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Abstract— In this work we address the inverse kinetics
problem of a non-constant curvature manipulator driven by
three cables. An exact geometrical model of this manipulator
has been employed. The differential equations of the mechanical
model are non-linear, therefore the analytical solutions are
difficult to calculate. Since the exact solutions of the mechanical
model are not available, the elements of the Jacobian matrix
can not be calculated. To overcome intrinsic problems of the
methods based on the Jacobian matrix, we propose for the
first time a neural network learning the inverse kinetics of
the soft manipulator moving in three-dimensional space. After
the training, a feed-forward neural network (FNN) is able to
represent the relation between the manipulator tip position and
the forces applied to the cables. The results show that a desired
tip position can be achieved with a degree of accuracy of 1.36%
relative average error with respect to the total arm length.

I. INTRODUCTION

A soft robot [1] [2] is a continuum robot [3] with intrinsic
compliant capabilities, which depend on its soft structure [4].
The soft structure can be made of soft materials (e.g. rubber,
silicone) and/or actuators. The actuators can form part of the
structure, such as EAPs (Electro Active Polymer), pneumatic
actuators, SMAs (Shape Memory Alloys), and cables, which
are pulled externally by motors.

For soft manipulators, the solution of the inverse kine-
matics problem of soft manipulators is essential to generate
paths in the task space in order to perform grasping or other
tasks. The solution of the inverse kinematics is a hard task,
because modelling of soft manipulators is carried out with
continuum mechanics approach. In particular, non-constant
curvature manipulators requires a continuum parametrization
of backbone. Therefore, the direct and the inverse kinematics
of this kind of manipulators can be solved by using integral
resolutions, which are time consuming. On the other hand,
the increasing attention towards conical shape manipulators
[5]–[7] is justified by their intrinsic grasping capabilities. The
conical shape manipulator is characterised by the curvature
that increases along the arm, thus providing a spiral-like
configuration, which allows for grasping of objects with a
wider range of size.

A direct kinematics model [8] maps the joint space into
the task space. In continuum robotics the joint space can be
described as a set of actuation variables, e.g. the pressures
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imposed to pneumatic actuators, the forces applied to cables,
etc. Therefore, a more general definition of the joint space
can be the actuation space. The task space can be expressed
by a set of mechanical deformations (curvature, torsion, shear
and longitudinal strains) that describes the arm configuration.
The inverse kinematics problem requires the determination of
the actuation-variable values in order to move the continuum
manipulator to a given shape configuration. In general, it is
not easy to define the admissible shape configurations of
a specific manipulator, thus it is useful to express the task
space in terms of position and orientation of the tip, when
a map exists between position/orientation of the tip and the
shape configuration.

The inverse kinematics algorithms for continuum manipu-
lators can follow either an analytical or a numerical approach.
A modal approach was proposed by Chirikjian et al. [9], who
solved the inverse problem of hyper-redundant robot in a
closed analytical form by using a particular set of curvature
functions. Alternatively, when it is impossible to describe
a backbone curvature by this particular set, he proposed
to use a numerical method. For continuum manipulator,
just like for rigid robots, we can differentiate the direct
kinematics model to find the velocity kinematics model, i.e.
the linear transformation of actuation variables velocity into
the tip velocity. The linear transformation is realized by the
Jacobian matrix. To solve the inverse kinematics problem
several numerical methods based on Jacobian matrix are
implemented, as proposed by Walker et al. [5], Simaan et
al. [10] and Giorelli et al. [11]. Camarillo et al. [12] found
a linear transformation of cables displacement into backbone
configuration, therefore he used the minimum-norm and
minimax algorithms to solve the inverse problem. The latter
method avoids slack problem (negative tensions), but it is an
iterative algorithm, which has a high computational cost that
makes it less attractive than the minimum-norm algorithm
for real-time applications.

