
  

� 

Abstract² This paper describes an integrated navigation 

sensor module, including a camera, a laser scanner, and an 

inertial sensor, for unmanned aerial vehicles (UAVs) to fly both 

indoors and outdoors. The camera and the gimbaled laser 

sensor work in a complementary manner to extract feature 

points from the environment around the vehicle. The features 

are processed using an online extended Kalman filter (EKF) in 

simultaneous localization and mapping (SLAM) algorithm to 

estimate the navigational states of the vehicle. In this paper, a 

new method is proposed for calibrating a camera and a 

gimbaled laser sensor. This calibration method uses a simple 

visual marker to calibrate the camera and the laser scanner with 

each other. We also propose a real-time navigation algorithm 

based on the EKF SLAM algorithm, which is suitable for our 

camera-laser sensor package. The algorithm merges image 

features with laser range data for state estimation. Finally, these 

sensors and algorithms are implemented on our octo-rotor UAV 

platform and the result shows that our onboard navigation 

module can provide a real-time three-dimensional navigation 

solution without any assumptions or prior information on the 

surroundings. 

 

 

I. INTRODUCTION 

The Global Positioning System (GPS) is widely used for 
the localization of ground and aerial vehicles and provides a 
very accurate position measurement wherever available. 
Unmanned aerial vehicles have been very successful thanks to 
the advent of GPS in mid 1990s and there are growing 
interests to use them for indoor surveillance or mapping. Since 
GPS cannot be used indoor, alternative localization methods 
should be developed. Such methods will be very useful 
wherever GPS is not available due to obstruction or jamming. 
They can be also applied not only to UAVs but also ground 
vehicles and underwater vehicles operating in the environment 
where GPS is not reliable or unavailable. Such localization 
methods should be capable of full three-dimensional (3D) 
navigation in both unstructured indoor and outdoor 
environments. 

The 3D navigation system is required to provide precise 
and instant pose estimation without prior information or 
assumptions on the characteristics of the environment, 
including depth. The system needs to include general 
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algorithms for mapping and localization that work just about 
anywhere without any constraints. Map representations must 
be fully in 3D and capable of representing arbitrary 3D 
geometry at a level of resolution that is appropriate for the 
vehicle¶s navigation and its task. 

In addition, the navigation system should be able to detect 
obstacles that are in the path of the vehicle. Thus, it is 
necessary to have the ability to create a dense environmental 
description, such as a grid map. A dense grid map, which is 
different from a sparse feature map, is necessary because the 
ability to distinguish between free and occupied space is 
essential for collision-free navigation and autonomous 
exploration in a multi-level environment. 

Previous studies in [1][2][3] discuss the indoor navigation 
based on two-dimensional (2D) maps or multi-layered maps. 
However, in unstructured 3D environments, the assumptions 
from these studies are not always viable. In [4], a stereoscopic 
camera was used to generate a depth map of the area 
surrounding the vehicle and RGB-Depth (RGB-D) camera 
was used in [5]. However, the depth maps generated by these 
sensors have relatively short measurement ranges, which are 
useful for indoor navigation. Monoscopic cameras with 
downward-aimed, wide-angle lenses have been investigated in 
[6] and [7] for control of hovering, take-off, landing, and 
small-scale mapping, but they are hard to describe the rich 
information about the absolute value of depth and the forward 
view of the vehicle. 

There is a comprehensive study on real-time localization 
with a laser scanner and an inertial measurement unit (IMU) [8] 
during aggressive maneuver in 3D environments using a 
Gaussian particle filter, but it requires an a priori known 3D 
octree grid map known a priori. 

This paper proposes a navigation module with a camera 
and a gimbaled laser scanner that can estimate the pose of the 
vehicle and build a map in GPS-denied environments such as 
indoor or where GPS signal reception is poor or jammed. The 
two-dimensional laser scanner and camera have different 
characteristics for their sensing methods, ranges, and 
accuracies. Therefore, these different sensors can be combined 
so that they complement each other and give better 
measurements and state estimations from the environment 
around the vehicle. 

