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Abstract— We present a vision-based mapping and localiza-
tion system for operations in pipes such as those found in
Liquified Natural Gas (LNG) production. A forward facing
fisheye camera mounted on a prototype robot collects imagery
as it is tele-operated through a pipe network. The images
are processed offline to estimate camera pose and sparse
scene structure where the results can be used to generate 3D
renderings of the pipe surface. The method extends state of
the art visual odometry and mapping for fisheye systems to
incorporate geometric constraints based on prior knowledge
of the pipe components into a Sparse Bundle Adjustment
framework. These constraints significantly reduce inaccuracies
resulting from the limited spatial resolution of the fisheye
imagery, limited image texture, and visual aliasing. Preliminary
results are presented for datasets collected in our fiberglass pipe
network which demonstrate the validity of the approach.

I. INTRODUCTION
Pipe inspection is a critical task to a number of industries,

including Natural Gas production where pipe surface struc-
ture changes at the scale of millimeters are of concern. In
this work, we report on the development of a fisheye visual
odometry and mapping system for an in-pipe inspection
robot (e.g. [1]) to produce detailed, millimeter resolution
3D surface structure and appearance maps. By registering
maps over time, changes in structure and appearance can
be identified, which are both cues for corrosion detection.
Moreover, these maps can be imported into rendering engines
for effective visualization or measurement and analysis.

In prior work [2], we developed a verged perspective
stereo system capable of measuring accurate camera pose
and producing dense sub-millimeter resolution maps. A limi-
tation of the system was the inability of the camera to image
the entire inner surface of the pipe. Here, we address this
issue by using a forward-facing wide-angle fisheye camera
mounted on a small robot platform, as shown in Fig. 1a.
This configuration enables the entire inner circumference to
be imaged from which full coverage appearance maps can be
produced. Fig. 1b shows the constructed 400mm (16 inch)
internal diameter pipe network used in the experiments. This
pipe diameter is commonly used in Liquified Natural Gas
(LNG) processing facilities, which is a target domain for our
system. Sample images from the fisheye camera are shown
in Figs. 1c and 1d. The extreme lighting variations evident in
the sample images pose significant challenges during image
processing, as discussed in Section III.
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(a) Robot. (b) Test pipe network.

(c) Image in straight section. (d) Image in T-intersection.

Fig. 1: The prototype robot with forward facing fisheye
camera (a), 400mm (16 inch) internal diameter pipe network
(b), and sample images logged in a straight section (c) and
T-intersection (d) during tele-operation through the network.
Lighting is provided by 8 LEDs surrounding the camera.

Our system builds from established visual odometry and
multiple view techniques for central projection cameras [3],
[4], [5], [6]. Binary thresholding, morphology and shape
statistics are first used to classify straight sections and T-
intersection. Pose and structure results are obtained for
each straight section using a sliding window Sparse Bun-
dle Adjustment (SBA) and localized straight cylinder fit-
ting/regularization within the window. Fitting a new straight
cylinder each window allows some degree of gradual pipe
curvature to be modeled, e.g. sag in the pipes. After pro-
cessing each straight section, results for the T-intersections
are obtained using SBA and a two cylinder intersection
fitting/regularization – the two cylinders are the appropriate
straight sections of the pipe network. When applicable, loop
closure with g2o [7] is implemented using pose estimates
from visual correspondences in overlapping sections of a
dataset. As a final step, the pose and structure estimates are
used to produce a dense point cloud rendering of the interior
surface of the pipe network.