In traditional robotics, neural networks (NNs) have been
widely employed for learning the inverse kinematics. The
neural network models are used to solve the inverse kinemat-
ics problem of non-redundant [13]–[15] and redundant [16],
[17] manipulators. Several architectures of neural networks
are implemented, as FNNs [13]–[17], recurrent NNs [18],
radial basis function NNs, and Kohonen NNs [19]. A lot of
learning algorithms are employed, like the back-propagation
(BP) algorithm [17], the generalized delta learning rule [14],
the covariance matrix adaptation evolution strategy (CMA-
ES) [15], the neuro-evolution of augmenting topologies
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(NEAT) [15], etc.
In continuum robotics, NNs were used to control manip-

ulators. Braganza et al. [20] implement the low-level joint
controller of a soft extensible manipulator by using a FNN
to compensate for the dynamic uncertainties.

A kinematics model of a manipulator describes the motion
of the arm without considering the forces that cause the
motion. On the other hand, a kinetics model describes a
relation between the motion of the manipulator and the
actuation forces that drive it. In the case of soft cable-
driven manipulators, the direct model maps the cable tensions
onto the tip position, thus we call it direct kinetics model,
while the inverse kinetics (IK) model calculates the cable
tensions in order to move the tip to the desired position.
In our previous work [11], a preliminary study has been
made on the effectiveness of the Jacobian method for solving
the inverse kinetics of a non-constant curvature manipulator
driven by two cables in two-dimensional space. The results
have shown good performance in terms of convergence,
however the computational cost of the Jacobian matrix and
the accuracy in a real scenario should be improved by using
a more sophisticated equipment. The computational cost of
the inverse kinetics algorithm was improved by using a feed-
forward neural network with a two-cable manipulator [21].

In this work, we tackle the inverse kinetics problem of a
non-constant curvature manipulator driven by three cables.
The cables are arranged at an angle of 2π/3 rad. An exact
geometrical model of this manipulator is employed. A deep
analysis of the model equations is conducted in order to
evaluate the feasibility of Jacobian methods. The non-linear
terms in the equations of the mechanical model do no permit
to find the analytical solutions required for the calculation of
the Jacobian matrix elements. Therefore, a different approach
based on a feed-forward neural network has been adopted for
learning the IK. In particular, in this preliminary stage the
data set for FNN training is generated in simulation by using
the mechanical model of the conical shape manipulator. The
mechanical model is also used to test the performance of
the trained FNN. In conclusion, we demonstrate that FNNs
are suitable models for solving accurately the IK problem of
soft non-constant curvature manipulators driven by cables in
three dimensional space.

II. DIRECT KINETICS MODEL

The kinetics model of the soft manipulator is developed
exploiting a Cosserat approach, namely considering the arms
as an infinite series of infinitesimal rigid bodies, which
can rotate independently from the rotations of its closest
neighbours.

A. Parametrization of the manipulator backbone

We refer to each rigid body by the parameter s. In order to
describe the arm configuration, for each arclength parameter
s a local reference frame (t(s),n(s), b(s)) is considered
(Fig.1) [22]. In particular, the unit vector t(s) is tangential to
the manipulator backbone, it points in the direction of the tip,
and it is perpendicular to the cross-section plane, because the

Fig. 1. The parametrization of the manipulator backbone, where
(t(s),n(s), b(s)) is the reference local frame at section s, (x, y, z) is
the base reference frame, and u(s) is the position vector of the section s
respect to the base frame.

Fig. 2. The structure of the conical shape manipulator driven by three
cables. To sake of simplicity only cable T1 is shown. Pulling the cable T1
the point load −T1tc1 and the distributed load w1(s) generate the bending
movement.

Eulero-Bernoulli beam hypothesis has been adopted, i.e. the
shear strains are neglected. The unit vector n(s) lies on the
cross section and it is perpendicular to t(s). Finally, the unit
vector b(s) is defined as b(s) = t(s)×n(s). The local frame
(t(s),n(s), b(s)) and the position vector of the centre of
mass u(s) respectively describe the orientation and position
of the section s. A complete description of the manipulator
configuration in 3-D space is obtained by using the following
formulas [22] [23]:

dt

ds
= k(s)(1 + q(s))n(s)− ξ(s)(1 + q(s))b(s) (1)

dn

ds
= −k(s)(1 + q(s))t(s) + τ(s)(1 + q(s))b(s) (2)

db

ds
= ξ(s)(1 + q(s))t(s)− τ(s)(1 + q(s))n(s) (3)

du

ds
= (1 + q(s))t(s) (4)

Here the functions k(s) and ξ(s) are the curvatures with
respect to b(s) and n(s), τ(s) is the torsion with respect to
t(s), and q(s) is the longitudinal strain along the arm.

