
  

  

Abstract—Recently, language education has a great demand 
from elementary school to adults. Robots are used as teaching 
assistants in Robot-Assisted Language Learning. It is very 
effective to use robots for language education. However, the 
robots may have some problems. One of the problems is to get 
bored when interacting with robots. This paper deals with this 
issue by using a method based on social cognitive theory. We 
discuss the role of robots based on mutual learning in language 
education. Next, we explain the concept of self-efficacy for 
evaluating the learning condition of robots. We propose a 
method to express self-efficacy using fuzzy control. The essence 
of the proposed method is to adapt to human’s state. The 
experimental results show the effectiveness of the proposed 
method for long-term communication between a human and a 
robot. 

I. INTRODUCTION 

 There has never been greater enthusiasm and interest in 
English education. In order to acquire English, we need to 
have opportunities to use English language. In general, the 
communicative approach is important in the second 
language education [1], hence we need to have conversation 
partner in daily life to practice the communication. 
Therefore, we can apply intelligent robots and practice the 
conversation with these robots like with humans. 
 In robot-assisted language learning (RALL) shown in 
Table I [2-7], a humanoid robot named Robovie has taught 
English at an elementary school for two weeks [2]. It is an 
effective way to motivate students learning English, 
although it is less effective than educational software. In 
Korea, RALL has been studied actively. It is also called 
r-learning. The robot helps human teachers and does 
role-playing with the students. Robot IROBI is used as a 
home robot and teaching assistant in a classroom [3]. The 
robot was used to examine the learning effect on children. 
The application of robots in learning is good compared with 
using books, tapes, or computers. Robots are also used as 
native teachers in rural areas [4]. As the teachers prefer not 
to leave big cities, the students have few opportunities to 
take classes by them. In [5], there is no significant difference 
in the listening skill, but the speaking skills are improved. In 
[6], the authors report the design and testing of five 
instruction scenarios for teaching second language. Tanaka 
et al. use a care-receiving robot (CRR) at an English learning 
school and accelerate the children’s spontaneous active 
learning by teaching [7]. However, these robots are not 
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autonomous, therefore it is difficult to communicate with 
them for long time. 

In the research of long-term communication, the robot 
was used for three months, however it was not completely 
autonomous. Furthermore, the robot was located in a 
classroom, and had to communicate always to certain people	
 
[8]. Pseudo-development and confidential personal matters 
enable the robot to do long-term interaction. In this case the 
robot changed interaction patterns along with each child’s 
experience, and the robot seems as if it learns something 
from the interaction. It means that the robot needs the 
capabilities of acquiring new information and adapting to 
personal preferences. Suga et al. realized a user-adaptive 
communication robot [9]. Through the interaction, the 
subjects evaluated the robot and the robot learned 
appropriate combinations between input and output. For 
continual and autonomous learning, Kawamoto et al. 
proposed a mechanism of self-regulated learning. It guided 
an agent’s learning process and applied it for a maze 
exploration [10]. 

Previous researches on language acquisition although 
carried out the acquisition method, however they did not 
verify how the obtained language was used for subsequent 
communication [11,12]. 

We proposed a method where the robot learns words by 
associative learning [13]. The robot can learn and adapt to a 
partner by composing user-adaptive learning. However, it is 
not decided when these learning are performed. In this paper 
we propose self-regulated learning based on self-efficacy for 
the robot to decide which type of learning the robot should 
apply. Self-regulated learning has focused on how a student 
controls his academic ability cognitively, motivationally, 
and aggressively [14]. 

Bandura explained that self-efficacy refers to an 
individual’s assessment of his or her ability to cope 
satisfactory with particular situations [15,16]. It arises from 
the relation between efficacy expectation and outcome 
expectation of its behavior. 

 

II. ROBOT PARTNER  

We have developed a PC-type physical robot partner 
called MOBiMac (Fig.1) in order to realize human-friendly 
communication and interaction. This robot has two CPUs 
and many sensors such as CMOS camera, microphone, and 
ultrasonic sensors. Furthermore, the information perceived 
by a robot is shared with other robots by wireless 
communication. Therefore, the robots can easily perform 
formation behaviors. We have applied steady-state genetic 
algorithm (SSGA) [17], spiking neural networks (SNN) [18], 
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self-organizing map (SOM) [19], and other methods for 
human detection, motion extraction, gesture recognition, and 
shape recognition based on image processing [20]. 
Furthermore, the robot can learn the relationship between the 
numerical information as a result of image processing and 
the symbolic information as a result of voice recognition 
[13]. MOBiMac can be also used as a standard personal 
computer.  

We have used Apple Inc.’s iPad as pocket robot partners, 
because it is easy to use the touch interface and accelerometer 
in the development. In this paper, we use iPad as a face of the 
robot to interact with learners. Figure 2 illustrates the 
overview of the interfaces used in iPad. Human can interact 
with the robot by touching the robot’s mouth or using a 
software keyboard.  

 

 

Figure 1.  Human-friendly robot partner: MOBiMac 

 
Figure 2.  The screenshot of inputting a word to the robot 

 

III. LEARNING 

Three types of learning are discussed in this Section. The 
first one is mutual learning, which is performed between a 
robot and a human, where both the human and the robot also 
learn. The second one is associative learning, where 
relationships between different forms of inputs are learned. 
The last one is user adaptive learning, where the human’s 
preferences, the human’s attitude towards a set of objects, 
are also considered. 

