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Abstract— This work presents a method for underwater
stereo localization and mapping for detailed inspection tasks.
The method generates dense, geometrically accurate recon-
structions of underwater environments by compensating for
image distortions due to refraction. A refractive model of the
camera and enclosure is calculated offline using calibration
images and produces non-linear epipolar curves for use in stereo
matching. An efficient block matching algorithm traverses the
precalculated epipolar curves to find pixel correspondences
and depths are calculated using pixel ray tracing. Finally the
depth maps are used to perform dense simultaneous localization
and mapping to generate a 3D model of the environment.
The localization and mapping algorithm incorporates refraction
corrected ray tracing to improve map quality. The method
is shown to improve overall depth map quality over existing
methods and to generate high quality 3-D reconstructions.

I. INTRODUCTION

Underwater simultaneous localization and mapping
(SLAM) has a wide breadth of applications, including coral
reef inspection and monitoring [1] [2], inspection of archae-
ological sites [3], geological surveying [4], and profiling of
northern icebergs [5]. Operating underwater presents many
challenges such as unpredictable motion due to surf and
currents, particulate matter and sediment floating in the wa-
ter, and diverse and often unstructured environments. Also,
many common sensors do not function underwater including
GPS and LIDAR sensors. This work focuses on the offline
generation of detailed underwater 3D reconstructions, which
can be challenging to perform underwater.

Many researchers have developed submersible vehicles
which are capable of SLAM operations in various forms.
Zhou and Bachmayer [5] and Clark et al. [3] have suc-
cessfully used sonar sensors for the mapping of underwater
structures. Sonar sensors however are limited in that they can
only map macro-features due to their limited resolution.

Camera based methods are commonly used to get more
detailed reconstructions but present additional challenges
including poor lighting conditions, washed out colors, and
distortion due to refraction. One common method of gener-
ating maps from camera images is image mosaicking [6]. The
mosaicking method by Bagheri et al. can produce detailed
two dimensional maps of the sea floor but is not capable
of reconstructing 3-D features. Mosaicking, however, has
been combined with sonar sensing to generate 3-D top down
topological maps by Elibol et al. [7].
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Recent developments in stereo SLAM have also been
implemented underwater in order to create better reconstruc-
tions. These techniques use stereo cameras to generate depth
maps which can be used to create detailed reconstructions
of the environments. Warren et al. [1] were able to generate
high quality maps of a coral reef by using visual odometry
for pose estimation and overlaying consecutive stereo frames
to create a 3-D mesh. Alternatively, in [2], a feature based
approach is used to to track features over time and and align
successive frames.

One of the major complications in underwater stereo
SLAM is caused by the refractive interface between the air
in the enclosure and the exterior water. It is insufficient
to directly apply terrestrial techniques to the underwater
mapping problem. When not taken into account, refraction
can cause major distortions to the individual camera images
as well as to the calculated depths produced from the stereo
correspondences. These errors accumulate over time and
result in larger errors in the overall map. Hogue et al. [2] used
an additional inertial measurement unit (IMU) to compensate
for the drift but this could not remove it completely.

Several researchers have presented methods to directly
account for refraction in images. Mechanical methods such
as using calibrated view-ports that physically compensate for
the difference of refractive indices have been proven effective
[8], but are costly and reliant on precise alignment. Radial
correction is commonly used for refraction compensation
by including it in the lens distortion parameters [9]. This
method takes advantage of the fact that for any given depth,
refraction exactly matches a radial distortion provided the
refractive plane is perpendicular to the optical axis. However,
this equivalent radial distortion varies with depth, creating
a situation where the single view perspective model fails
when scenes move away from the calibrated depth range
[8]. For underwater stereo, radial correction has been shown
to lead to inconsistent results [10], as it becomes difficult
to establish correct correspondences. This occurs because
the traditional epipolar assumption is no longer valid: the
epipolar rays through space no longer appear as lines in the
second camera, but rather as curves that are dependent on
the parameters of the refractive interface [10][11].

