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Abstract— The human understanding of things is based on
prediction which is made through concepts formed by the cat-
egorization of experience. To mimic this mechanism in robots,
multimodal categorization, which enables the robot to form
concepts, has been studied. On the other hand, segmentation
and categorization of human motions have also been studied to
recognize and predict future motions. This paper addresses the
issue on how these different kinds of concepts are integrated to
generate higher level concepts and, more importantly, on how
the higher level concepts affect the formation of each lower level
concept. To this end, we propose the multi-layered multimodal
latent Dirichlet allocation (mMLDA), which is an expansion of
the MLDA to learn and represent the hierarchical structure
of concepts. We also examine a simple integration model and
compare it with the mMLDA. The experimental results reveal
that the mMLDA leads to a better inference performance and,
indeed, forms higher level concepts which integrate motions
and objects that are necessary for real-world understanding.

I. INTRODUCTION

In recent years, intelligent robots have been studied and

developed extensively. One of the key technologies for such

robots is the categorization of perceptual information. This is

because the categorization generates concepts, which enable

robots to infer unobservable information. It is obvious that

such an inference mechanism helps the robots to operate

flexibly in unknown environments. We strongly believe that

this is the basis of “true” understanding. Many categorization

methods concerning various perceptual information have

been studied in the literature [1]–[4]. We have proposed a

framework of object concept formation based on multimodal

categorization by robots using a statistical model called

multimodal LDA (MLDA). The MLDA has been proven

to enable robots to categorize objects in the same way as

humans do [5], [6].

Meanwhile, the segmentation and categorization of human

motions have been studied by researchers in the past. For ex-

ample, [7] segmented and hierarchically categorized human

motions to generate the motion symbol tree. The authors

have proposed to predict a human motion in the future using

the motion symbols. In [9], the double articulation analyzer

of human motions has been proposed to do segmentation

and categorization of human motions. These works are

significant enough to pursue since they provide a key to

connect human motions and symbols (language). However,

one thing we have to point out regarding these works is

the lack in considering the object categories. Since many
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human motions are deeply related to objects, it is inevitable

to learn higher concepts relating object and motion concepts

for intelligent robots.

In this paper, we focus on how to form a higher level

concept which will represent the relationship between the

object concepts and the motion concepts. Fig. 1 conceptual-

izes the purpose of this paper. In this figure, there are two

kinds of lower level concepts: “juice” (object concept) and

“take something to mouth” (motion concept). The integration

of these concepts provides a higher level concept “drink”

(action concept). The important aspect of this model is that

inference in various level is possible. In the above example,

the robot can recollect “take something to mouth” motion

given visual information and/or the sound that the plastic

bottle made. Inferring “juice” from the “take something to

mouth” motion is also possible, which can be considered

as “gesture understanding”. It is also worth noting that

higher level concepts affect the lower level categorization.

For instance, bottle-shaped objects with totally different

textures may belong to different object categories; however,

if these objects are used with the similar motion “take

something to mouth”, then the integrated higher concept

“drink” affects the lower level object categorization, which

leads to a single object category of “juice” (object concept).

Another possibility is that the objects with a small difference

can be categorized into different classes if these objects are

connected to different motions.

To this end, we propose multi-layered multimodal LDA

(mMLDA). The mMLDA consists of the bottom-layers as

the object and motion concepts, and the top-layer as the

integrated action concepts. The robot observes human actions

and objects used in the actions. Then, object concepts are

formed by the MLDA using multimodal, i.e. visual, auditory,

and haptic, information that the robot obtained regarding the

objects. The motion concepts are also formed by the MLDA

based on the human joint angles obtained using the Kinect

loaded on the robot. At the same time, the top-layer tries

to capture the relationship between lower level concepts.
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It should be noted that the categorization processes of all

layers are mutually interdependent. Comparison of the pro-

posed mMLDA with a simple approximation model, which

has feed-forward connections between MLDAs, reveals the

validity of the proposed model.