In the following section we describe the statics model of
the conical shape manipulator, i.e. the relation between the
cable tensions T1, T2 e T3 and the deformation variables
(k(s), ξ(s), τ(s), q(s)).
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Fig. 3. Base view of the conical shape manipulator driven by three cables
T1,T2 and T3. The cables are arranged at an angle of 2π/3 rad. They
are parallel to the midline at the same distance yc. The projections of the
distance yc onto the axis b(s) and n(s) are respectively ycb and ycn.

B. Statics of the conical shape manipulator

The conical shape manipulator has three cables embedded
in the structure arranged at an angle of 2π/3 rad (Fig. 3).
When the cables are pulling, some stress are exerted on
the structure realizing the deformations k(s), ξ(s), τ(s) and
q(s). Unlike the work [24], in this paper the cables are
considered parallel to the midline at the same distance yc
(Fig. 3). This geometric change simplifies the mechanical
model equations, without modifying the manipulator prop-
erty of realizing a spiral-like configuration. The positions of
the cables are defined as follows:

uc1(s) = u(s) + ycn(s) (5)
uc2(s) = u(s)− ycnn(s) + ycbb(s) (6)
uc3(s) = u(s)− ycnn(s)− ycbb(s) (7)

where ycn and ycb represent respectively the projection of
the distance yc onto the axis n(s) and b(s)) (Fig. 3).

Moreover, we introduce the radius R(s) of the section s:

R(s) =

(
Rmin −Rmax

L

)
s+Rmax (8)

where L is the arm length.
When the cables are pulled, they exert a point load at the

spot where they are anchored, and a distributed load along
the cable length. The point load is equal in magnitude to
the cable tension and tangent to it −Titci(s)(Ti > 0) (Fig.
2), where tci(s) is the tangent vector to the cable equal to
duci/dSc, and Sc represents the arclength parametrization of
the cable. The distributed load is centripetal and proportional
to the curvature of the cable Tidtci/dSc [12] (Fig. 2), where
i ∈ {1, 2, 3} identifies one of the three cables.

As a consequence, the equilibrium equations for a cross
section s are:

mi(s) = −Titci(L)× [u(s)− uci(L)] +

+

∫ L

s

Ti
dtci
dσ
× [u(s)− uci(σ)] dσ (9)

li(s) = −Titci(L) · t(s) +

+t(s) ·
∫ L

s

Ti
dtci
dσ

dσ (10)

where li(s) and mi(s) are respectively the internal longitu-
dinal stress and the internal torque of the robot arm. Notice
that, in order to deduce equations (9) (10) the following
equivalence has been used:

dtci
dSc
× (...)dSc =

dtci
dσ

dσ
dSc
× (...)dSc

dσ dσ = dtci
dσ × (...)dσ

After some mathematical manipulation we derive the
expression for dmi(s)/ds and li(s):

dmi

ds
= −Titci(s)× (1 + q(s))t(s) +

−Ti
dtci
ds
× [u(s)− uci(s)] (11)

li(s) = Titci(s) · t(s). (12)

In these equations tci(s) is equal to duci/ds, where we
have assumed s to be a good approximation of the arclength
parametrization of the cables (Sc) and of the midline. Another
approximation introduced in the model is the linearity of the
constitutive equations (13)(14), that guarantees a significant
simplification:

EA(s)q(s) = l(s) (13)

 GI(s) 0 0
0 EJ(s) 0
0 0 EJ(s)

 τ(s)
ξ(s)
k(s)

 = m(s) (14)

Here l(s) = l1(s)+ l2(s)+ l3(s), m(s) = m1(s)+m2(s)+
m3(s), E is the Young modulus, G(s) = E/2(1 + ν) is the
shear modulus and ν the Poisson ratio. A(s) is the area of the
section equal to πR2(s), J(s) = (π/4)R4(s) is the moment
of inertia about the axis n(s) and b(s), and I(s) = 2J(s)
is the moment of inertia about the axis t(s).