Recently new methods for performing dense SLAM have
emerged, particularly for real time applications. RGB-D
SLAM [12] uses stereo camera data and leverages scale
invariant features to perform frame to frame matching and
optimizes over the global network. The maps are generated
by projecting the data from all frames into 3-D space. This
method is also susceptible to degradation due to lighting
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and contrast effects underwater. In contrast to the above
methods, KinectFusion [13] does not rely on RGB infor-
mation to construct dense 3-D models but instead uses only
depth map information from the Microsoft Kinect sensor.
KinectFusion aligns frames to a global map representation
using an iterative closest point optimization and refines the
map by averaging new information over time. This gives
KinectFusion the ability to generate a detailed map even
from noisy input data and to be unaffected by changes in
lighting conditions.

The contribution of this work is the definition of a new
stereo SLAM method which correctly accounts for refraction
at both the stereo matching and 3D reconstruction stages of
processing to generate dense geometrically accurate maps
of underwater environments. The method is evaluated for
both stereo depth map and overall map reconstruction quality
in an underwater scene and is compared against the radial
correction method.

II. REFRACTIVE PROJECTION

The method used for correcting refractive effects in un-
derwater stereo imaging follows the approach first proposed
by [14] and used in [10]. First, it is important to define the
methods by which pixels are transformed into and out of
3D space from a given camera image. Given a known phys-
ical configuration and depth measurement, it is possible to
perform refraction-corrected projection to obtain the correct
location of a 3D point observed beyond a refractive surface
and to project 3D points back into the camera frame. These
projections are necessary in order to generate the epipolar
curves needed for stereo matching, calculate accurate depth
maps, and to generate accurate 3D map reconstructions.

In this work it is assumed that the refraction interface
is planar and occurs as a single refraction between the air
and water. In reality the enclosure panel lies between the air
and water, and refraction occurs at both air/enclosure and
enclosure/water interfaces. However, the error induced by
the panel is bounded to be no more than the thickness of the
enclosure panel and therefore it is assumed that the enclosure
is ideal, having no thickness and causing no refraction [10].

Refraction corrected projection is performed by casting
rays through the refractive interface where the refractive
interface P in front of the a camera is defined by the plane
unit normal NP ∈ R3 and the distance to the plane dP ∈ R.
A projective ray, r ∈ R3, in air for a given pixel, u ∈ R2,
is calculated by applying the inverse of the air-calibrated
intrinsic camera matrix K ∈ R3×3, such that r = K−1u̇.
The ray r is then scaled to intersect the refractive interface
at the point p0, given by

p0 =
dP

−rT (NP )
r (1)

The direction of the ray is then refracted at the interface
according to Snell’s Law:

ni sin θi = nr sin θr (2)

where θi is the incident angle between the ray and the surface
normal, θr is the angle of the refracted ray, and ni and nr

are the refractive indices of the incident medium and the
refractive medium respectively. Computing the unit vector r̂
of r allows us to apply Snell’s Law and yields the refracted
ray direction r′ ∈ R3 [14]:

r′ =
ni
nr
r̂ −

(
−ni
nr

cos θi + cos θr

)
NP (3)

The direction r′ and the point p0 define the ray projected
from pixel u through the refractive plane. The function Ψ :
R2 → R3 maps the given a pixel u to the refracted ray r′,
and γ : R2 → R3 to the ray offset p0 in the frame of the
camera. Given dP and NP for a refractive plane, and a depth
measurement at pixel u, the combination of Ψ(u), and γ(u)
can be used to calculate the pixel location in 3D space.
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Fig. 1. Reprojection of point pk across a refractive interface. The optical
axis of the camera need not align with the plane’s normal