In Section II, we first propose a new method for calibrating 
a camera with a laser scanner mounted on a tilting gimbal 
rotated by a servo motor with an embedded rotary encoder. 
After the calibration, the sensor module, which also includes 
an IMU, can measure the environment in its field of view and 
provide images, range data, and bearing data from point 
clouds.  
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Section III provides detailed explanation for a navigation 
algorithm that the pose of the vehicle and landmarks are 
instantly estimated by a modified EKF SLAM based on the 
monocular-SLAM [9] framework. The proposed navigation 
algorithm is implemented on an octo-rotor type UAV platform 
equipped with the sensor module and a GPS receiver. Indoor 
and outdoor flight test results are shown and discussed in 
Section IV. 

 

II. CAMERA AND GIMBALED LASER SENSOR MODULE 

A. Sensor fusion 

The sensor module consists of a fixed camera, a planar 
laser scanner mounted on a tilting gimbal rotated by a servo 
motor, and an inertial measurement unit as shown in Fig. 1. 
The laser scanner, which is mounted on the tilting gimbal, 
rotates and scans the 3D environment to acquire range and 
bearing data covering the field of view of the camera. The 
azimuth of the laser scanner is measured internally and its 
elevation (tilt angle) is measured by a rotary encoder attached 
to the servo motor. A laser reflection mirror is installed at a 
corner of the scanner to measure upward or downward 
distance. This mirror can reflect a portion of the laser scanning 
rays up or down from the gimbal mount. 

 

B. Calibration of camera and gimbaled laser scanner  

Before using the sensor module, the camera and the 
gimbaled laser scanner sensor should be mutually calibrated 
since imprecise relative pose between these sensors can cause 
large matching errors. Methods for calibration between a 
camera and a nodding laser scanner have already been 
developed such as [10]. However, we used a marker whose 
pattern is simpler than that of a chessboard, and applied a less 
laborious method which does not require one to select corner 
points.  

A red, circular visual marker, as shown in Fig. 2, is used to 
calibrate the camera and gimbaled laser scanner. The 
calibration marker has a distinct color and is more protruded 
than other objects in the office so that simple detection 
algorithms can detect and label the marker for both the laser 
scanner and the camera. The biggest red blob can be detected 
as the relevant marker using a simple image processing 
algorithm and the closest 3D points captured by the laser 
scanner can be labeled using a distance threshold as depicted 
in Fig. 3. 

After the labeling of the bearing and range of the markers 
at different positions from the images and laser scanned 3D 
data, they are matched in order to calculate the disparity 
between them. We calculate the relative, three degrees of 
freedom (3-DOF) attitude between the two sensors since we 
can manually measure the relative translation between the two 
sensors in advance. 

The vector equation between the two sensors and the 
marker is derived as: 
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where Cn and Ln  are a vector from the camera to the marker 

position in inertial coordinates and a vector from the laser 

scanner to the marker in inertial coordinates, respectively as:  
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The origin of gimbal mount frame and the laser scanner 

frame is identical so that the rotation matrix from the laser 

coordinates to the center of the tilting gimbal mount G

L
R  is 

given as: 

 00 01 02

10 11 12

20 21 22

cos 0 sin

0 1 0

sin 0 cos

C C C

G G G G G

C C G C C C

L G L G G G

C C C

G G G G G

R R R

R R R

R R R

T T

T T

ª º ª º
« » « »  « » « »
« » « »�¬ ¼¬ ¼

R R R
.  (4) 

In order to take the direct linear transformation (DLT) 

[11], the following equation and parameters can be 
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Figure 2.  Schematic geometry of the camera-gimbaled laser scanner 

calibration method (left) and a picture of the visual marker (right). 

 

   

Figure 3.  Marker detected images at different viewpoint of the sensor 

module (left) and labeled marker images by gimbaled laser scanner (right). 