Using the equilibrium equations (11) (12) and the con-
stitutive equations (13) (14), in particular the derivative
with respect to s of the (14), we derived the statics model
of the conical shape manipulator, which maps the cable
tensions T1, T2 and T3 onto the deformation variables
(k(s), ξ(s), τ(s), q(s)):

τ
′
(s) =

At(s)

Zt(s)
τ +

Bt
Zt(s)

kξ +
Ct
Zt(s)

ξ +

+
Dt

Zt(s)
k +

Et
Zt(s)

(ξ2 − k2) (15)

ξ
′
(s) =

Aξ(s)

Z(s)
ξ +

Bξ(s)

Z(s)
k +

Cξ(s)

Z(s)
τ +

+
Dξ(s)

Z(s)
τk +

Eξ(s)

Z(s)
τξ (16)

k′(s) =
Ak(s)

Z(s)
k +

Bk(s)

Z(s)
ξ +

Ck(s)

Z(s)
τ +

+
Dk(s)

Z(s)
τξ +

Ek(s)

Z(s)
τk (17)
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τ(L) = 0 (18)

ξ(L) =
ycb(T3 − T2)
EJ(L)

(19)

k(L) =
ycT1 − ycn(T2 + T3)

EJ(L)
(20)

q(s) =
T1(yck(s)− 1)

EA(s)
+

+
(T2 + T3)(ycnk(s)− ycbξ(s)− 1)

EA(s)
(21)

where:

At(s) = GI
′
(s)

Bt = (y2cb − y2cn)(T2 + T3)− y2cT1
Ct = ycn(T2 + T3) + ycT1

Dt = ycb(T2 + T3)

Et = ycnycb(T2 + T3)

Zt(s) = GI(s) + y2c (T1 + T2 + T3)

Aξ(s) = −EJ
′
(s)[EJ(s) + y2cT1 + y2cn(T2 + T3)]

Bξ(s) = −EJ
′
(s)ycnycb(T2 + T3)

Cξ(s) = −ycny2cb(T2 + T3)
2 − [ycn(T2 + T3) +

+ycT1][EJ(s) + y2cT1 + y2cn(T2 + T3)]

Dξ(s) = y2cny
2
cb(T2 + T3)

2 +

−EJ
′
(s)[EJ(s) + y2cT1 + y2cn(T2 + T3)]

Eξ(s) = −EJ(s)ycnycb(T2 + T3)

Ak(s) = −EJ
′
(s)[EJ(s) + y2cb(T2 + T3)]

Bk(s) = −EJ
′
(s)ycnycb(T2 + T3)

Ck(s) = −ycb(T2 + T3)[EJ(s) + y2cb(T2 + T3)] +

−[ycnycb(T2 + T3)][ycn(T2 + T3) + ycT1]

Dk(s) = [EJ(s) + y2cb(T2 + T3)][y
2
cT1 +

+y2cn(T2 + T3)]− y2cny2cb(T2 + T3)
2

Ek(s) = EJ(s)ycnycb(T2 + T3)

Z(s) = [EJ(s) + y2cb(T2 + T3)][EJ(s) +

+y2cn(T2 + T3) + y2cT1]

Here the symbol ′ indicates the derivative with respect to s.
To find the direct kinetics model, i.e. the relation between

the cable tensions ct = (T1, T2, T3) and the tip position
pee = u(L) = (xee, yee, zee) , firstly, the system of the
ordinary differential equations (ODEs) (15)-(20) has to be
solved numerically in order to find the deformation functions
(k(s), ξ(s), τ(s), q(s)), and then the arm configuration has
to be calculated integrating the equations (1)-(4).

C. Mathematical Remarks on Jacobian Matrix

In order to use methods based on the Jacobian matrix:

J =
∂pee
∂ct

∈ <3×3 (22)

it is mandatory to have the analytical expression of the
direct kinetics model: pee = F (ct), as it occurs in two
dimensional case [11]. In this manner each element of the
Jacobian matrix (22) can be calculated, performing the

partial derivatives of the tip position with respect to the
cable tensions.
Supposing to have the deformation functions
(k(s), ξ(s), τ(s), q(s)), it is possible to find an analytical
solution of the system of equations (1)-(3) [25], which is a
system of linear ODEs with non constant coefficients. The
resolution of that system permits to obtain the tip position
through the integration of the equation (4):

xee =

∫ L

0

(1 + q(s))tx(s)ds (23)

yee =

∫ L

0

(1 + q(s))ty(s)ds (24)

zee =

∫ L

0

(1 + q(s))tz(s)ds (25)

However, it is needed to solve analytically the system of non-
linear ODEs (15)-(20) to find the deformation functions. To
the best of our knowledge [25], there is no simple method
that can be applied to this case for finding exact solutions.
Therefore, the Jacobian methods seem to be not suitable in
the case of non-constant curvature soft manipulators driven
by three cables.

