found
by solving the linear system

(A+ 6λCTC)P = 6Q (11)

with the matrices

A=

⎡
⎢⎢⎢⎢⎣

4 1 0

1 4
. . .

. 1
0 1 4

⎤
⎥⎥⎥⎥⎦, C=

⎡
⎢⎢⎢⎣
1 −2 1 0

1 −2 1
.

0 1 −2 1

⎤
⎥⎥⎥⎦

of proper dimensions, and the vectors of via-points Q =
[q0, q1, . . . , ql]

T and that of the (unknown) control points
P = [p0,p1, . . . ,pl]

T , see [1], [9]. Similarly to standard
cubic B-splines, it is possible to find a relationship between
via-points and control points in term of the Z-transforms [9],
i.e.
P (z)

Q(z)
=

6

z + 4 + z−1 + 6λ(z2 − 4z + 6− 4z−1 + z−2)
,

(12)
and like in case of Cubic B-spline filter H3(z) the poles
of the filter in (12), denoted by H3

λ(z), occur in pairs
(pi, 1/pi) because of the symmetry of the coefficients of the
denominator’s polynomial. As a consequence, the transfer
function H3

λ(z) can be decomposed again into the product
of a causal and an anti-causal filter

H3
λ(z) = H3

λ,c(z) ·H3
λ,c(z

−1) (13)

and the methods followed for obtaining cubic B-spline filters
can be used with no changes also in case of smoothing B-
splines. Unfortunately, in this case the solution is compli-
cated by the fact that the poles of H3

λ(z) are not constant
but depends on the parameter λ. In Fig. 3 the position of
the poles in the complex plane are shown as a function
of λ. In particular, in Fig. 3(b) the two stable poles of
H3

λ(z) are reported. Note that for λ → 0 a pole tends
to α = −2 +

√
3 (which characterizes standard cubic

splines), while the other one goes to the origin of Z-plane.
Moreover, since the poles of H3

λ(z) may be real (distinct or
coincident) or complex conjugate, different situations arise in
the computation of its impulse response, that is the basic tool
for FIR filter approximation. Accordingly, it is necessary to
find the expression of h3

λ(k) as a function of the parameter
λ:

• λ = 0. The smoothing filter degenerates into the
standard cubic spline filter.

• 0 < λ ≤ 1/144. By considering the auxiliary variable
u =

(
z

1

2 − z−
1

2

)2

, the two real poles enclosed within
the unit circle can be easily computed as

αi = 1/2

(
2 + ui +

√
4ui + u2

i

)
, i = 1, 2

with

ui =
−1±√

1− 144λ

12λ
, i = 1, 2.

The filter can be rewritten in terms of partial fraction
as

H3
λ(z) = c1

(
1

1− α1 z
+

1

1− α1 z−1
− 1

)
−

−c2

(
1

1− α2 z
+

1

1− α2 z−1
− 1

)
(14)

5670

1/α α−1

Im{z}

Re{z}

(a)

−1

λ=0 λ=1/144

λ=1/24

λ=1/10 λ=1
λ=10

λ=100

Im{z}

Re{z}

(b)

Fig. 3. Position of the poles of H3

λ
(z) as a function of the parameters λ

(a) and magnification of the area included within the unit circle (b).

where

c1 =
α1(−1 + α1)(−1 + α2)

2

(α1 − α2)(−1 + α1 α2)(1 + α1)

c2 =
α2(−1 + α1)

2(−1 + α2)

(α1 − α2)(−1 + α1 α2)(1 + α2)
.

By anti-transforming (14), the impulse response results

h3
λ(k) = c1 α

|k|
1 − c2 α

|k|
2 . (15)

• λ = 1/144. The filter, characterized by two stable
coincident real poles α1,2 = −5 + 2

√
6 = α, can be

written as

H3
λ(z) = d1

(
1

1− α z
+

1

1− α z−1
− 1

)
+

+d2

(
α z

(1− α z)2
+

α z−1

(1− α z−1)2

)
(16)

with

d1 =
(1− α)(1 + α2)

(1 + α)3

d2 =
(1− α)2

(1 + α)2
.

Therefore, the impulse response is

h3
λ(k) = d1 α

|k| + d2 |k|α|k|. (17)

∣∣H3
λ

(
ejωT

)∣∣

ωωs/2

λ = 0

λ = 1/144

λ = 1/24

λ = 1/10

λ = 1

1

λ = 10
λ = 100

Fig. 4. Frequency response of the smoothing B-spline filter H3

λ
(z), for

different values of λ.

• λ > 1/144. The filter has two stable complex conjugate
poles α1,2 = ρ e±jω . In this case, the expression of
h3
λ(k) can be found in [10], [9] and is reported only for
the sake of completeness. The magnitude of the poles
can be computed as

ρ =

√
1

2
(y −

√
y2 − 4)

with
y =

1

6λ

(
12λ+ 2 +

√
3 + 144λ

)
,

while the phase is

ω =

⎧⎪⎪⎨
⎪⎪⎩

π − arctan
√

144λ−1

v
λ < 1

24
π
2

λ = 1

24

arctan
√

144λ−1

v
λ > 1

24

where
v = 1− 96λ+ 24λ

√
3 + 144λ.