The reprojection of a point pk into the camera as in Figure
1 is found by the following process. First, pk is projected
onto the refractive interface’s normal to obtain p′k. Then,
using the points pk and p′k we can define z = ‖p′k − d‖ and
x = ‖p′k − pk‖ where z represents the depth of the point
pk beyond the refractive plane and x represents the distance
from the point pk to the vector NP through OR. The values
of x and z can be used along with the refractive indices ni
and nr, to formulate the quartic equation for h,[(

nr
ni

)2 (
d2P + h2

)
− h2

]
(x− h)2 − h2z2 = 0 (4)

where Equation (4) is derived by applying Fermat’s principle
of least time as in [10]. In this application, only one of the
four roots of Equation (4) is physically valid, and it will
always lie in the interval h ∈ [0, x] and be the only root in
that interval. The valid root of (4) corresponds to the point
where the refracted ray emanating from the source intersects
the refractive plane. The point, C, which defines the location
of intersection of the vector NR from the camera origin with
the refractive interface is found by

C = −dPNP (5)
and the point pr where the ray from the camera origin to the
point pk would pass through the interface if no refraction
occurred is found by

pr =
dP

−pTk (NP )
pk (6)

The point, p∗k, where the refracted ray from the object to the
camera origin intersects the interface is finally given by

p∗k = h
pr − C
‖pr − C‖

+ C (7)
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The point p∗k can now be projected into the image without
concern for the refractive plane by using the camera’s
intrinsic camera matrix, K and the function π = (x/z, y/z).
The reprojected pixel, uk, is then

uk = π(Kp∗k) (8)

The function Φ : R3 → R2, uk = Φ(pk), is defined using
the reprojection equations and maps a a 3D point to a pixel.

III. EPIPOLAR CURVE GENERATION AND
TRIANGULATION

A standard stereo camera algorithm attempts to match
pixels in the reference image with those in the target image
by searching linear epipolar curves through the target image.
However, when refraction is introduced to the stereo camera
the epipolar curves become non-linear and are dependent on
the refractive properties of the system. The stereo setup is
assumed to be a binocular baseline stereo setup with a known
transformation, Tc, linking the left and right camera frames
and corresponding rotation, Rc ∈ SO3.

The epipolar curve for a pixel is obtained by casting
a ray through the pixel, u, from the left reference image
and then finding the set of the ray’s reprojections, Qu =
{q1u, q2u, ...qmu }, in the right camera image. The set Qu defines
the epipolar curve of pixel u and contains correspondence
points in the second image. The ray points used to generate
Qu are obtained by sampling points along the refracted ray,
converting them to the right camera’s local frame using Tc,
and finding the reprojections of the points, pk, in the right
camera image such that uk = Φ(pk).

We exhaustively sample the curve to obtain all of the rel-
evant elements qiu ∈ Qu for a specified range of depths and
store the values in a lookup table for depth map calculation.

Once the set of pixel correspondences are found, the depth
measurements can be calculated based on the corresponding
pixel locations, uL and uR. The depth measurements are
computed by triangulating the intersection of the refracted
rays projected from each of the pixels, using the interface
parameters NR, dR and NL, dL for the right and left camera
respectively. The rays from the left and right pixels, r′L
and r′R are computed such that r′L = RcΨ(uL) and r′R =
Ψ(uR) with the corresponding offests. Ideally the rays would
intersect exactly at one point, but in reality this does not
occur. The points, p′L, p′R, along each ray that form the
shortest line segment connecting the two rays can be found
and the midpoint can then be taken as the estimate of the
3D triangulated point p̃ ∈ R3.