Recently, there are a great deal of studies on categorization

based on various sensor information [1]-[4]. In addition,

considerable research on the modeling of human motions has

also been conducted [7]-[9]. Although this paper focuses on

the categorization of perceptual information, the difference

lies in the fact that the proposed model aims at simultane-

ously categorizing different kinds of concepts and learning

their relationships. Therefore, the proposed model enables

robots to infer among concepts, e.g. the most likely motion

from a visual input, probabilistically.

In [10], a system for mapping between different sensor

modalities using Recurrent Neural Network with Parametric

Bias (RNNPB) has been proposed. This system enables

robots to generate motions expressing auditory signals and

sounds that is generated by the object movements. The aim

of the paper is to make the system learn direct mapping

between the signals from different kinds of sensors. There-

fore, categories (concepts) and their interdependence are not

considered explicitly. Moreover, the RNNPB may have a

problem in the scalability. In [10], only 5 objects were used

in the experiment.

Regarding the sensory-motor mapping, affordance learning

[11], [12] has been studied in the area of robotics recently.

They use Bayesian networks to model the relationship among

the objects, actions, and effects. Unfortunately, the model is

too simple to represent a complex concept structure, which

will be discussed in this paper. Furthermore, the actions are

fixed in advance, which means the robots cannot learn novel

concepts, but learn only the relationship among the given

concepts.

In the area of computer vision, the idea of human-object

interaction (HOI) has been proposed in [13]. They showed

that the model using the idea of HOI significantly improves

the performance of both object detection and human pose

estimation. Although [13] focused on the relationship be-

tween objects and human motions, the goal of the paper was

to improve the recognition performance. Thus the method

in [13] is based on a supervised learning, while we are

interested in unsupervised learning.

II. MULTIMODAL LDA

To understand the proposed method better, the categoriza-

tion and inference based on the MLDA will be explained in

this section. Latent Dirichlet Allocation (LDA) is a genera-

tive probabilistic model for collections of discrete data. The

MLDA is an extended version of the LDA that can handle

multimodal input signals as shown in Fig. 2. In the figure,
{

x1, x2, · · ·
}

denotes a set of multimodal observations.

Each observation is assumed to be drawn from multinomial

distribution parameterized by β∗, which is chosen by the

Dirichlet distribution for parameter φ∗. z is a latent variable

corresponding to category, that is drawn from multinomial

distribution parameterized by θ. α is the hyperparameter to

characterize the Dirichlet prior distribution for θ.

Fig. 2. Graphical model of MLDA.

Gibbs sampling is used to infer parameters of the MLDA.

In Gibbs sampling, the category znij , which is assigned to

the i-th data of modality n ∈ {1, 2, · · · } in the j-th object,

is sampled from the following conditional probability:

p(znij = k|z−nij ,xn, α, πn) ∝

(N−nij
kj + α)

N−nij
nxnk + πn

N−nij
nk + Wnπn

, (1)

where Wn denotes the dimensionality of modality n. Nnxnkj

represents the frequency count of assigning xn to the cate-

gory k for the modality n of the j-th object. Here, Nnxnk,

Nkj , and Nnk can be calculated as follows:

Nnxnk =
∑

j

Nnxnkj , (2)

Nkj =
∑

n,xn

Nnxnkj , (3)

Nnk =
∑

xn,j

Nnxnkj . (4)

Nnxnk, Nkj , and Nnk respectively represent the number of

assigning xn to the category k for all objects of the modality

n, the number of times of assigning all modalities of the j-

th object to the category k, and the frequency of assigning

modality n of all objects to the category k. The superscript

with the minus sign in Eq. (1) donates exception, e.g., z
−nij

represents the assigned categories except for znij .

The category assigned to the i-th data of the modality n of

the j-th object is sampled according to Eq. (1). This process

is repeated until N∗ converges to N̂∗. After the convergence,

the final estimation of parameters β̂n
xnk and θ̂kj can be

written as follows:

β̂n
xnk =

N̂nxnk + φn

N̂nk + Wnφn
, (5)

θ̂kj =
N̂kj + α

N̂j + Kα
, (6)

where K represents the number of categories.