The anti-transform of H3
λ(z) is

h3
λ(k) = a1 ρ

|k|
(
cos(ω |k|) + a2 sin(ω |k|)

)
with the coefficients

a1 =
(1− 2 ρ cos(ω) + ρ2) (1 + ρ2)

(1 + 2 ρ cos(ω) + ρ2) (1− ρ2)

a2 =
1− ρ2

1 + ρ2
1

tan(ω)

In Tab. I the numerical values of the sequence h3
λ(k), for

|k| = 0, . . . , 5 are reported for some noticeable values of
λ. Note that for growing values of λ, the magnitude of the
central samples tends to decrease and, in general, the effect
of high values of λ is to equalize the magnitude of all the
samples (see for instance the case of λ = 100).
Once the sequence h3

λ(k) is available, it is possible to
compute the approximating FIR filter according to (8) and
the same remarks reported for standard cubic B-splines can
be extended to smoothing B-splines. Moreover, since the
coefficients of the filter H3

λ,FIR(z) tend to become similar in
magnitude for increasing value of λ, the influence of the

5671

0 T 2T 3T 4T 5T 6T 7T 8T 9T

H3
λ(z)

Rate transition

Online (T) Online (Ts)

p
k

p
kq
k

s
k

pk sk
qk pk 1

N

1− z−N

1− z−1

1

N

1− z−N

1− z−1

1

N

1− z−N

1− z−1

Fig. 5. Structure of the filter for online B-spline trajectories planning.

k-th via-point on the k-th control points decreases, while
the effects of adjacent via-points augment. For this reason,
H3

λ,FIR(z) behaves like a filter that reduces the variations in
the control points. The same conclusions can be deduced by
taking into account the frequency response of H3

λ(z), i.e.

H3
λ

(
ejωT

)
=

6

6− 4 sin2
(
π ω

ωs

)
+ 96λ sin4

(
π ω

ωs

) .
In Fig. 4 the magnitude of H3

λ

(
ejωT

)
is shown for different

values of λ. It is clear that for high values of this parameter,
the filter behaves like a low-pass filter, whose pass-band can
be made arbitrarily narrow. This properties can be helpful,
when the via-points are affected by some kind of noise. On
the other hand, it is worth noticing that high values of λ
imply large interpolation errors.

IV. GENERAL STRUCTURE OF THE B-SPLINE
PLANNER/FILTER

In Fig. 5 the structure of the proposed trajectory gener-
ator is illustrated. The filter, working completely online, is
composed by two main elements
1) a FIR filter H3

λ,FIR(z) of order 2M + 1 that computes
the control points from desired control points;

2) a cascade of 3 moving average filters, since cubic B-
splines have been considered.

The former element is computed with a sample time T ,
multiple of the basic sample period Ts (T = N · Ts), that
represents the time-distance among the points to be interpo-
lated/approximated. The average filters are implemented with
a period Ts, and they have an impulse response of length
equal to T , being of order N . Between the two elements, it
is necessary a rate transition from T to Ts, that maintains
the value p for T seconds.
The trajectory generator shown in Figure is suitable for
scalar (one-dimensional) trajectories. In order to take into
account trajectories in a d-dimensional space (d = 2, 3),
it is necessary to replicate the filter d times, one for each
component. The desired B-spline is obtained if the sequences
of the components of via-points qk, provided as input, are
synchronized.
From a computational point of view, the FIR filter H3

λ,FIR(z)
requires 2M + 1 multiplications and 2M additions (each T
seconds), while the evaluation of each moving average filter
needs two additions and one multiplication. In a sample time
Ts, The planning of a d-dimensional B-spline with the pro-
posed method requires at most (2M +4)×d multiplications

Development and control platform

Fig. 6. Experimental setup for trajectory planner validation.

and (2M + 6)× d additions, where M is usually a number
rather small (between 3 and 8). Therefore the trajectory
generator, completely based on FIR filters, is characterized
by a remarkable computational efficiency.
The parameterM plays a key role in the filter behavior since
it determines the degree of approximation of the generated
trajectory with respect to the ideal spline. On the other hand,
it is worth to noticing that H3

λ,FIR(z) introduces a delay equal
toM ·T seconds. For this reason, it is not convenient to take
into account values of M too large.

