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Abstract— The ability of biological locomotors to rapidly
and stably traverse unstructured environments has inspired
the development of numerous legged robotic platforms. While
strides have been made in negotiating terrains cluttered with
obstacles, dealing with surface property variations has received
less consideration. This work presents a leg stiffness control
strategy that estimates the surface compliance and adjusts the
leg stiffness in order to maintain a nominal locomotion behavior
while allowing for stable transitions between surfaces of up to
three orders of magnitude differences in ground compliance.
Implementation of this technique with high-bandwidth variable
stiffness actuators that are currently being developed will
expand the range of legged robotic platforms to environments
with sudden and significant changes in terrain characteristics.

I. INTRODUCTION

Animals have demonstrated the ability to run quickly,
nimbly, and stably across environments with numerous ob-
stacles and rapidly changing surface properties. In an effort
to improve our understanding of the principles contributing
to high-speed, biological locomotion, reduced-order models,
such as the spring loaded inverted pendulum (SLIP) model,
were developed [1]. Though the governing equations of
motion for this model are quite simple, the resulting center
of mass trajectory and ground reaction force profiles closely
match those of a wide variety of animals [2]. Analysis of
this model and its dynamics has yielded insights into the
role of passive system properties, such as leg stiffness and
body mass, in achieving stable and efficient locomotion. This
has led to its use as a template for the design and control of
several legged robotic platforms [3]–[5].

While robotic instantiations have demonstrated the utility
of the SLIP model in the design of legged locomotors, the
performance of these platforms is limited when compared
to their biological counterparts. While animals have been
shown to traverse obstacles and transition between terrains
with minimal impact on their locomotion dynamics [6],
[7], few legged platforms have demonstrated the capacity
to cross environments with any sort of unanticipated obsta-
cles [8]. Furthermore, changes in ground properties, such
as compliance and traction, have been shown to adversely
affect the performance of dynamic legged robots, resulting
in significantly decreased efficiency and stability [9].

Observations of humans running have shown that when
faced with ground stiffness variations, we tend to alter our
effective leg stiffness. This is done to maintain a consistent
total-system compliance [10]. For example, a person running
on a soft surface stiffens his legs, while a person running on
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a hard surface will relax his legs to be more compliant. This
allows individuals to utilize similar locomotion dynamics
when traversing a variety of terrains that would naturally be
encountered. Recent investigations on the role of compliance
in robotic leg design have corroborated these results, indicat-
ing that tuning leg stiffness can improve running performance
on robotic systems, often to a greater extent than tuning
controller parameters [9], [11].

Insights as to the impact of leg stiffness on running per-
formance have motivated the development of several mech-
anisms for stiffness adaptation on running platforms, rang-
ing from mechanical solutions [12]–[15] to smart material
approaches [16]–[18]. While order-of-magnitude stiffness
variations have been demonstrated with these devices, only
recently have such mechanisms allowed for high-bandwidth
variations. Furthermore, usage of these devices is currently
restricted to off-line optimization of the desired leg stiffness
for specific conditions due to a lack of suitable real-time
control strategies [19]. This imposes significant limitations
on their use in natural environments, particularly when the
surface properties are unknown or varying.

In this work, we develop a control strategy which enables
legged systems to overcome abrupt and unanticipated transi-
tions between terrains of different compliances using adapta-
tion of the leg stiffness. This approach is based on adaptive
leg parameter estimation techniques. We demonstrate that
this strategy is able to rapidly and accurately estimate the
appropriate leg stiffness to preserve system dynamics fol-
lowing a surface compliance perturbation. Furthermore, we
show that by adapting the robot’s leg stiffness, a nominal
gait can be maintained without any variation of actuation
control for changes in ground stiffness of up to three orders
of magnitude.