III. MODEL OF INTEGRATED CONCEPTS

In this paper, the object and motion concepts, each of

which is represented by the MLDA, are integrated to generate

higher level concepts. Fig. 3 shows an extension of MLDA

to multi-layered MLDA (mMLDA) that can form integrated

concepts by capturing the relationship between lower level

concepts. In the top-layer (left side of Fig. 3), z represents

the integrated category (concept), and the top-layer can be

seen as a generative model that generates zO (object concept)

and zM (motion concept) according to the integrated concept
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Fig. 4. Approximated model of integrated concept.

z. In the bottom-layer (right side of Fig. 3), visual wv ,

auditory wa, and haptic wh signals are generated from

zO, and the motion information wp is generated from zM .

Here, z, zO and zM are latent variables, which cannot

be observed directly. Therefore, the inference algorithm for

latent variables from observations w∗ is required.

On the other hand, the easiest way to integrate multiple

concepts is to connect multiple MLDAs using simple feed-

forward connections as shown in Fig. 4. We call this the

approximated model, in which the categorization process is

carried out independently.

A. Object concept

The robot forms the object concept based on the cate-

gorization of observed multimodal information. The object

concepts are represented by the MLDA as illustrated in Fig.

2. In the figure, x1, x2, and x3 correspond to visual, auditory,

and haptic information, respectively. Fig. 5 (a) shows the

robot platform DiGORO [14] used in this study. The details

of each multimodal information are explained below.

Visual information The robot uses the CCD and TOF

cameras to obtain visual information. The robot grasps the

target object and places it on the observation table (Fig. 5

(b)) that is held in the other hand as shown in Fig. 5 (c). The

observation table equipped with an XBee wireless controller

enables the robot to rotate the table freely to capture images

of the object from various viewpoints. The target object

Directional

Microphone

TOF Camera

CCD Camera x 2

Kinect

    HIRO

- 6-DOF Arm x 2

- 1-DOF Waist

Onboard PC x 5

Omniwheel

Laser Range Finder

(a)

(b)

(d) (e)

Fig. 5. Robot and acquisition of multimodal information: (a) robot platform
used in this study, (b) hand-held observation table, (c) acquisition of visual
information, (d) acquisition of haptic information, and (e) acquisition of
auditory information.

is segmented out in each image frame, and then 128-

dimensional DSIFT [15] descriptors are computed. Thirty-

six images are captured for each object. Each feature vector

is vector quantized using a codebook with 500 clusters. The

codebook is generated by a k-means algorithm in advance.

Finally, a 500-dimensional histogram is built as the bag-of-

features (BoF) representation.

Haptic information Haptic information is obtained from

the three-finger robotic hand with tactile array sensors as

shown in Fig. 5 (d). A total of 162 time series of sensor

values are obtained by grasping an object. Again, the BoF

model is applied to the data, so that any variation resulting

from the changes in the grasping point can be absorbed. The

feature vectors are vector quantized using a codebook with

15 clusters and a histogram is constructed.

Auditory information The sound is recorded while the

robot is grasping and shaking an object as shown in Fig.

5 (e). The sound data are then divided into frames and

transformed into 13-dimensional MFCCs as feature vectors.

Finally, the feature vectors are vector quantized using a code-

book with 50 clusters, and then, a histogram is constructed.

B. Motion concept

The motion concepts are formed by observing human

motions which correspond to x1 in Fig. 2 similar to the

above-mentioned object concept formation. The robot cap-

tures joint angles of the person in motion using the Kinect

placed on its head. There are 11 joints to track and the

robot captures them continuously from beginning to end of

the motion. We assume that the motion can be segmented

according to the object used. Then, a sequence of 11-

dimensional vectors is captured for each motion. In order

to input this motion information to the MLDA, the BoF

representation is preferable. Thus, the feature vectors are

vector quantized using a codebook with 70 clusters, and

then, a 70-dimensional histogram is constructed. The BoF

representation of the motion has been proposed in [16], and

it is shown to be useful in the motion recognition task.
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C. Integrated concept

The integrated concepts can be formed by learning the

relationship between the object and motion concepts using

the mMLDA as shown in Fig. 3.