Considering the equations of the mechanical model (15)-
(20) with more attention, the non linear terms can be
neglected if the torsion τ(s) is approximately equal to zero
for every section s. The torsion is not caused by the conical
shape of the manipulator, but it is generated by the arrange-
ment of the cables. The torsion of a cylindrical manipulator
is not equal to zero, as follows from the equations (15)-
(20) considering I

′
(s) = J

′
(s) = 0, but in many cases

the torsion can be considered approximately equal to zero.
However, for a non-constant curvature manipulator the effect
of the torsion is not negligible. As a matter of fact, a simple
example is performed with two manipulators: the first one
has a conical shape an the second one has a cylindrical shape.
We suppose they have the same geometrical and mechanical
parameters, except for the diameters of the base and of the
tip. In particular, the base of the conical shape manipulator
has the same diameter of the cylindrical one, whereas the tip
diameter is smaller of the 43% than the base diameter, as in
the manipulator considered in this work (TABLE I). Using
a torsion index defined as follows:

Iτ =

√∫ L
0
τ2(s)ds

L
(26)

and pulling two cables T1 = 1N and T2 = 3N , it is possible
to have a measure of the torsion which affects the two
manipulators: the cylindrical one has Iτ = 0.051m−2 and
the conical one has Iτ = 30m−2. This example demonstrated
empirically how the torsion that effects the conical shape
manipulator can not be neglected, however for the cylindrical
one a simplification can be done in many case, as in [12].

Since analytical solutions are impossible to calculate, other
solutions have been evaluated to solve the IK problem of
this soft manipulator. In particular, a feed-forward neural
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Fig. 4. The neural network learning the inverse kinetics model.

network has been used because it exhibits good performance
in function approximation, as the theorem in [26] states.

TABLE I
MECHANICAL AND GEOMETRICAL PARAMETERS OF THE MODEL OF THE

CONICAL SHAPE MANIPULATOR

E[kPa] 110 ν 0.5 G[kPa] 36.67
yc[mm] 2.5 Rmax[mm] 15 Rmin[mm] 6.5
L[mm] 310

III. FEED-FORWARD NEURAL NETWORK

The neural network implemented is a fully-connected FNN
with one hidden layer and with the hyperbolic tangent as the
activation function (a(x) = tanh(x)). The FNN takes the tip
position pdee as input, where d indicates a desired position,
and provides the cable tensions c∗t (Fig. 4) as output. The
data set has been generated by means of the direct kinetics
model described above, using the parameters in TABLE
I. In particular, the direct model is fed by cable tension
samples ct, which are generated by a uniform distribution
from a = 1N to b = 5.5N . The size of data set is 500
samples. The data set has been divided first of all in training
set (80%) and test set (TS)(20%). The training set is also split
in estimation set (ES)(80%) and validation set (VS)(20%)
[27]. The training set is used during learning phase, whereas
the test set is only employed to evaluate the performance of
the FNN. Moreover during the learning phase, the validation
set is used to avoid the overfitting [27].

The input data set has been pre-processed, firstly, remov-
ing the mean value, secondly, realizing the decorrelation
by using the PCA (principal component analysis), finally,
performing the covariance equalization [27]. The output data
set has been, also, normalized, dividing by their maximum
values. The learning of the FNN is realized using the scheme
in Fig. 4, where the synaptic weights are determined so that
the output c∗t of FNN comes close to the output of the inverse
model ct. In order to minimize the mean square error (MSE)
calculated on the ES, the synaptic weights are adjusted
by using the back-propagation algorithm, which implements
the gradient descent method including the momentum term.
However, for a good generalization of the FNN and to
avoid overfitting, the early-stopping method for training is
implemented [27]. The method requires that after a period
of training (Nt epochs) using the samples of the ES, the