Results are presented in Section IV which show the visual
odometry and sparse scene reconstruction for two datasets
collected in our pipe network. Dense 3D point cloud ren-
derings for one dataset are also provided. These preliminary
results illustrate the validity of the proposed system.
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II. FISHEYE CAMERA

We use a 190◦ angle of view Fujinon fisheye lens fitted to
a 1280pix× 960pix resolution CCD firewire camera. Image
formation is modeled using a central projection polynomial
mapping, which is a common selection for fisheye cameras
(e.g. [8], [9]). A scene point Xi projects to a coordinate
η(θ, φ) = Xi/||Xi|| on the camera’s unit view sphere
centered at the single effective viewpoint (0, 0, 0)T . The
angles θ and φ are, respectively, colatitude and longitude.
The projected fisheye image coordinates u(u, v) are

u =

[
(k1θ + k2θ

3 + k3θ
4 + k4θ

5) cosφ+ u0
(k1θ + k2θ

3 + k3θ
4 + k4θ

5) sinφ+ v0

]
, (1)

where u0(u0, v0) is the principal point. Multiple images
of a checkerboard calibration target with known Euclidean
geometry were collected, and the model parameters fitted
using a non-linear minimization of the sum of squared
checkerboard grid point image reprojection errors.

III. VISUAL ODOMETRY AND MAPPING

The visual odometry (VO) and mapping procedure is
briefly summarized as follows:
A. Perform feature matching/tracking with keyframing.
B. Divide images into straight sections and T-intersections.
C. Obtain VO/structure estimates for each straight section

using a sliding window SBA and localized straight cylin-
der fitting/regularization.

D. Obtain VO/structure estimates for each T-intersection
using a two cylinder T-intersection model. This step
effectively merges the appropriate straight sections.

E. Perform loop closure when applicable.
The visual odometry steps (C and D) use different cylinder

fitting constraints to obtain scene structure errors included
as a regularization error in SBA. As previously mentioned,
we have observed this to be a critically important step
which significantly improves the robustness and accuracy of
the visual odometry and scene reconstruction estimates in
the presence of: limited spatial resolution from the fisheye
camera; feature location noise due to limited image texture
and extreme lighting variations; and an often high percentage
of feature tracking outliers due again to limited image texture
and visual aliasing. At present an average a priori metric
measurement of the pipe radius r is used during cylinder
fitting. Cylinder fitting with a supplied pipe radius also
resolves monocular visual odometry scale ambiguity.

A. Feature Tracking

An efficient region-based Harris detector [10] based on the
implementation in [6] is used to find a uniform feature distri-
bution in each image. The image is divided into 2×2 regions,
and the strongest N = 200 features per region are retained.
Initial temporal correspondences between two images, image
i and image j, are found using cosine similarity matching
of 11 × 11 grayscale template descriptors for each feature.
Each of these 11 × 11 template descriptors is interpolated
from a 31 × 31 region surrounding the feature. Five-point
relative pose [3] and RANSAC [11] are used to remove

Fig. 2: Sparse optical flow vectors in a straight section (left)
and T-intersection (right) obtained using a combination of
Harris feature matching and epipolar guided ZNCC.

outliers and provide an initial estimate of the essential matrix
E. We experimented with multiple scale-invariant feature de-
tectors/descriptors (e.g. SIFT [12], SURF [13]), but observed
no significant improvements in matching performance.

For all unmatched features in image i, a guided Zero-
mean Normalized Cross Correlation (ZNCC) is applied to
find their pixel coordinate in image j. Here, guided refers
to a search within an epipolar region in image j. Since
we implement ZNCC in the original fisheye imagery, we
back project each integer pixel coordinate to a spherical
coordinate η, and constrain the epipolar search regions using
|ηT

j E ηi| < thresh — the subscripts denote image i and j.
As a final step we implement image keyframing, selecting
only images separated by a minimum median sparse optical
flow magnitude or minimum percentage correspondences.
Both minimums are selected empirically.

Fig. 2 shows examples of the sparse optical flow vectors
for the feature correspondences found between keyframes in
a straight section, and keyframes in a T-intersection. Features
are ‘tracked’ across multiple frames by recursively matching
using the method described.

The grayscale intensity of an imaged region of the pipe
surface can change significantly between frames. This is due
primarily to the non-uniform ambient lighting provided by
the robot. The cosine similarity metric for matching template
descriptors and ZNCC were both selected to provide some
invariance to these intensity changes.