1) Multi-layered MLDA: In the proposed model (Fig. 3),

z, zO, and zM , each of which represents concept, are latent

variables and learned from the observable data wv , wa, wh,

and wp. This can be done by estimating parameters which

are sampled from posterior probability. wv , wa, wh, and wp

are assumed to be drawn from each multinomial distribution

parameterized by βv , βa, βh, and βp, respectively. φv , φa,

φh, and φp denote parameters of Dirichlet distributions for

β∗. z, zO, and zM are assumed to be drawn from each

multinomial distribution parameterized by θ, θM , and θO,

respectively. α, αM , and αO denote parameters of Dirichlet

distributions for θ∗. These parameters are estimated using

Gibbs sampling as follows:

P (z, zM , zO, wv, wa, wh, wp|

z,zO,zM ,wv,wa,wh,wp)

= P (z)P (zM |z)P (zO|z)P (wp|zM )P (wa|zO)

P (wv|zO)P (wh|zO), (7)

P (z|z) =
α + Njz

Kα + Nj

, (8)

P (z∗|z, z,z∗) =
α∗ + Nzz∗

L∗α∗ + Nz

, (9)

P (wm|z∗,z∗,wm) =
φm + Nz∗wm

Wmφm + Nz∗

, (10)

where, Njz represents the number of times assigning all

modalities of object j to the higher category z. Nz∗wm

represents the frequency of assigning wm to the lower

category z∗ for all observed information of the modality m.

The categories of the top-layer z and the bottom-layer zO,

zM , which are assigned to the i-th data of the modality m
of the j-th object are sampled according to Eqs. (8)–(10).

The learning process is started from the concept formation

in the bottom-layer z∗, which is illustrated in the right side

of Fig. 3. At this time, each concept is formed by sampling

the value of z∗ ∈ {zO, zM} using the equation below:

z∗jmi ∼ P (z∗jmi|w
m
ji ,w

m
−ij ,z

∗

−jmi,z−jmi)

∝
∑

z

P (z|z−jmi)P (z∗jmi|z−jmi,z
∗

−jmi, z)

P (wm
ji |w

m
−ji,z

∗

−jmi, z
∗

jmi). (11)

After the bottom-layer concepts zO and zM were formed,

a whole layer of mMLDA is learned in order to form the

integrated concept z. Using Gibbs sampling, the value of z
can be sampled as

zjmi ∼ P (zjmi|w
m
ji ,w

m
−ij ,z

∗

−jmi,z−jmi)

∝
∑

z∗

P (zjmi|z−jmi)P (z∗|z−jmi,z
∗

−jmi, zjmi)

P (wm
ji |w

m
−ji,z

∗

−jmi, z
∗). (12)

Algorithms 1 and 2 denote the learning processes in the

bottom-layer and a whole layer, respectively. K and L∗

represent respectively the number of categories of the top-

Algorithm 1 Multi-layered MLDA (bottom-layer)

1: for all i, j,m do

2: u ← draw from Uniform [0,1]

3: for l ← 1 to L∗ do

4: P [l] ← P [l − 1]+
P (z∗jmi = l|wm

ji ,w
m
−ji,z

∗

−jmi,z−jmi)
5: end for

6: for l ← 1 to L∗ do

7: if u < P [l]/P [L∗] then

8: z∗ij = l, break

9: end if

10: end for

11: end for

Algorithm 2 Multi-layered MLDA (whole layer)