Fig. 5. Scheme employed during test phase of the FNN. After the FNN
has been trained, its performance are measured on test set using the output
of the FNN as input of the direct kinetics model.

synaptic weights and bias levels of the FNN are fixed, and
the network is operated in forward mode using the samples
of the VS. When the validation phase is finished, the mean
square error on the VS (EV ) is calculated, and the training is
resumed for another Nt epochs. The process is repeated until
EV reaches its minimum value. In particular, we compare
the EV (p) relative to the pth iteration with the previous
one EV (p − 1). When EV (p) > EV (p − 1) we increment
a variable counter, whereas if EV (p) < EV (p − 1) the
counter is reinitialized to zero. The algorithm is stopped
when counter is greater than MaxCounter. The initial
values of the synaptic weights are selected from a uniform
distribution with a mean value of zero and a variance equal to
the reciprocal number of synaptic connections of the neurons
[27].

A. Model Selection

The universal approximation theorem [26] for a non-
linear input-output mapping states that a FNN is able to
approximate any continuous function defined on compact
subset of <n, by using a single hidden layer, which contains
a finite number of neurons, and choosing non-constant,
bounded, and monotone-increasing continuous function, as
a(x) = tanh(x). Therefore, the model selection consists
in finding the right number of neurons N∗H in the hidden
layer. The procedure used in our work is based on the
cross-validation [27]. The model selection algorithm has the
following instructions:
• Initialize NH = 1
• while (NH < MaxNH)

– Random initialization of the FNN weights
– Train the FNN for Nepochs by using the ES
– Calculate the mean square error on the VS: EV
– Fill vector vmse[NH ] = EV
– NH = NH + 1

• end
• N∗H = argmin(vmse)

In particular, we repeat the model selection algorithm Nms
times, because the algorithm is based on the random initial-
ization of the synaptic weights of the FNN.

IV. RESULTS

A. Model selection of the FNN

The model selection algorithm described above is em-
ployed to set the number of hidden neurons for the FNN
of the conical shape manipulator. In order to execute the
algorithm a choice of three parameters has to be made: the
maximum number of neurons in the hidden layer MaxNH ,
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the number of epochs Nepochs for training, and the number
of times Nms that we repeat the algorithm:
• MaxNH = 43
• Nepochs = 15000
• Nms = 40

In TABLE II the results of the model selection algorithm
are shown. The first row presents the number of hidden
neurons NH , and the second row shows the number of
times NT that the model selection algorithm chooses NH
as a number of hidden neurons. The best number of hidden
neurons is in the range [33-35], therefore we choose N∗H =
34 as the optimum value for the FNN learning the IK model.

TABLE II
MODEL SELECTION OF THE FNN FOR THE CONICAL SHAPE

MANIPULATOR DRIVEN BY THREE CABLES

NH 30-32 33-35 36-38 39-41 42-23
NT 6 11 8 8 7

B. Test of the FNN

The FNN has been trained as described in the previous
section and the trends of the mean square error on the ES
are shown in Fig. 6, where the MSE curves of four different
trainings are plotted. The parameters employed in the back-
propagation algorithm, which implements the early-stopping
method, are the maximum number of epochs MaxNEpoc, the
number of epochs (Nt) in which the ES samples are used,
the learning rate η, the momentum term α, and the maximum
number of time (MaxCounter) that EV (n) is greater than
EV (n− 1):
• MaxNEpoc = 25000
• Nt = 20
• η = 0.01
• α = 0.015
• MaxCounter = 250

In Fig. 6 we observe that in every case the training is
stopped before reaching the MaxNEpoc, because the BP
algorithm has found the best generalization of the FNN
on the training data, thanks to the early-stopping method.
In general the performances of the FNNs are as good as
the performance of the FNNs relative to the curves MSE-
1, MSE-2 and MSE-3. In these cases the FNNs reaches the
same results in terms of generalization as shown for the third
neural network (FNN-3) represented by the curve MSE-3
(Fig. 6). This curve reaches its minimum value of 0.47mN
after ∼18120 epochs, that is after ∼70s. However, in some
case the the early stopping method falls into local minimum,
as in the case represented by curve MSE-4.