The remainder of this paper is organized as follows. In
Section II, the SLIP model is reviewed. We discuss the
parameters of the model, the dynamic equations governing
its motion, and basic motion followed over the course of
a stride. Section III presents a control strategy for use on
a SLIP-like system. This is a two-fold approach, with an
energy modulation controller being used to rapidly stabilize
the gait while leg stiffness adaptation maintains the system
stiffness, preserving the nominal locomotion dynamics. Sec-
tion IV describes the simulation methodology and the studies
used to examine the stability of the controller, followed
by the results of these studies and a discussion thereof.
Section V summarizes insights drawn from the results and
suggests applications for this approach as well as avenues
for future inquiries.
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Fig. 1. Depiction of the SLIP model and a sample trajectory for a single
stride. The variables ζ and θ are the coordinates that characterize the radial
and angular position of the point-mass during the stance phase. The variables
x and y are the coordinates used to characterize the horizontal and vertical
position of the point-mass during the flight phase. The variables β T D

n and
β LO

n show method by which the touch-down and lift-off angles are measured.

II. THE SPRING LOADED INVERTED PENDULUM MODEL

The spring loaded inverted pendulum (SLIP) model has
been widely used to describe the sagittal plane dynamics of
legged running animals and robots. To capture the dynamics
of multi-legged animals, the model uses a virtual leg that
acts as the sum of all legs that would be in contact with the
ground at any given instant [2]. In its simplest formulation,
the SLIP model consists of a point-mass m that sits atop
a massless leg. The leg is typically modeled as an axially
elastic, transversely rigid linear spring with a stiffness of k
and a nominal length of l0.

Locomotion dynamics captured by the SLIP model are
restricted to the sagittal plane and are shown in Fig. 1. For
the purpose of this discussion, subscripts denote the stride
number, while superscripts denote touch-down (TD) and
lift-off (LO) events. Each stride begins with a touch-down
event, which starts the stance phase. At touch-down, the leg
is extended to its nominal length and contacts the ground
at an angle β T D

n , measured clockwise from the horizontal
inertial axis to the leg axis. At this instance, the point-mass
has a horizontal velocity of ẋT D

n and a vertical velocity of
ẏT D

n . Additionally, a foot-pivot is established and acts as
a moment-free pin joint about which the leg rotates while
in the stance phase. During the first half of stance, the
leg compresses under the momentum of the point-mass and
gravity. During the second half of stance, the leg extends,
returning the stored elastic potential and resulting in a lift-
off event, beginning the flight phase. The lift-off event occurs
when the ground reaction force in the leg returns to zero, at
which point the leg is at an angle β LO

n , measured counter-
clockwise from the horizontal inertial axis to the leg axis.
During the flight phase, the body is governed by simple
ballistic dynamics. The flight phase ends with the next touch-
down event, which occurs when the leg, extended to its
nominal length, contacts the ground at an angle β T D

n+1.
In the conservative formulation of the SLIP model, the

governing equations can be derived quite simply for both
stance and flight phases. As shown in Fig. 1, when the model
is in stance, a polar coordinate frame (ζ ,θ) with the origin at
the foot-pivot is used, while the Cartesian inertial frame (x,y)
is used to describe the point-mass motion during flight. The

variable ζ corresponds to the leg length, while the variable
θ denotes the angle between the leg axis and the vertical
inertial axis. For stance, equations of motion are derived from
the Lagrangian

L =
m
2

(
ζ̇

2 +ζ
2
θ̇

2
)
−mgζ cosθ − k

2
(ζ − l0)

2 , (1)

which, by using Lagrange’s equation, yields

ζ̈ = ζ θ̇
2 −gcosθ − k

m
(ζ − l0)

ζ θ̈ =−2θζ̇ +gsinθ . (2)

The flight dynamics, governed by simple ballistic motion,
can be simply written as

ẍ = 0
ÿ = g, (3)

where g is the gravitational acceleration acting on the system.