1: for all i, j, ∗,m do

2: for k ← 1 to K do

3: P [k] ← P [k − 1]+
P (zjmi = k|wm

ji ,w
m
−ji,z

∗

−jmi,z−jmi)
4: end for

5: u ← draw from Uniform [0,1]

6: for k ← 1 to K do

7: if u < P [k]/P [K] then

8: zij = k, break

9: end if

10: end for

11: for l ← 1 to L∗ do

12: P [l] ← P [l − 1]+
P (z∗jmi = l|wm

ji ,w
m
−ji,z

∗

−jmi,z−jmi)
13: end for

14: u ← draw from Uniform [0,1]

15: for l ← 1 to L∗ do

16: if u < P [l]/P [L∗] then

17: z∗ij = l, break

18: end if

19: end for

20: end for

and the bottom-layer. It should be noted that the Algorithm

1 is necessary for obtaining good initial values for the

Algorithm 2. We found that the Algorithm 2 does not provide

a good solution if we start from random initial values.

The learning process is repeated until N∗ converges to a

certain value. After the convergence, the final estimation of

parameters β̂m
wmz∗ , θ̂∗zz∗ , and θ̂jz can be written as follows:

β̂m
wmz∗ =

Nz∗wmm + φm

Nz∗m + Wmφm
, (13)

θ̂∗zz∗ =
Nzz∗m + α∗

Nzm + L∗α∗
, (14)

θ̂jz =
Njz + α

Nj + Kα
, (15)

where Wm represents the dimensionality of modality m,

and Nz∗wmm represents the frequency of assigning wm to

the lower category z∗ for all observed information of the

modality m.
Using the learned model, the robot can infer unobservable

information. For example, the most probable motion ẑM
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can be recollected using only the visual information of the

object w
v , and vice versa. Of course, another perceptual

information, such as w
a and w

h, can be incorporated for

inference. Such an inference can be made by the following

equation:

ẑM = argmax
zM

∑

z

∑

zO

P (z)P (zM , zO|z)

×P (wv,wa,wt|zO). (16)

In the same way, the most probable object ẑO can be inferred

for a given motion w
p:

ẑO = argmax
zO

∑

z

∑

zM

P (z)P (zO, zM |z)P (wp|zM ).

(17)

2) Approximated model: As we mentioned earlier, the

easiest way to integrate multiple concepts is to connect

independent MLDAs in a feed-forward way. In Fig. 4,

the integrated concept is represented by z that is to be

learned from the object concept zO and motion concept

zM in order. Since we will compare the mMLDA with the

approximated model in the evaluation, the mechanism behind

the approximated model will be discussed briefly.

Here, zO and zM are drawn from multinomial distribu-

tions P
(

zO | w
v,wa,wh

)

and P
(

zM | w
p
)

respectively in

the bottom-layer. As we have already explained, the object

concept zO and motion concept zM are generated using

independent MLDAs. In the top-layer of the approximated

model shown in the left side of Fig. 4, zO and zM are

assumed to be x1 and x2 in Fig. 2, respectively. Thus, the

relationship between two kinds of concepts is learned by the

model, in which the latent variable z represents integrated

concepts (actions) of the objects and motions.

Using the learned model, unobservable information can be

inferred. For example, the most likely motion for given ob-

servations regarding the unseen object w
m
obs can be inferred

as:

Step 1 : Infer the category of the object using

ẑO ∼ P
(

zO | w
v
obs,w

a
obs,w

h
obs

)

. (18)

Step 2 : Infer the most likely category of motion ẑM by

calculating P (ẑM |ẑO) using the following equation;

P (ẑM |ẑO) =

∫

∑

z

P (ẑM |z)P (z|θ)P (θ|ẑO)dθ, (19)

where z represents the category of integrated concept. Ob-

jects that are related to an observed unseen motion can also

be inferred in the same manner.

As we will see in the experiments, qualitative difference

between the mMLDA and the approximated model is clear.