B. Image classification: straight vs. T-intersection

The image keyframes must be divided into straight sec-
tions and T-intersection before implementing pose estimating
and mapping. To classify each image as belonging to a
straight section or T-intersection, the image resolution is
first reduced by sub-sampling pixels from every second row
and column. A binary thresholding is applied to extract
dark blobs within the cameras field of view, followed by
binary erosion and clustering of the blobs. The largest blob is
selected and the second moments of area L and Lp computed
about the blob centroid and principal point, respectively. An
image is classified as straight if the ratio Lp/L is less than
an empirical threshold; we expect to see a large round blob
near the center of images in straight sections.

Figs. 3a through 3c show the blobs extracted in three
sample images, and initial classification of each image. After
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(a) Straight section (b) T-intersection (c) T-intersection
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(d) Initial classification (top), and after temporal filtering (bottom). Each of
the 4 T-intersection clusters is a unique T-intersection in the pipe network.

Fig. 3: Straight section and T-intersection image classifica-
tion. Example initial classifications (a-c), and the classifica-
tion of all keyframes before and after temporal filtering (d).

initial classification, a temporal filtering is used to correct
mis-classification, as illustrated in Fig. 3d. This filtering
enforces a minimum straight/T-intersection cluster size.

C. Straight VO: Sliding Window SBA / local straight cylinder

For each new keyframe, the feature correspondences are
used to estimate the new camera pose and scene points
coordinates. This includes using Nister’s 5-point algorithm
to obtain an initial unit-magnitude pose change estimate,
optimal triangulation to reconstruct the scene points [4], and
prior reconstructed scene coordinates in the straight section
to resolve relative scale. After every 50 keyframes, a mod-
ified sliding window SBA is implemented which includes a
localized straight cylinder fitting used to compute a scene
point regularization error. A 100 keyframe window size is
used which, for a typical dataset, equates to a segment of
pipe approximately one meter in length. This SBA is a multi-
objective least squares minimization of image reprojection
errors εI and scene point errors εX. An optimal estimate of
the camera poses P and scene points X in the window, as
well as the fitted cylinder C are found which minimize the
combined error ε:

ε = εI + τ εX. (2)

The parameter τ is a scalar weighting which controls the
trade-off between the competing error terms εI and εX.

The image reprojection error εI is the sum of squared
differences between all valid feature observations u and
reprojected scene point coordinates u′:

εI =
∑
i

||ui − u′i||2, (3)

where u(u, v) and u′(u′, v′) are both inhomogeneous fisheye
image coordinates.

The scene point error term εX is the sum of squared errors
between the optimized scene point coordinates X and a fitted

straight cylinder. The cylinder pose C is defined relative to
the first camera pose Pm = [Rm|tm] in the sliding window
as the origin. It is parameterized using 4 degrees of freedom:

C = [R̃ | t̃]
= [RX(γ)RY (β) | (tX , tY , 0)T ], (4)

where RA denotes a rotation about the axis A, and tA denotes
a translation in the axis A. Each scene point coordinate Xi

maps to a coordinate X̃i in the cylinder frame using

X̃i = R̃ (RmXi + tm) + t̃. (5)

The regularization error εX is

εX =
∑
i

(√
X̃2

i + Ỹ 2
i − r

)2

, (6)

where the pipe radius r is supplied. Referring to (2), we use
an empirically selected value τ = 2.5× 105.

As noted previously, there are frequently many feature
correspondence outliers resulting from the challenging raw
imagery. To minimize the influence of outliers, a Huber
weighting is applied to individual error terms before comput-
ing εI and εX. Outliers are also removed at multiple stages
(iteration steps) using Median Absolute Deviation of the set
of all signed Huber weighted errors u − u′. This outlier
removal stage is beneficial when the percentage of outliers
is large.