A clear representation of the FNN-3 performance is ob-
tained by using the scheme in Fig. 5 on the test set. The error
between the tip position reached by the direct kinetics model
pee and the desired tip position pdee has been calculated:

ENN =‖ pee − pdee ‖ (27)

Fig. 6. Conical shape manipulator driven by three cables: trends of
the mean square errors (MSE) calculated on the ES during four different
training. The trained FNNs represented by the curve MSE-1, MSE-2, MSE-
3 have the same performance. The FNN relative the curve MSE-4 falls to
a local minimum during the learning, therefore it has worse perfomances
than the other cases.

Fig. 7. Conical shape manipulator driven by three cables: histogram of the
FNN-3 tip errors (in m) calculated using the test set.

In Fig. 7 the distribution of the tip errors (27) relative to TS
samples is shown. In order to appreciate the error distribution
in Fig. 7, some statistics values have been calculated for the
FNN-3, as shown in TABLE III. The FNN-3 shows good
performance in the 89.8% of the cases, when the tip error
is less than 8mm. Moreover, the average tip error is 4.2mm,
and the maximum error reached in two cases is 12.3mm. The
relative average error calculated with respect the total length
of the manipulator is 1.36%, whereas the relative maximum
error is 3.96%.

The computational cost of the FNN is 7N∗H+3 = O(N∗H),
therefore it takes 0.162ms by using a Intel R© Core

TM
i7-

2670QM CPU at 2.20GHz.

V. CONCLUSION

The inverse kinetics problem of non-constant curvature
soft manipulators driven by three cables cannot be solved
by using the classical mathematical methods based on the
calculation of the Jacobian matrix. The differential equations
of the static model of the manipulator are indeed non-linear,
hence the exact solutions cannot be calculated easily. Since
the analytical solutions of the mechanical model are not
available, the elements of the Jacobian matrix cannot be
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TABLE III
PERFORMANCE OF THE FNN-3 ABLE TO LEARN THE IK OF A

NON-CONSTANT CURVATURE SOFT MANIPULATOR DRIVEN BY THREE

CABLES

Absolute (mm) Percentage (%)
mean 4.2 1.36
std 2.8 0.91
max 12.3 3.96
p% 89.8

calculated. For this reason, a FNN has been proposed for
its effectiveness at approximating functions

The feasibility of the method based on the FNN learning
has been tested on data generated by the mechanical model
of the manipulator. The FNN shows remarkable performance,
because in the 89.8% of the cases the tip reaches the desired
position with an error of less than 8mm. The relative average
error is 1.36% with respect to the total length of the arm.

In the future, we will validate the method also with a
real mechanical prototype of the arm. To investigate the
effectiveness of the approach, it will be used to generate
paths in the task space in order to perform grasping.

REFERENCES

[1] D. Trivedi, C. R. D, W. M. Kier, and I. Walker, “Soft robotics:
Biological inspiration, state of the art, and future research,” Applied
Bionics and Biomechanics, vol. 5, no. 3, pp. 99–117, 2008.

[2] S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired
evolution in robotics,” Trends in biotechnology, vol. 31, no. 5, pp.
287–294, 2013.

[3] G. Robinson and J. Davies, “Continuum robots - a state of art,” in
Proc. IEEE Int. Conf. on Robot. and Automat., Detroit, USA, May
1999, pp. 2849–54.

[4] M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi,
and P. Dario, “An octopus-bioinspired solution to movement and
manipulation for soft robots,” Bioinspir. Biomim., vol. 6, (2011)
036002.

[5] B. A. Jones and I. D. Walker, “Kinematics for multisection continuum
robots,” IEEE Trans. on Robot., vol. 22, no. 1, pp. 43–57, 2006.

[6] N. Cheng, M. Lobovsky, S. Keating, A. Setapen, K. Gero, A. Hosoi,
and K. Iagnemma, “Design and analysis of a robust, low-cost, highly
articulated manipulator enabled by jamming of granular media,” in
Proc. IEEE Int. Conf. on Robot. and Automat., St Paul, Minnesota,
USA, May 2012, pp. 4328–4333.

[7] M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, and
C. Laschi, “Design concept and validation of a robotic arm inspired
by the octopus,” Material Science and Engineering: C, vol. 31, no. 6,
pp. 1230–1239, 2011.