Although the approximated model has some good points,

such as simple and easy to implement, there is an obvious

drawback. In the model, the error that is occurred in the

bottom-layer is propagated, which may degrade the per-

formance of the model considerably. This is because the

learning of each MLDA carries out independently and there

is no chance to make the categorization better considering the

different kinds of concepts. In contrast, the mMLDA tries to

(Dressing)

Fig. 6. The fifty objects used in the experiments; the red rectangles show
the objects used in the recognition test.

TABLE I

MOTION PERFORMED ON THE OBJECTS (NUMBER IN THE PARENTHESIS

REPRESENTS CATEGORY INDEX)

Motion Object Motion Object

Put on (1) Dressing (3) Place (7) Noodle (4)
Shake (2) Spray can (1) Chips (7)

Plastic bottle (2) Cookies (8)
Dressing (3) Throw (8) Plushie (9)
Rattle (10) Open (9) Spray can (1)

Drink (3) Plastic bottle (2) Open (10) Plastic bottle (2)
Eat (4) Noodle (4) Open (11) Flooring cleaner (6)

Chips (7) Pour (12) Shampoo (5)
Cookies (8) Hug (13) Plushie (9)

Wipe (5) Flooring cleaner (6) Pet (14) Plushie (9)
Paint (6) Spray can (1)

capture the structure of all perceptual information as a whole,

which makes the model more powerful to do categorization

and inference.

IV. EXPERIMENTS

The experiments were carried out to evaluate the proposed

model. Fig. 6 shows the 50 objects used in the experiments.

The objects were manually classified into 10 categories,

which provide the ground truth. The 40 objects without

red rectangles in Fig. 6 were used for the categorization

experiments, while the other 10 objects with red rectangles

were used as the test set (unseen objects) in the inference

experiment. The object concepts are formed based on the

multimodal information that the robot obtained by observing

each object. As for the human motions, the robot captured

human motions in the use of objects using the Kinect. Table

I shows the ground truth of the correspondence between
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Fig. 7. Examples of the acquired motion information for each motion: (from top to bottom) actual images, acquired images from Kinect, and 70 dimensions
of motion histogram (number in the paranthesis represents category index).

objects and human motions. Fig. 7 shows the examples

of the captured images and the motion data. We set 14

motion categories as the ground truth, since the motions were

classified into 14 categories by hand.

How to decide the number of categories is an important

problem for the LDA. The mMLDA suffers from the same

problem as it is based on the LDA. Here, we decided to

use the number of categories defined by the ground truth.

There have been many efforts on this issue, and we think it

is possible to apply one of these methods, e.g. nonparametric

Bayesian method. Worse still, the mMLDA requires the

number of categories for the top-layer, which does not have

the ground truth. We conducted the experiments several

times with different number of higher level categories and

decided to use 9, since it gave relatively good results in

our experiment. One thing we have to mention is that the

performance was not so sensitive to that number in our

experiment. Although we could not find any theoretical

reason to use that number, this problem can be solved by

using the nonparametric Bayesian method that finds the

number of categories from the input data automatically.

A. Object concept formation

The results of object concept formation are shown in

Fig. 8 as the confusion matrices: (a) the ground truth,

(b) the mMLDA, and (c) the approximated model. The

vertical axis represents the index of each object category,

and the horizontal axis represents resultant categories. The

categorization accuracy of the mMLDA is 87.5%, while the

approximated model provides 85.0%.

From the result of the approximated model (Fig. 8 (c)), one

Object index
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Fig. 8. Object categorization result: (a) the ground Truth, (b) the mMLDA,
and (c) the approximated model.
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Fig. 9. Motion categorization result: (a) the ground Truth, (b) the mMLDA,
and (c) the approximated model.

can see that “Cookies (8)” are divided into 3 categories, since

they do not share a common visual information (texture).

This kind of difference in perceptual data can easily divide

the category into two or more, even though the other features

are common in objects that belong to the same category. This

is caused by the independent categorization process in the

approximated model.