III. CONTROL APPROACH

The emphasis of the control approach presented in this pa-
per is to demonstrate the capacity of leg stiffness adaptation
to restore and maintain consistent running performance when
transitioning between terrains of radically different surface
characteristics. However, since the general formulation of
the SLIP model only demonstrates marginal stability and has
a relatively small basin of attraction, an energy modulation
controller is used in tandem with the leg stiffness controller
to provide a wider basin and to rapidly stabilize the system
once the system stiffness has settled.

A. Energy Modulation Control

The energy modulation controller utilized is the Active
Energy Removal (AER) controller, which has been verified
to improve stability of running both in simulation and on
a physical platform [20]. This controller was motivated by
studies of leg function in insects and guinea fowl, which
demonstrated that animals tend to use their muscles to
perform negative work (i.e. braking) during parts of the
stride [21] and that leg actuation is likely prescribed in a
feed-forward manner to improve stability when faced with
unanticipated obstacles [22]. These insights resulted in the
formulation of a feed-forward controller that varied the force-
free leg length over the course of a stride, given as

l (t) = l0 − ldev sin
πt
tdes

, (4)

where l is the force-free leg length, ldev is the maximal
variation from the nominal leg length l0, t is the time passed
since the touch-down event, and tdes is a timing control
parameter that specifies the stance time for the nominal gait.
In addition to improving the rate of convergence following
a perturbation, this controller also results in asymptotic
stability of the SLIP model since it is nonconservative.

A secondary element of this controller is a control law that
allows for variations in leg touch-down angle β T D

n+1, given by

β
T D
n+1 = β

LO
n + c

(
β

T D
n −β

T D
des

)
, (5)
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Fig. 2. Block diagram depicting the control strategy utilized to adapt the
leg stiffness during each stride. The variables in the figure are described in
Table I.

TABLE I
NOTATION FOR THE LEG STIFFNESS ADAPTATION STRATEGY

Variables
Xn System state
X̂n Estimated system state
en Error in estimated state
p̂est Estimated system parameters
p̂ctl Updated system parameters
p∗ Nominal system parameters

Parameters
KS

n Estimated system stiffness
KG

n Estimated ground stiffness
KL

n Updated leg stiffness
KS

nom Nominal system stiffness
γ Adaptive control gain

where β LO
n is the previous lift-off angle, β T D

n is the previous
touch-down angle, β T D

des is the desired touch-down angle, and
c is a nondimensional control parameter. This control law
increases the breadth of the basin of attraction since it helps
keep gaits that are rapidly converging from overshooting
the nominal trajectory by pitching too far at lift-off or
approaching touch-down too steeply [23].

B. Leg Stiffness Control

Since the AER controller is able to attract gaits from a
wide basin, the aim of the leg stiffness controller is solely
to maintain a nominal set point of the effective system
stiffness, which will allow the system dynamics and AER
controller to generate the desired gait. The approach utilized
to accomplish this task is similar to the strategy used by
Uyanik, et al. [24]. In that study, the authors used an
adjustment technique based on Kalman filtering to estimate
system properties, including stiffness, that may be time-
varying or poorly calibrated. We build off of this approach
to include both environment and system parameters. A block
diagram depicting the control approach utilized in this paper
is shown in Fig. 2. The variables and parameters necessary
for this approach are compiled and defined in Table I.

This strategy performs a once-per-step estimation of the
system and ground stiffnesses, KS

n and KG
n , respectively,

and updates the leg stiffness KL
n to maintain a nominal

system stiffness KS
nom. The system stiffness is defined as

the effective stiffness of the overall system resulting from
adding the leg and ground springs in series. Adaptation of the

stiffness parameters is based on the error in the estimated and
measured states at the touch-down event en. The measured
and estimated system states, Xn and X̂n, respectively, are com-
posed of the horizontal and vertical velocities at touch-down,
ẋT D

n and ẏT D
n , respectively, and the leg touch-down angle β T D

n
of the plant. The measured system state can be determined
from either the SLIP model with the actual environmental
parameters or from measurements of the physical plant. The
estimated state is computed via simulation of the SLIP model
using the estimated system parameters.