IV. REFRACTION CALIBRATION

It is assumed that the physical position and orientation of
the camera system relative to the refractive plane, i.e. relative
to the camera enclosure, is constant and therefore aquatic
calibration need only be performed once as long as the
camera is not moved relative to the enclosure. A second cali-
bration routine is performed to identify the parameters of the
refraction model once the stereo camera has been calibrated
in air. Using the air-calibrated system, images of a known
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Fig. 2. Refraction corrected triangulation of 3-D point P . The ray directions
from the left and right cameras, rL and rR respectively, are refracted at
points pL,0 and pR,0 on the interface to the new directions r′L and r′R.

checker-board are captured underwater and used to establish
the corners as a set of known feature correspondences, A
non-linear minimization can then be performed to determine
the refractive parameters φ = {ni, nr, dL, dR, NL, NR}. The
error function is chosen as the sum of the squared distances
between the corresponding points p′L, p′R, determined using
triangulation as seen in Section III

It is important to ensure that the calibration images include
the checker-board at multiple depths and cases where the
corresponding corners appear near the edges of the image as
these are the areas where refraction will be most prominent.

V. STEREO BLOCK MATCHING

To perform stereo matching between the cameras, a sum
of absolute differences (SAD) block matching algorithm [15]
is used. Performing this 1-D optimization along the epipolar
curve for each pixel in the reference image generates a stereo
disparity map. The depths for each of the corresponding
pixel pairs can then be determined by using pixel ray
tracing through the refractive interface to find the point of
intersection between the left and right image ray.

The non-refractive block matching approach can be per-
formed relatively quickly by leveraging the linear search
paths and can be easily parallelized. The search for cor-
respondence is simply the minimum of the precalculated
SAD sum for each pixel. The use of non-linear epipolar
curves maintains the inherent possibility for parallelized
implementations but is slowed down considerably due to the
non-linear search paths not having a simple mapping to and
from the pixel difference space. The optimization of the non-
linear block matching is not investigated here but remains a
challenge for future work.

VI. DENSE LOCALIZATION AND MAPPING

The localization and mapping method used is adapted from
KinectFusion[13]. The KinectFusion algorithm has many
beneficial characteristics which make it specifically suitable
for underwater inspection tasks and can be modified for use
with stereo camera and to specifically account for refraction.
The algorithm generates detailed maps while allowing for
denoising, and is largely lighting invariant.

The map is represented by a global 3-D voxel grid
which contains discretized truncated signed distance function

3352



(TSDF) values [16]. The algorithm proceeds by iterating
through four main stages:

1) Measurement Pre-processing: New measurements
are used to generate dense vertex and normal maps.

2) Pose Estimation: The new position of the camera is
estimated using an iterative closest point approach.

3) Map Update: The map TSDF values are updated with
the current measurement information

4) Surface Prediction: A predicted surface is generated
by projecting the map into the current camera estimate.

One of the vital aspects of the algorithm is the ability to
project image pixels into and back from 3-D space. Under
normal operation in open air this is a trivial task which is
accomplished using the camera’s intrinsic parameter matrix.
However, when the camera is submerged underwater this task
is no longer trivial and requires taking into account the effect
of the refractive interface.

The measurement pre-processing stage incorporates re-
fraction corrections in order to correctly project depth image
pixels into 3-D space. A new measurement consists of a
depth map, Dt, where each image pixel, u, is a raw depth
measurement, Dt(u) ∈ R. A pixel in the vertex map can
then be defined from the corresponding pixel location and
the depth value such that the vertex point in the 3-D camera
frame, pc ∈ R3 is defined as

pc = Dt(u)Ψ(u) + γ(u) (9)

for all u, in the depth image. This generates the corrected
vertex map, Vc,t, in the camera frame, c such that Vc,t(u) ∈
R3. The corresponding normal map, Nc,t can be computed
by calculating the cross product of a vertex point and its
neighboring pixels.