On the other hand, the mMLDA correctly categorized
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Fig. 10. Integrated concept: (a) ground truth (based on Table I), (b) the
mMLDA and (c) the aprroximated model.

“Cookies (8)” into a single category. This is because “Cook-

ies (8)” share the same motions “Eat (4)” and “Place (7)”.

In the proposed mMLDA, the motion concept formation also

affects the object concept formation. This mutual interdepen-

dence among concepts helps to form a single “Cookies (8)”

concept in this experiment, and the result clearly indicates

the importance of such mutual interdependence.

B. Motion concept formation

The motion categorization results are shown in Fig. 9: (a)

the ground truth, (b) the mMLDA, and (c) the approximated

model. The vertical axis represents the index of actual

category of the motion, and the horizontal axis represents

the index of the classification result. The accuracy is 72.5%

for the mMLDA, and it drops to 62.5% for the approximated

model.

The difference can be seen in the categorization result

of “Pour (12)” and “Hug (13)”. The approximated model

categorized “Pour (12)” and “Hug (13)” into a single cate-

gory, while the mMLDA, as shown in Fig. 9 (b), correctly

classified them into two different categories. In fact, the

histograms of “Pour (12)” and “Hug (13)” were somewhat

similar and confusing sometimes. Therefore, it is likely that

these two motions are put together in a single category by

the LDA.

In the mMLDA, the objects “Shampoo (5)” and “Plushie

(9)” affected the motion concept formation, resulting in the

correct categorization of “Pour (12)” and “Hug (13)”. Again,

one can see the advantage of the proposed mMLDA over the

approximated model.

C. Integrated concept

Here we examine the integrated concepts, which were

formed at the top-layer.

1) Joint probability of motion and object: The joint prob-

abilities P (zO, zM ) were calculated using the mMLDA and

the approximated model. Besides, by counting the number

of training samples, we can compute P (zO, zM ) as a ground

truth. Please note that the ground truth cannot be obtained in

practice unless the object and motion categories are perfectly

recognized using observations.

Fig. 10 (a) shows the ground truth, which was generated

according to Tab. I. Figs. 10 (b) and (c) represent results of

the mMLDA and the approximated model, respectively. The

vertical and horizontal axis in the figure indicate the indexes

of objects and motions, respectively. From these figures, one

can see that the result of the mMLDA is closer to the ground

truth. In fact, the KL-distances between the approximated

model and the ground truth, and between the mMLDA and

the ground truth are 50.25 and 46.50, respectively.

If we look at the details of the mMLDA’s result, it can be

seen that “Cookies (8)” occurred together with “Eat (4)” and

“Place (7)” more often, which is a similar tendency to the

ground truth. In the approximated model, “Cookies (8)” have

dispersed joint probabilities over all motions. The same thing

can be observed for “Shampoo (5)”, which is only related

to “Pour (12)” in the ground truth and the mMLDA, while

the probabilities are spread over “Eat (4)”, “Place (7)”, and

“Open (10)” in the approximated model.

2) Integrated concept formation: In the top-layer of the

proposed mMLDA, the integrated concepts, which encode

the relationships among the object and motion concepts, are

formed. Here we will see that the integrated (higher-level)

concepts were actually generated.

In the mMLDA, one of the integrated concepts consists

of the motion “Eat (4)” and three object categories “Noodle

(4)”, “Chips (7)”, and “Cookies (8)”. Obviously, this con-

cept represents “Eat something” behaviour. “Drink (3)” and

“Plastic bottle (2)” are classified into a single category, which

can be considered as “Drink” concept.

As for the approximated model, a category including

“Place (7)”, “Chips (7)”, and “Cookies (8)” was formed,

which can be considered as “Place something”. However,

due to the misclassification of “Hug (13)” and “Pour (12)”

in the bottom-layer of the approximated model, a category of

“Pour (12)”, “Hug (13)”, “Shampoo (5)”, and “Plushie (9)”

was formed in the top-layer. This example clearly indicates

a drawback of the simple feed-forward model; the errors

that occurred at the bottom-layer, unconditionally propagate

through the layers.