The goal of this control approach is to minimize the
difference between estimated and measured system states at
touch-down. This results in an accurate estimation of the
system and ground stiffnesses, which is in turn utilized to
set the leg spring to the stiffness. This stiffness value is
determined such that the system stiffness is maintained at
its nominal value. The parameter adjustment strategy used to
accomplish this task adjusts the estimate of system stiffness
based on the sensitivity of the estimated SLIP model to
system stiffness perturbations using

KS
n+1 = KS

n + γ

(
∂ X̂
∂KS

)−1 ∣∣∣∣
X̂n

en+1, (6)

where KS
n+1 and KS

n are the next and current system stiffness
estimates, γ the adaptive control gain, ∂ X̂

∂KS is a measure
of the states’ sensitivity to stiffness variation, and en+1 is
the states’ error from the nominal behavior. This approach
is akin to the update stage of Kalman filter estimatation.
Note that the partial derivative is computed numerically by
imparting infinitesimal perturbations to the system stiffness
and observing the resulting impact on the estimated SLIP
model.

From this estimate of system stiffness, the estimated
ground stiffness can be found via

KG
n+1 =

KL
n KS

n+1

KL
n −KS

n+1
. (7)

This estimate of ground stiffness and the nominal system
stiffness can be used to determine the desired leg stiffness
to be used during the next stride via

KL
n+1 =

KG
n+1KS

nom

KG
n+1 −KS

nom
. (8)

Both (7) and (8) can be simply derived by assuming a series
configuration of the leg and ground springs that result in the
effective spring that influences the dynamics of the system.

IV. PERFORMANCE EVALUATION

The performance of the adaptive leg stiffness controller
was examined via two methods. First, a stability analysis
was performed to quantify the local stability of the ground
stiffness estimation as a function of the adaptive control
gain γ and the ground stiffness KG. Second, the response
to significant variations in ground stiffness was examined
to determine the capacity of the controller to maintain
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TABLE II
PARAMETERS FOR THE SLIP MODEL AND PLANT.

Property Value Units
m 2.11 kg

KS
nom 1.90 kNm−1

l0 0.298 m
ldev 0.020 m
tdes 0.118 s
β T D

des 1.3 rad
c 0.35 −

vT D
nom 2.841 ms−1

δ T D
nom 1.011 rad

stable and convergent gaits when encountering sudden and
significant terrain transitions.

A SLIP simulation was developed in MATLAB, which
numerically integrated the equations of motion from (2) and
(3) using the Runge-Kutta integrator, ode45, with a tolerance
of 1×10−8. Since both leg and ground stiffnesses are consid-
ered within this simulation, k is replaced with KS

n to account
for both parameters. This simulation was used to determine
the trajectories of both the plant and estimated SLIP models.
Note that in a hardware instantiation of this control approach,
the plant would be measured as the physical system rather
than simulated. The physical parameters and energy modula-
tion control parameters were set to values listed in Table II, as
well as vT D

nom and δ T D
nom, the nominal velocity magnitude at and

heading angle, measured clockwise from the positive x-axis,
at touch-down, respectively. The physical parameters were
derived from dynamically scaling [25] a human runner to 1/3
its size by length, such that the parameters matched those of
a single legged hopping robot that has been used to verify
the accuracy of this simulation [20]. The energy modulation
control parameters chosen were identified in previous studies
to result in rapid stabilization to their nominal trajectory [26].

The results in Fig. 3 demonstrate the effectiveness of the
adaptive leg stiffness control strategy in restoring the system
dynamics following a change in ground stiffness. In this
example, the simulated model encounters a three order-of-
magnitude decrease in ground stiffness, equivalent to a 16%
decrease in the effective system stiffness, during the 10th
stride. When the leg stiffness adaptation algorithm is not
utilized (Fig. 3A), the system diverges from the nominal
trajectory, eventually resulting in system failure. However, by
using the adaptive leg stiffness controller (Fig. 3B), the sys-
tem returns to the nominal gait after several strides. Fig. 3C
portrays the leg stiffness of the model and the estimate of the
ground stiffness. This demonstrates the controller’s ability
to adapt the leg stiffness to preserve the nominal system
stiffness, as well as the accuracy and rapid convergence in
estimating the ground stiffness.