 

 

Figure 1.  Camera-gimbaled laser sensor module prototype. 
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C. Measurement Model and Management of Landmarks 

The measurement model consists of azimuth, elevation, 
and range toward the landmark position. The first two 
components are the relative angle with regard to the principal 
axis line of the camera, and they can be calculated by attitude 
and relative position between the camera and the landmark 
using a pinhole camera model as shown in Fig. 5 and the 
equation below: 
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where ^ `Ö Ö Ö, ,C C C
z z zT \ U  are elevation, azimuth and range in the 

camera coordinate system, respectively.  

Three measurements are acquired by the camera and the 
laser scanner directly. However, the laser scanner does not 
provide range for all landmarks in a given time step because 
only a few features are located in the intersection of a laser 
scan plane and the line of sight towards a landmark in an 
image from the camera. Therefore, most landmarks, which are 
not located in a camera-laser intersection, use only the first 
two measurements, elevation and azimuth, in (12). 

The position of features and landmarks in the image 
coordinates are tracked as explained in the previous section. If 
landmarks move out of the field of view of the camera, then 
they are removed from the filter states and covariance matrix 
since they can no longer be tracked in the successive images. 

New landmarks registered for the first time are added to 
the states and covariance of the filter at the end of the filter 
loop. A new landmark is initialized when the line of sight 
towards a feature in the camera¶s view and the scan plane of 
the laser scanner intersect for the first time. The new landmark 
also inherits initial covariance matrix values. 

 

D. EKF correction 

At the EKF correction stage, measured data from the laser 
scanner and the camera correct all states and covariance of the 
vehicle and the landmarks. A measurement data form for a 

given landmark has either two values {elevation, azimuth} or 
three values {elevation, azimuth, range}, as explained 
previously. 

Assuming that the measurement of a landmark is not 
coupled with the other landmarks, but is only coupled with 
position and attitude of the vehicle, we can divide the 

measurements and the Jacobian matrix 
,[ ]k i

H  for each i-th 

landmark 
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where 
[ ]

C

m i
p  is the 3-DOF position of the landmark in the 

camera coordinate system. We can also compute the 

sensitivity matrix 
,[ ]k i

S  and the Kalman gain 
,[ ]k i

K  for each 

i-th landmark 
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where 
[ ]iR  is the Gaussian noise covariance matrix of the 

sensor for each measurement. The size of the noise covariance 
matrix depends on the existence of the laser range 
measurement at the landmark. The computed Kalman gain is 
multiplied by the innovation of the actual measurement versus 
the estimated measurement to determine the states and 
covariance of the vehicle and the landmarks:  
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 The flow chart of the proposed camera-laser EKF SLAM 
algorithm is shown in Fig. 6. 
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Figure 5.  Geometry of a landmark in the camera coordinate system. 
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Figure 6.  Flow chart of the proposed navigation algorithm. 
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IV. EXPERIMENT 

A. Experiment setup 

To validate the proposed indoor navigation algorithm, an 
onboard vision processing computer (Pico-ITX form factor 
Dual 1.0GHz CPU), a low-level flight controller (Gumstix 
verdex pro�), a camera-gimbaled laser sensor module (Point 
Grey FireFly

®
MV camera, Hokuyo UTM-30LX laser scanner, 

and Dynamixel MX-28 servo motor), and a GPS-IMU (u-blox 
5 and MicroStrain 3DM-GX3®-25) are integrated as an 
onboard navigation package. The weight of this navigation 
package is about 1.3kg. Therefore, the octo-rotor aerial 
vehicle was specifically designed to lift this payload as shown 
in Fig. 8. The octo-rotor platform has 80cm of motor-to-motor 
diameter, 6.0kg of total weight, and 15 minutes flight time 
with Li-Po batteries.  

Our system architecture is developed for integrating the 
camera-gimbaled laser sensor module, the GPS, the low-level 
flight controller, and an occupancy grid mapper as described 
in Fig. 7. The low-level flight controller can choose the proper 
navigation source between the GPS and the camera-laser 
navigation solution when the system is working outdoors. The 
attitude and position is controlled by a multi-loop PD 
controller and the guidance algorithm to follow waypoints or 
paths is also enabled.  