D. T-intersections

The general procedure for processing the T-intersections
is illustrated in Fig. 4. After processing each straight section,
straight cylinders are fitted to the scene points in the first and
last 1 meter segment (Fig. 4a). In both cases, these cylinders
are fitted with respect to the first and last camera poses as
the origins, respectively, using the parameterization in (4).

As illustrated in Fig. 4b, a T-intersection is modeled as two
intersecting straight cylinders; the red cylinder axis intersects
the blue cylinder axis at a unique point I. Let Pr be the
first/last camera pose in a red section, and Cr be the cylinder
fitted with respect to this camera as the origin. Similarly,
let Pb be the last/first camera pose in a blue section, and
Cb be the cylinder fitted with respect to this camera as the
origin. The parameters ζr and ζb are rotations about the axis
of the red and blue cylinders, and lr and lb are the signed
distances of the cylinder origins O(Cr) and O(Cb) from the
intersection point I. Finally, φ is the angle of intersection
between the two cylinder axes in the range 0◦ ≤ φ < 180◦.
These parameters fully define the change in pose Q between
Pb and Pr, and ensure that the two cylinder axes intersect at
a single unique point I. Letting

D = p
(
[RZ(ζr)|(0, 0, lr)T ], [RZ(ζb)RY (φ)|(0, 0, lb)T ]

)
,

(7)
where p(b, a) is a projection a followed by b, and RA is a
rotation about axis A, then

Q = p (inv(Cr), p(D,Cb)) , (8)

where inv(Cr) is the inverse projection of Cr.
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(a) Straight sections with cylinders fitted to endpoints.

(b) The two cylinder T-intersection
model parameters (refer to text for
detailed description). The red and
blue cylinders have the same inter-
nal radius r and are constrained to
intersect at a unique point I.

(c) Visual odometry and scene re-
construction result using the T-
intersection model. The scene points
have been automatically assigned to
each cylinder allowing cylinder fit
regularization terms to be evaluated.

Fig. 4: A T-intersection is modeled as the intersection of
cylinders fitted to the straight sections of the pipe. Respec-
tively, the blue and red colors distinguish the horizontal and
vertical sections of the ‘T’, as illustrated in (b).

SBA is used to optimize all camera poses PT in the T-
intersection between Pr and Pb, as well as all new scene
points X in the T-intersection, and the T-intersection model
parameters Φ(ζr, lr, ζb, lb, φ). Again, the objective function
minimized is the same form as (2), which includes an image
reprojection error (3) and scene fitting error (6). The same
value τ = 2.5×105, robust cost function, and outlier removal
scheme are also used.

Special care needs to be taken when computing the scene
fitting error εX in (6) as there are two cylinders Cr, Cb

in the T-intersection model. Specifically, we need to assign
each scene point to one of the cylinders, and compute the
individual error terms in (6) with respect to this cylinder.
This cylinder assignment is performed by finding the distance
to each of the cylinder surfaces, and selecting the cylinder
for which the absolute distance is a minimum. Fig. 4c
shows the results for one of the T-intersections after SBA
has converged. The color-coding of the scene points (dots)
represent their cylinder assignment.

E. Loop Closure

For multi-loop datasets, loop closure is implemented using
the graph based optimization algorithm g2o [7]. The graph
vertices are the set of all camera poses described by their Eu-
clidean coordinates and orientations (quaternions). The graph
edges connect temporally adjacent camera poses, and the
loop closures connecting camera poses in the same section
of the pipe network visited at different times. Each edge has

Fig. 5: Pipe network: T1 through T4 are the T-intersections.

an associated relative pose estimate between the vertices it
connects, and a covariance of the estimate. Alternate graph-
based loop closure techniques with comparable performance
and improved efficiency could also be used (e.g. [14]).