V. APPLICATION OF THE FILTER TO A
TELEMANIPULATION TASK

In order to experimentally validate the proposed trajectory
planner, a setup that includes a Puma 560 robot manipulator
and a low cost 3-D camera system Microsoft Kinect has been
arranged, see Fig. 6. The goal of this system is to allow the
user to directly control the robot by moving a target object

5672

450 500 550 600 6500

100

200
250

300

350

400

450

500

550

z

440 460 480 500 520 540 560 580 600 620 6400

100

200
250

300

350

400

450

500

550

z

No planner Only average filters

450 500 550 600 6500

100

200
250

300

350

400

450

500

550

z

440 460 480 500 520 540 560 580 600 620 6400

100

200
250

300

350

400

450

500

550

z

λ = 0 λ = 0.1

440 460 480 500 520 540 560 580 600 620 6400

100

200
250

300

350

400

450

500

z

460 480 500 520 540 560 580 600 620 6400

100

200
250

300

350

400

450

500

z

λ = 1 λ = 100

Fig. 7. Workspace position trajectory with different configurations of the
trajectory planner (thick line) and robot position (thin line).

in its workspace. Since the focus of the experiment is to
test the benefit that the trajectory generator produces, the
task consists of simply tracking a ball. The robot controller,
that has been completely customized, is based on PC/104
platform running RTAI-linux (for the details refer to [11])
with a sample time of Ts = 0.001s, while a standard pc is
used to extract the position of the ball from the data coming
from the Kinect. The coordinates of this position, expressed
in the reference frame of the robot, are sent via ethernet to the
robot controller, with a rate of approximatively 10 points per
second. Therefore T is equal to 0.1 s. Because of the heavy
elaborations of the Kinect data and of the transmission via
ethernet it is not possible to guarantee that a new position is
always available in T seconds. In this case the old value is
maintained, but it is worth noticing the the trajectory planner
is implemented in hard real-time.
In order to compare the effects of the trajectory planner
for different configurations, the same set of data, collected
from the Kinect, has been used for different experiments,
but the points have treated as if the task was performed
online. In Fig. 7 a segment of trajectory is reported. In
the first plot the points are directly provided to the robot
controller without any filter. When a new input is given,
the control of the robot tries to reach the point as fast as
possible and the consequence is a continuous start-and-stop
motion with very high errors and large vibrations. If the
chain of three FIR filter is inserted between Kinect and robot

controller, the behavior of the robot becomes considerably
smoother. This is due to the fact that, the chain of filter,
without H3

λ,FIR(z), is a special type of smoothing B-spline
(with H3

λ,FIR(z) = 1) that does not cross the desired via-
points but it is continuous in velocity and accelerations. As
shown in Fig. 7, the use of H3

λ,FIR(z), with λ = 0 allows
to cross the points without appreciable errors. The use of
H3

λ,FIR(z) with higher values of λ contributes to make the
trajectory smoother and smoother. For λ = 100 the precision
of the trajectory in points interpolation is rather low but the
the tracking error decreases as well.

VI. CONCLUSIONS
In this paper, a novel technique based on B-splines that

allows to online generating trajectories in the 3-D space has
been presented. The planner is completely composed by FIR
filters: a first FIR filter computes the control points from the
sequence of desired via-points, while a chain of three moving
average filters is used to evaluate the cubic B-spline defined
by these points. The generator combines the characteristics
of FIR filters (simple structure and computational efficiency)
with those of B-spline trajectories (smoothness and minimum
curvature). In particular, since the so-called smoothing B-
splines have been considered, the filter allows to find a
tradeoff between the possibility of exactly crossing the given
via-points and the smoothness of the resulting trajectory.
A simple teleoperation task with a Puma 560 industrial
manipulator has been used for experimentally validating the
proposed method.

REFERENCES
[1] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic

Machines and Robots, 1st ed. Heidelberg, Germany: Springer, 2008.
[2] C.-S. Lin, P.-R. Chang, and J. Luh, “Formulation and optimization

of cubic polynomial joint trajectories for industrial robots,” IEEE
Transaction on Automatic Control, vol. 28, no. 12, pp. 1066–1074,
1983.

[3] B. Cao, G. Dodds, and G. Irwin, “Constrained time-efficient and
smooth cubic spline trajectory generation for industrial robots,” Pro-
ceedings of IEE Conference on Control Theory and Applications, vol.
144, pp. 467–475, 1997.

[4] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning
of robot manipulator,” IEEE Transaction on Industrial Electronics,
vol. 47, no. 1, pp. 140–149, 2000.

[5] L. Biagiotti and C. Melchiorri, “Input shaping via b-spline filters
for 3-d trajectory planning,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), San Francisco, California,
September 25-30 2011.

[6] ——, “B-spline based filters for multi-point trajectories planning,” in
2010 IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, May 3-8 2010.

[7] T. Lim and M. Macleod, “On-line interpolation using spline functions,”
Signal Processing Letters, IEEE, vol. 3, no. 5, pp. 144–146, May.

[8] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal
processing (2nd ed.). Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1999.

[9] G. Feng, “Data smoothing by cubic spline filters,” Signal Processing,
IEEE Transactions on, vol. 46, no. 10, pp. 2790–2796, Oct.

[10] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing:
Part II-efficient design and applications,” IEEE Transaction on Signal
Processing, vol. 41(2), pp. 834–848, 1993.

[11] G. Palli, L. Biagiotti, and C. Melchiorri, “An open source distributed
platform for the control of the puma 560 manipulator,” in Proc. 9th
Real Time Linux Workshop, Linz (AUT), 2007, pp. 205–210.

5673