A. Local Stability Analysis

In the first parameter variation experiment, the local sta-
bility of the controller was determined by computing the
maximum eigenvalue λmax of the ground stiffness estimate,
which measures the local convergence rate of the system.

Fig. 3. Comparison of the system when utilizing leg stiffness adaptation to
the system without leg stiffness control. (A) and (B) show the difference in
the touch-down velocity from the nominal gait without and with the adaptive
leg stiffness controller implemented, respectively. Both systems encounter
a terrain transition at the 10th stride, decreasing the ground stiffness from
1×107 Nm−1 to 1×104 Nm−1. (C) shows the adaptation of the leg stiffness
and the estimation of the ground stiffness as well.

Fig. 4. Plot of the maximum eigenvalues for the convergence of the
ground stiffness estimate. The colored regions show stable convergence
of the ground stiffness estimate, while the white regions were unstable.
The shading represents the magnitude of the eigenvalue, with dark shades
showing more rapid convergence than light shades.

This analysis serves a dual purpose. First, it characterizes the
range of adaptive control gains and initial ground stiffnesses
for which the ground stiffness estimation converges to the
actual ground stiffness. Second, it quantifies the rate at which
the ground stiffness estimate converges, enabling the selec-
tion of an adaptive control gain that most rapidly converges
given knowledge of the expected ground stiffness perturba-
tions. To determine the maximum eigenvalue, the parameter
space for the adaptive control gain and initial ground stiffness
was discretized into 1668 parameter sets. The minimum
ground stiffness considered was 104 Nm−1 because below
this threshold, the required leg stiffness rapidly increased
and approached infinity. The maximum ground stiffness
considered was 107 Nm−1 since above this value, changes in
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Fig. 5. Number of strides required following a terrain stiffness change to return to the nominal gait. The colored region show the parameter sets that
returned to the nominal trajectory, while the white regions either fell or had not converged after 50 strides. The shading shows the number of strides
required to restore the nominal gait, with dark shades returning more rapidly than light shades. (A) shows the results of encountering a decrease in stiffness
of up to three orders of magnitude from an initial ground stiffness of 1×107 Nm−1. (B) shows the results of encountering an increase in stiffness of up
to three orders of magnitude from an initial ground stiffness of 1×104 Nm−1.

ground stiffness had an insignificant effect on the effective
system stiffness. Furthermore, the range of ground stiffnesses
considered spanned commonly encountered surfaces, ranging
from soft rubber to thick steel plates. For each parameter set,
the maximum eigenvalue was determined by finding the rate
of decay of the convergence envelope for the ground stiffness
estimates after receiving a ground stiffness perturbation of
0.1% of the ground stiffness.

The results of this parameter sweep are shown in Fig. 4.
As seen in the figure, for the majority of the parameter space,
the ground stiffness estimate is locally stable (λmax < 1). Fur-
thermore, two separate regions appear to exist that exhibit the
fastest convergence rates. Both of these regions demonstrate
similar eigenvalue magnitudes over a comparable range of
ground stiffnesses. These results indicate that the selection of
an adaptive control gain in either region will result in similar
convergence rates for a wide range of ground stiffnesses.
However, the expected range of ground stiffnesses needs
to also be considered, since on extremely rigid surfaces or
compliant surfaces, the rightmost region becomes unstable.