Our constrained environment enables potential loop clo-
sures to be selected without the need for visual place
recognition techniques, such as those based on bag of visual
words (BoW)[15]. This is achieved by knowing the section
of the network where the robot begins, and simply counting
left/right turns – see Fig. 5. Let Pi and Pj be the poses in
the same straight section of pipe visited at different times.
We compute the Euclidean distances li and lj to the T-
intersection centroid I at the end of the straight section.
Poses Pi are Pj are selected as a candidate pair if li ≈ lj .

Once candidate loop closure poses Pi ↔ Pj are se-
lected, the relative pose estimate is refined using image
correspondences found by matching SIFT descriptors for
the previously detected Harris corners. SIFT descriptors are
used at this stage to achieve improved rotation invariance.
Prior knowledge of the surrounding scene structure (fitted
cylinders) is used to resolve the monocular scale ambiguity
of the relative pose estimates obtained using the five-point
algorithm and RANSAC, followed by non-linear refinement.

IV. EXPERIMENTS AND RESULTS
Two grayscale monocular fisheye image datasets

(1280pix× 960pix resolution, 7.5 frames per second) were
collected in our constructed 400mm (16 inch) internal
diameter fiberglass pipe network shown in Fig. 5. For
this, the robot was tele-operated using images streamed
over a wireless link, and all lighting was provided by
8 high intensity LEDs equipped on the robot — see
Fig. 1. Dataset A is a near full loop of the pipe network
containing approximately 26,000 images, from which 2760
keyframes were automatically selected. Dataset B is a full
loop datasets containing approximately 24,000 images and
4170 keyframes. All image processing steps described in
Section III were implemented offline.

A. Visual Odometry

The visual odometry and sparse scene reconstruction re-
sults for each straight section in dataset A were shown
previously in Fig. 4a. The complete results for both datasets
are provided in Fig. 6. The labels T1 through T4 correspond
to those in Fig. 5. Note that no loop closure was possible
for dataset A. For dataset B, loop closure was implemented
using 15 loop closure poses in the straight section between
the T-intersections T1 and T4.
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(a) Dataset A: Robot moved in the sequence: start-T1-T2-T3-T4-end.

(b) Dataset B: Robot moved in the sequence: start-T4-T3-T2-T1-T4-end.

Fig. 6: Visual odometry (magenta line) and sparse scene
reconstructions for dataset A (no loop closure) and dataset
B (loop closure between T1 and T4).

An ideal performance metric for our system is direct
comparison of the visual odometry (camera pose) and scene
structure results to accurate ground truth. However, obtaining
suitable ground truth is particularly challenging due to the
unavailability of GPS in a pipe, and limited accuracy of
standard grade Inertial Measurement Units (IMUs).

Our current approximate ground truth is hand-held laser
distance measurements estimating the distance between all T-
intersection centroids I ′ (see Fig. 4c). These measurements
are compared to the visual odometry T-intersections centroid

Distance T1-T2 T2-T3 T3-T4 T4-T1 T1-T3 T2-T4
Laser (m) 8.150 8.174 8.159 8.110 11.468 11.493
A: VO (m) 8.184 8.131 8.138 8.161 11.514 11.543
A: Error (m) 0.034 -0.043 -0.021 0.051 0.046 0.050
A: Error (%) 0.42 -0.53 -0.26 0.63 0.41 0.44
B: VO (m) 8.114 8.118 8.142 8.105 11.473 11.492
B: Error (m) -0.036 -0.056 -0.017 -0.005 0.005 -0.001
B: Error (%) -0.44 -0.69 -0.21 -0.07 0.04 -0.01

TABLE I: The T-intersection center-to-center distances ob-
tain with a hand-held laser (approximate ground truth – see
text in Section IV-A for detailed description), and visual
odometry for dataset A (without loop closure) and dataset
B (with loop closure) – refer to Fig. 6. The signed error
percentages are given with respect to the laser measurements.

I distances in Table I. The largest absolute error measured
is 0.056m (0.69%) between T3-T4 for dataset B.