The estimated pose of the vehicle is used for dense 3D grid 
mapping of the environment around the vehicle so that the 
vehicle can use the grid map to make feasible path decisions, 
allowing the vehicle to move around and avoid obstacles in the 
map. However, the occupancy grid mapping for a 3D 
environment demands computational load that is too strenuous 
for the light-weight onboard processor even if an octree 
structure is used. Therefore, the ground station is inevitably 
required to download data from the vehicle, process the 
computations, and upload the computation results to the 
vehicle. 

Communication with the vehicle for monitoring onboard 
status is performed via Wi-Fi network. All computer vision 
algorithm development is done in C/C++ using OpenCV 
library [14]. 

B. Experiment Result 

The algorithm proposed in this paper was applied to 
onboard video and data taken from the vehicle. The indoor 
experiment video and data shown in Fig. 9 were captured by a 
hand-held test in a space measuring roughly 11 m × 7 m. A 
point cloud map and an octree-based occupancy grid map 
were generated using the estimated navigation solution. 

While we did not have access to ground truth trajectory of 
the vehicle, we were able to test our algorithms on real test 
data. The accuracy of our states can be validated qualitatively 
by looking at the accurate reconstruction of the 3D 

   

   
 

Figure 9.  (a-b) Pictures of the indoor space where the navigation algorithm 

was tested. The numbers and circles stand for landmarks, and the sensor 

module was moved by hand. (c) 3D visualization of proposed camera-laser 

navigation result: Point clouds are rendered using the estimated states. (d) 

Occupancy grid map using the estimated states.  
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Figure 8.  Architecture diagram of our GPS-IMU and camera-laser 

integrated navigation system. 

 

Figure 7.  Our octo-rotor UAV platform. 
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environment by reprojection of the laser scanned points using 
estimated vehicle states. One such 3D point cloud and grid 
map is shown in Fig. 9. 

 The outdoor experiment video and data shown in Fig. 10 
were captured by the onboard computer, and the proposed 
camera-laser navigation algorithm was applied. The estimated 
states were validated quantitatively by comparing the 
estimated trajectory with that of GPS which showed an 
accuracy of less than 1 meter, even in the wide open space 
which exceeds the laser range. There are fewer usable features 
within view of the camera than in indoor environments since 
the features are located farther away than the range of the laser. 
Our camera is looking downward at a 10 degree pitch, but a 
more downward pitching angle is desirable for better feature 
extraction and tracking. 

There is almost no vibration that disturbs the data 
acquisition from the camera and the laser on the gimbaled 
servo. However, fast maneuvers can easily cause the feature 
tracking to fail. There needs to be a tighter integration method 
between the camera and the IMU in order to improve the 
feature tracking ability. 

 

V. CONCLUSION 

In this paper, we presented a navigation system that 

integrates a camera, a gimbaled laser scanner and an IMU for 

unmanned vehicles to move autonomously in both indoor and 

outdoor environments. Our onboard navigation system can 

provide a real-time, 3D navigation solution without any 

pre-assumptions.  

We proposed a camera and gimbaled laser sensor 

calibration method to calculate the relative pose between 

them. In addition, we presented a real-time navigation 

algorithm based on an online EKF SLAM algorithm. We 

demonstrated the performance of our system in indoor and 

outdoor environments. The experimental results clearly 

showed the advantages of our navigation system. 

Future work will include improvements to the navigation 

algorithm to make it more robust so that it can cope with 

various dynamic environments. In addition, the state 

estimation and control algorithms will be integrated to 

perform closed-loop flights, both indoors and outdoors. 
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Figure 10.  Pictures of the outdoor space and the octo-rotor UAV (top). The 

graph represents the estimated vehicle trajectory and GPS positions (bottom) 
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