B. Response to step transitions

The second experiment examined the rate at which the
system returns to the nominal trajectory following a step
transition of the terrain stiffness. This investigation serves to
quantify the combined ability of the adaptive leg stiffness
controller and AER controller to restore the nominal gait.
Both transitions from rigid to compliant surfaces and com-
pliant to rigid surfaces were considered. As with the previous
experiment, the parameter space was discretized, this time for
the adaptive control gain and percentage change in ground
stiffness resulting in 1053 parameter sets. For each trial,
the simulation was run for 50 strides following the ground
stiffness perturbation and the number of strides before the
system returned to and remained within 1% of the nominal
trajectory was recorded. For trials in which the initial ground
height variation did not perturb the system beyond 1%, the

number of strides taken to converge was set to 0; for those
in which the system had still not converged after 50 strides,
the system was considered to be unstable.

The results of this experiment are shown in Fig. 5. As
with the maximum eigenvalue analysis, the system is able to
stably recover in the majority of parameter sets examined.
When encountering a decrease in ground stiffness (Fig. 5A),
the system is able to recover the nominal gait within 15
strides for 92% of the cases tested. While impressive, this
result is slightly misleading since a ground stiffness decrease
of 2 orders of magnitude results in just a 2% change in
the effective system stiffness. However, even when only
considering cases in which the ground stiffness is decreased
between two and three orders of magnitude (corresponding
to a 2% to 16% change in system stiffness), 76% of the
cases still recover the nominal gait within 15 strides. When
encountering an increase in ground stiffness (Fig. 5B), the
system does not recover quite as rapidly, with only 66% of
the cases returning to the nominal gait within 15 strides.
However, a careful selection of the adaptive control gain
(i.e choosing 0.07 < γ < 0.14), yields rapidly converging
gaits across the entire three order-of-magnitude range of
stiffness variations. It should be noted that without leg
stiffness adaptation (γ = 0), the system is only stable for
a single order-of-magnitude decrease in ground stiffness (it
is unstable for all increases in ground stiffness) and cannot
recover its nominal gait.

V. CONCLUSIONS

In this paper, we present a leg stiffness adaptation strategy
for use in stabilizing dynamic hopping when faced with
variations in terrain properties. The controller operates by es-
timating the ground stiffness and controlling the leg stiffness
to drive the system towards a nominal system stiffness. We
demonstrate the effectiveness of this approach in preserving
the locomotion dynamics and nominal hopping trajectory
even when encountering abrupt and severe changes in ground
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stiffness. Additionally, we show the capacity of the controller
to accurately and rapidly estimate the ground stiffness.

The controller is shown to provide stable and accurate
estimates of the ground stiffness across a wide range of
ground stiffnesses, from 1× 107 Nm−1 to 1× 104 Nm−1.
In addition to establishing the local convergence of stiffness
estimates and locomotion dynamics across this range of
surfaces, the ability to restore a nominal trajectory when
encountering ground stiffness variations of up to three orders
of magnitude is demonstrated.

Future investigations will consider several extensions of
this work. First, the utility of the controller on a physical
platform needs to be verified. As mentioned before, several
mechanisms already exist to modulate leg stiffness and would
be capable of implementing this controller in situ. Second, an
extension of the controller to estimate and adapt to damping
variations, in addition to stiffness, would greatly expand
the potential utility of the controller. This is vital to the
implementation in real-world situations since damping is
significant in many terrains, especially natural environments
that legged robots are geared towards navigating. In addi-
tion to determining the terrain properties and maintaining
locomotion dynamics, the controller could be extended to
determine ‘safe’ terrains, where ‘safe’ terrains are those that
the platform is capable of adapting to. This would warn the
platform that it would be unable to maintain the nominal
system stiffness and the terrain should be avoided or a
different gait needs to be utilized.

The success of the controller in estimating ground stiffness
provides another potential role for the controller in classify-
ing terrains. This could be used to improve the convergence
to the nominal gait through the use of learning algorithms.
Additionally, characterization could alert the system of haz-
ardous terrain, such as low friction on ice, and alter the
nominal gait to allow for safe traversal of such environments.
Developments in these areas will results in the improved
ability of legged robots to navigate unstructured terrains and
begin to close the gap in locomotion performance between
these robots and the animals that have inspired them.
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