The pose estimation process is performed by employing
point to plane iterative closest point (ICP) optimization
[17] and the fast projective data association algorithm for
correspondences. We denote the camera pose in the global
frame, g, at time t by the transformation matrix, Tg,t. Vertex
correspondences are computed by calculating the predicted
pixel location

û = Φ(T̂ k
g,t−1Vc,t) (10)

where T̂ k
g,t is the current transform estimate at ICP iteration

k. The measured and predicted vertex maps must contain a
valid value at u, and correspondences are thresholded based
on surface normals and point to plane distances. Invalid
correspondences are not included in the map update stage
to remove outliers from distorting the map. In this manner
the alignment of the measured surface (Vc,t,Nc,t) and the
predicted surface (V̂g,t,N̂g,t) is performed and generates the
new camera pose Tg,t.

The map update stage takes the aligned measurement
information and fuses it into the global map using the TSDF
values. The TSDF is implemented as a discrete voxel grid
where each cell has both the TSDF value, F ∈ R, and a
confidence weighting W ∈ R+. The new TSDF value of a
cell located at point, pg ∈ R3, is calculated by projecting pg
to a specific camera pixel, û, and calculating the difference

between the measured depth, Dt(u), and the distance to pg .
The depth difference δ ∈ R is

δ = ||T−1g,t pg||2 −Dt(Φ(T−1g,t pg)) (11)
The difference value, δ, is then truncated and normalized to
get the measured value of Fm. The new value of the TSDF,
Ft is the weighted average between the measured, Fm, and
current value, Ft−1.

The surface prediction stage generates a predicted vertex
map, V̂g,t+1, and surface normal map, N̂g,t+1, for use
in the pose estimation stage of the next iteration of the
algorithm. The predicted maps are generated by ray tracing
from the current estimate of the camera position into the
map. The camera rays used for ray tracing are calculated
using the refraction equations seen previously. By accounting
for refraction in the surface prediction stage the predicted
surface more accurately represents what the raw camera
measurements produce. As such, the pose estimation stage
will provide more accurate matching results which will
improve the resulting map.

The Kinect fusion algorithm leverages GPU parallelization
to vastly increase performance and allow for high frame
rates and real time operation. Our modified approach still
maintains the same ability to be parallelized but increases
computation by a non-trivial constant factor due to the
increased number of operations needed to account for re-
fraction. However, since the bottle neck for this type of
GPU programming has generally been memory and not
computation the modified algorithm is still able to be run
at near real time speeds on current graphics processors.

VII. EXPERIMENTAL RESULTS

The proposed method was evaluated using a stereo cam-
era setup which included a Point Grey Bumblebee2 stereo
camera mounted in a custom waterproof enclosure. The
data was collected at the University of Waterloo pool with
the addition of artificial submerged objects of various sizes
and shapes to generate static environment. The camera was
moved manually by an operator through the environment
for the various test cases. Two main results of system are
presented. First, the improvement in the raw stereo depth
map generation is demonstrated and evaluated based on pixel
correspondences and observed curvature on a flat surface.
Second, the results of the overall mapping are presented and
demonstrate the improvements to the global localization and
mapping accuracy over time. The results in both cases are
compared against radial correction calibrated at a depth of
2.75m.

A. Stereo Depth Image Correction

The quality of the final map is directly correlated to the
quality of the depth maps that can be produced by the stereo
camera setup. In the case where the refraction distortion is
not corrected, the depth maps can be degraded. In Figure 3
two representative depth maps are presented. The top row
of images presents depth maps with and without refractive
correction for a flat wall parallel to the image plane. The
bottom row presents depth maps for a varied scene containing
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(a) Raw image of flat textured surface 0.7m
away from the camera

(b) Radial correction on a flat textured
surface 0.7m away from the camera

(c) Full refraction correction on a flat tex-
tured surface 0.7m away from the camera

(d) Raw image of example scene (e) Radial correction on an example
scene

(f) Full correction on example scene

Fig. 3. Comparison of standard radial correction versus our full refraction correction technique on depth map quality and density. False coloring is applied
to the images based on depth values. Grey represents a point which failed to be corresponded.