[8] R. J. Webster and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[9] G. S. Chirikjian and J. W. Burdick, “A modal approach to hyper-
redundant manipulator kinematics,” IEEE Trans. Robot. Automat.,
vol. 10, no. 3, pp. 343–354, 1994.

[10] N. Simaan, R. Taylor, and P. Flint, “A dexterous system for laryngeal
surgery,” in Proc. IEEE Int. Conf. on Robot. and Automat., New
Orleans, USA, 2004, pp. 351–357.

[11] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi,
“A two dimensional inverse kinetics model of a cable driven manipu-
lator inspired by the octopus arm,” in Proc. IEEE Int. Conf. on Robot.
and Automat., St Paul, Minnesota, USA, May 2012, pp. 3819–3824.

[12] D. B. Camarillo, C. F. Milne, C. R. Carlson, M. R. Zinn, and
J. K. Salisbury, “Mechanics modelling of tendon driven continuum
manipulators,” IEEE Trans. on Robot., vol. 24, no. 6, pp. 1262–1273,
2008.

[13] Y. Kuroe, Y. Nakai, and T. Mori, “A new neural network learning of
inverse kinmatics of robot manipulator,” in in Proc. IEEE Int. Conf.
on Neural Network, Orlando, USA, 1994, pp. 2819–2824.

[14] A. Hassan, N. Usmail, A. Hamouda, I. Aris, N. Marhaban, and H. Al-
Assadi, “Artificial neural network-based kinematics jacobian solution
for serial manipulator passing through singular configurations,” Ad-
vanced in Engineering Software, vol. 41, pp. 359–367, 2010.

[15] J. Martin, J. de Lope, and M. Santos, “A method to learn the
inverse kinematics of multi-link robots by evolving neuro-controllers,”
Neurocomputing, vol. 72, pp. 2806–2814, 2009.

[16] E. Oyama, A. Agah, K. MacDorman, T. Maeda, and S. Tachi, “A
modular neural network architecture for inverse kinematics model
learning,” Neurocomputing, vol. 38-40, pp. 787–805, 2001.

[17] E. Dermatas, A. Nearchou, and N. Aspragathos, “Error-back-
propagation solution to the inverse kinematic problem of redun-
dant manipulator,” Robotics and Computer-Integrated Manufacturing,
vol. 12, no. 4, pp. 303–310, 1996.

[18] Y. Zhang, Z. Tan, K. Chen, Z. Yang, and X. Lv, “Repetitive motion of
redundant robots planned by three kinds of recurrent neural networks
and illustrated with a four-link planar manipulators straight-line ex-
ample,” Robot. and Auton. Syst., vol. 57, pp. 645–651, 2009.

[19] D. Gorinevsky and T. Connolly, “Comparison of some neural network
and scattared data approximations: the inverse manipulator kinematics
example,” Neural Computation, vol. 6, pp. 521–542, 1994.

[20] D. Braganza, D. Dawson, I. Walker, and N. Nath, “A neural network
controller for continuum robots,” IEEE Trans. on Robot., vol. 23, no. 5,
pp. 1270–1277, 2007.

[21] M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feed-forward neural
network for solving the inverse kinetics of non-constant curvature soft
manipulators driven by cables,” in 6th ASME Dynamical Systems and
Control Conference, Stanford University, Palo Alto, CA, USA, 2013,
(accepted).

[22] S. S. Antman, Nonlinear problems of elasticity. New York, NY:
Springer, 2005.

[23] F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, “A
3d steady state model of a tendon-driven continuum soft manipulator
inspired by octopus arm,” Bioinspir. Biomim., vol. 7, no. 2, (2012)
025006.

[24] F. Renda and C. Laschi, “A general mechanical model for tendon-
driven continuum manipulators,” in Proc. IEEE Int. Conf. on Robot.
and Automat., St Paul, Minnesota, USA, May 2012, pp. 3813–3818.

[25] D. Zwillinger, Handbook of differential equations. London: Academic
Press, INC., 1992.

[26] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematichs of Control, Signals, and Systems, vol. 2, pp. 303–
314, 1989.

[27] S. Haykin, Neural network and learning machine, 3rd edition. New
Delhi: PHI learning, 2010.

5039