The laser ground truth measurements are only approx-
imations as, for practical reasons, the measurements were
taken between the centers of the upper exterior surfaces of
each T-intersection. These reference points do not correlate
directly to the ‘true’ centroids I. Moreover, there were minor
alterations to the pipe network in the period between collect-
ing the datasets (sections of pipe temporarily removed then
placed back). The errors reported in table I may be within
the bounds of the laser ground truth estimate uncertainty.

In practice, modeling each long straight section of our
pipe network as a perfect straight cylinder is too restrictive.
Firstly, each individual pipe segment contains some degree
of curvature/sag. Secondly, the individual segments used to
construct the long straight sections of pipe (see Fig. 5) are not
precisely aligned. It is for this reason that we only perform
straight cylinder fitting locally within the 100 keyframe
sliding window SBA, which typically spans a 1 meter length
of pipe, and limit the maximum value for τ in (2). Doing
so permits some gradual pipe curvature to be achieved in
the results, as evident in Fig. 4a. However, for severe pipe
misalignments, deformations, or elbow joints, we expect that
the accuracy of results would rapidly deteriorate. A cubic
spline modeling of the cylinder axis may be required in these
scenarios, despite the significant increase in computational
expense when computing the scene point regularization er-
rors. We aim to address this issue in future work.

B. Dense Rendering

Using the visual odometry results for dataset A, an ap-
pearance map of the pipe network was produced which may
be used as input for automated corrosion algorithms and
direct visualization in rendering engines. Fig. 7 shows the
appearance map of the pipe network, including a zoomed in
view of a small straight section (Fig. 7a) and T-intersection
(Fig. 7b) to highlight the detail. The consistency of the
appearance, namely the lettering on the pipes, demonstrates
accurate visual odometry estimates.

The appearance map produced is a dense 3D grayscale
point cloud which could be extended to a full facet model.
The Euclidean point cloud coordinates were set using the
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(a) Small straight section 1 meter in length. Middle column shows an
original fisheye image (top), and dense reconstruction near the same
location in the pipe (bottom). Right column is a small section of pipe
cropped from original image (top), and dense reconstruction (bottom).

(b) T-intersection.

(c) Full dataset.

Fig. 7: Dense 3D grayscale appearance map of the pipe
network. (a) and (b) are zoomed in sections of (c).

cylinder fitting results for both the straight sections and T-
intersections. The grayscale intensity value for each point
was obtained by mapping it into all valid fisheye image
keyframes, and then taking the average sampled image
intensity value over all the keyframes. Here, valid is defined
as having a projected angle of colatitude 50◦ < θ < 90◦

(i.e. near the periphery of the fisheye images where spatial
resolution is a maximum). A range of improvements are
being developed to mitigate the strong lighting variations
in the rendered model. As evident in Fig. 7, these are

most prevalent in the T-intersections were the raw imagery
frequently contains strong specular reflections and saturation.

V. CONCLUSIONS
An initial fisheye visual odometry and mapping system

was presented for non-destructive automated corrosion de-
tection in LNG pipes. To improve the accuracy of the system,
various cylinder fitting constraints for straight sections and
T-intersections were incorporated as regularization terms
in sparse bundle adjustment frameworks. The camera pose
estimates and fitted cylinders are used as the basis for
constructing dense pipe renderings which may be used for
direct visualization.

Results were presented for two datasets logged in a
400mm (16 inch) internal diameter fiberglass pipe network.
To evaluate the accuracy of the pipe network reconstruction,
we compared the distances between all T-intersections in
the network. All distance measurements obtained were well
within ±1% of the ground truth laser distance measurements.
Moreover, the dense appearance maps produced further
highlighted the consistency of the camera pose and scene
reconstruction results.

Directions for future work include the development of
structured lighting for estimating the internal pipe radius, and
spline-based cylinder axis modeling. Both have the potential
to improve the accuracy and flexibility of the system.
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