multiple non-planar objects such as pots and containers. The
main characteristics of interest when evaluating the depth
maps are that of erroneous curvature of flat surfaces as well
as correspondence quality of the stereo matching.
Figure 3 shows that in the case of the flat surface there are
still significant errors present when using radial correction
causing a false impression of curvature on the surface. The
refraction corrected image does not show the false curvature
and correctly calculates a constant gradient across the whole
image. The image shows a slight vertical gradient because
the test rig was not aligned perfectly parallel to the surface.
The images also show that the number of incorrect corre-
spondences is significantly higher in the radial correction
case, particularly in the corners of the images. The image
corners are the most affected by the effects of refraction
and as such the pixel correspondences fail most often in
these regions. The depths of the example scene are better
in the case of the refractive correction. Similar to the flat
surface case, areas in the corners of the image tend to have
significant degradation in the radial correction case as do
areas which vary significantly in depth. Overall the refraction
corrected depth map of the example scene shows smoother,
more dense, and more accurate measurements.

The curvature of the flat wall in each of the images can be
calculated quantitatively using principle curvature estimation.
Principle curvature is calculated at a point by performing
principle component analysis on the surface normals in a
neighborhood in the tangent plane of the given point.

Correspondence can also be quantitatively accessed by
taking the percent of the image which has a valid correspon-

dence. In this case we will assume that any correspondence
which was not filtered is valid and will be included in
the total. Table I presents the curvature and correspondence

TABLE I
SUMMARY CURVATURE AND CORRESPONDENCE PERCENTAGES FOR THE

RADIAL AND FULL CORRECTION CASES ON THE FLAT SURFACE.

No
Correction

Radial
Correction

Refractive
Correction

Principal Curvature 0.0540 0.0114 0.0045
% Correspondence 65.3 75.6 91.2

results, which demonstrate that the refraction corrected depth
maps are notably improved over the radial correction case.

B. Map Reconstruction Quality

To evaluate the overall map reconstruction quality the
presented method was performed on an underwater dataset
in which an artificial scene of interest was constructed out
of plastic containers of various sizes and dive weights. The
main characteristics of interest when evaluating the map are
that of erroneous curvature of flat surfaces as well as general
geometric consistency in size and shape of objects. Figure
4 shows the comparison of the map generated with radial
correction versus the map generated using our full refraction
correction method.

The refraction corrected map has smoother features and
flat surfaces show less curvature. This is due to the fact
that consecutive frames have much better global consistency
and thus align more accurately to the global map. It should
also be noted that the radially corrected version has sig-
nificantly worse convergence properties since the ICP has
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(a) With radial correction (b) With refraction correction

Fig. 4. Comparison of SLAM performance in mapping an underwater scene using both a)radial correction and b) full refraction correction

worse correspondence information to use when aligning the
frames. The global consistency and ICP alignment of the
map can be demonstrated quantitatively by comparing the
average error in the ICP minimization and the percentage of
valid correspondences. This information shows how closely
the depth image matches to the global map. If a given depth
image matches the global map with minimal error and has
a high number of correct correspondences the map can be
considered to be an accurate representation of the measured
scene. Table II summarizes the results of the ICP alignment.

TABLE II
SUMMARY OF ICP ERROR AND CORRESPONDENCE REJECTION.

No
Correction

Radial
Correction

Refraction
Correction

Mean ICP error 0.6912 0.3988 0.2644
% Correspondence 93.77 97.25 97.73

The ICP matching results on the refraction corrected
map are significantly better, showing a 33.7% reduction in
error over radial correction, indicating that the generated
reconstruction is a better match to the actual measured scene.

VIII. CONCLUSION

This work demonstrates that stereo SLAM results for
underwater applications can be improved by accounting for
refraction in the stereo matching and SLAM algorithms. A
method for refraction compensated SLAM is presented and
shown to improve both depth map quality from stereo camera
sensors as well as the overall resulting 3-D reconstruction.
Future work includes optimization of implementation for
real time performance as well as outdoor field trials under
differing environmental conditions.
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