D. Inference of unseen Information

Next, we have performed experiments on the inference of

unseen information to evaluate the model. The experiments

were conducted using the test set objects in Fig. 6 (marked

with red rectangles). The inference of motion concept zM

was performed by observing multimodal information, w
v ,

w
a, and w

h, regarding the target object. The object concept

zO was also inferred by observing a human motion.

Firstly, the mMLDA inferred the motion concept zM from

the observed object information as accurate as 80.0%. Mean-

while, the approximated model yielded zM of 70.0%. Fig.

11 shows the inference results of motions from an unseen

object using the mMLDA (left) and the approximated model

(right). The graph represents the probability of each motion

which is inferred from the observations of the novel “Noodle

(4)” by the robot. The vertical and horizontal axis represent

the probability and the index of each motion, respectively.

As shown in Fig. 11 (a), the mMLDA, correctly inferred the

motion “Eat (4)” with the highest probability. On the other

hand, the approximated model inferred the motion “Wipe

(5)” with the highest probability. In the approximated model,

this kind of false inference is due to the categorization errors

at the bottom-layer. In the above example, a part of “Noodle

(4)” concepts and “Flooring cleaner (6)” concepts were

mixed together as one category. This category is responsible

for the confusion of the “Eat (4)” with “Wipe (5)” motions

when the robot saw the “Noodle (4)”.
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Fig. 11. The probability of each motion when “Noodle (4)” is observed as
the unseen information using (a) the mMLDA and (b) approximated model.
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Fig. 12. The probability of each object when “Drink (3)” is observed as
the unseen information using (a) the mMLDA and (b) approximated model.

The false inference occurred in the mMLDA when a

“Spray can (1)” was given then the “Throw (8)” motion

was inferred. It happened that the “Throw (8)” and “Shake

(2)” motions share similar features which result in a single

higher-level concept consisting of these two motion concepts.

Such a concept caused the false inference; indeed, the

probability of “Shake (2)” motion (correct motion) was the

second highest.

When the robot observed only human motions, the object

concept zO could be inferred using the mMLDA with an

accuracy of 70.0%. The accuracy of the approximated model

was 60.0%. Fig. 12 shows the probability of each object,

which was inferred from the motion “Drink (3)”. The vertical

and horizontal axis represent the probability and the index

of object category, respectively. This result shows one of the

successful cases of observing “Drink (3)” motion; the object

“Plastic bottle (2)” is correctly inferred, as it has the highest

probability as shown in Fig. 12 (a) using the mMLDA. The

approximated model inferred the “Plastic bottle (2)” with

high probability, yet not the highest. From Fig. 12 (b), one

can see that “Dressing (3)” has the highest probability. This

false inference is also caused by the categorization errors at

the bottom-layer.

An example of the false inference by the mMLDA is the

inference of “Flooring cleaner (5)” from “Place (7)” motion.

The reason for this false inference is the similarity between

“Place (7)” and “Wipe (5)” motions. These two motions form

a single higher-level concept that gave a negative effect on

the inference.

V. CONCLUSION

In this paper, we proposed the multi-layered MLDA,

which bundles lower-level concepts in the bottom-layers into

higher-level concepts at the top-layer. More precisely, the

object and motion concepts are integrated to generate the

action concepts. We evaluated the mMLDA through some

experiments that validated the proposed model. The mMLDA

was also compared with a simple approximated model and

it was revealed that the mutual interdependence is the

key feature in the formation process of the multi-layered

concept.

Clearly, the mMLDA can be generalized to as many layers

as we want, starting with the integration of a large number

of different concepts at the bottom-layer. We are currently

working on this direction to integrate a great variety of dif-

ferent concepts using the mMLDA. Furthermore, the issue of

determining the number of categories autonomously should

be solved. This can be achieved using the nonparametric

Bayesian method, such as hierarchical Dirichlet process

(HDP), instead of the LDA.
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