   Figure 3 illustrates the architecture of our applied system. 
Humans can provide four kinds of information to the robot. 
The “Word” in Fig. 3 is what the user wants to teach for the 
robot. It is a word that the robot has to learn like an exam. 
The “Image” can refer to the human face or any objects. It is 
the information that relates an object or situation with the 
word.  The “Reply” means what the human speaks and the 
robot recognizes by voice recognition. The “Evaluation” is 
used for evaluating the robot’s speech using touchpad. The 
evaluation can be either good or bad. 
 

 
Figure 3.  System configuration 

A.  Mutual learning  
Mutual learning was proposed as a framework for 

long-term communication [21].  During the mutual learning 
the robot can learn and the human can learn as well. The 
robots learn words from human and humans learn 
conversation with robots. Since humans will get bored if they 
experienced all the patterns that the robot has, it is difficult to 
continue the communication. The purpose of mutual learning 
is to mutually improve. The human and the robot learn and 
become partners and they keep learning in this way. By this 
method, the robot continues acquiring new information and it 
will be possible to attain long-term communication as long as 
the student has motivation to study English. The situation is 
depicted in Fig. 4. The applied procedure is as follows: 

1. A learner touches the robot’s face and inputs an English 
word by using a software keyboard (Fig.5 (a)). 
2. The robot learns the relationship between the word and 
the object seen by the camera (Fig.5 (b)). The robot 
increases the pattern of conversation.  
3. The robot utters a sentence containing the learned words. 
After that the learner replies to the robot (Fig.5 (c)).  

TABLE I.  ROBOT-ASSISTED LANGUAGE LEARNING 

Type
Robots IROBI [3] Telepresense robot [4] Mero and Engkey [5] Humanoid robot [6] Robovie [2] Nao [7]

Interest Interest Listening Cheering Motivation Care-Receiving
Concentration Confidence Speaking Long-term Interaction Learning by teaching
Achievement Motivation

Situation Recreation hour English learning school
Country Taiwan

Teaching Assistant Learning Companion

In class
Korea Japan

Aim
Conversation practice
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4. The learner can do English conversation. Finally, he 
evaluates the conversation. He strokes the robot’s face as a 
reward or sticks the cheek as a punishment (Fig.5 (d)).  
 

 
Figure 4.  Mutual learning 

Figure 5 illustrates the actual use of the robot. 
 

       

 (a) Teaching a word      (b) Showing an object 

      
  (c) Replying to robot       (d) Evaluating conversation 

Figure 5.  The appearance of human-robot communication 

B. Associative learning  
For a long-term memory, we use a simple spike response 
model of a neural network to reduce the computational cost 
[18]. Spiking neural networks are used for memorizing 
spatiotemporal information.  
First of all, the internal state hi(t) is calculated as follows: 

   
  
hi (t) = tanh hi

syn (t)+ hi
ext (t)+ hi

ref (t)( ) .             (1) 
The hyperbolic tangent is used to avoid the bursting of 
neuronal fires, hi

ext(t) is the input to the ith neuron from the 
external environment, and hi

syn(t) including the output pulses 
from other neurons is calculated by  

   
  
hi

syn (t) = γ syn ⋅hi (t −1)+ wj ,i ⋅hj
EPSP (t)

j=1, j≠i

N

∑ .          (2) 

Furthermore, hi
ref(t) indicates the refractoriness factor of the 

neuron, wj,i is a weight coefficient from the jth to the ith 
neuron, hj

EPSP(t) is the excitatory postsynaptic potential 
(EPSP) that is approximately transmitted from the jth neuron 

at the discrete time t, N is the number of neurons, and γsyn is 
the temporal discount rate. The presynaptic spike output is 
transmitted to the connected neuron according to the EPSP, 
which is calculated as follows: 

    
  
hi

EPSP (t) = κ n pi (t − n)
n=0

T

∑ ,         (3) 

where κ  is the discount rate (0<κ<1.0), pi(t) is the output of 
the ith neuron at the discrete time t, and T is the time 
sequence to be considered. If the neuron is fired, R is 
subtracted from the refractoriness value as follows: 

   
  
hi

ref (t) =
γ ref ⋅hi

ref (t −1)− R if pi (t −1) = 1

γ ref ⋅hi
ref (t −1) otherwise

⎧
⎨
⎪

⎩⎪
       (4) 

where γref is the discount rate. When the internal potential of 
the ith neuron is larger than the predefined threshold, a pulse 
is outputted as follows: 

   
pi (t ) =

1  if  hi (t ) ≥ qi
0  otherwise

⎧
⎨
⎩          (5) 

where qi is the threshold for firing. The weight parameters 
are trained based on the temporal Hebbian learning rule as 
follows: 

   wj ,i ← tanh γ wgt ⋅wj ,i +ξ
wgt ⋅hj

EPSP (t −1) ⋅hi
EPSP (t)( ) ,    (6) 

where ξ wgt is the learning rate and γ wgt is the discount rate. 
 Figure 6 depicts a situation where the robot performs 
associative learning [13]. The robot learns relationship 
between words from touch interface and attributes from 
image processing. In Fig. 6(a) the original image (a 
photograph) is displayed. Figure 6(b) shows differential 
extraction, while Fig. 6(c) illustrates the reference vectors of 
SOM corresponding to gestures. The object recognition 
results and the human detection results by SSGA are shown 
in Fig. 6(d) and (e), respectively. The green box indicates the 
candidates for human face position produced by SSGA, the 
red box indicates the face position produced by human 
tracking, and the pink box indicates the hand position. 
Figure 6(f) illustrates the EPSP of the spiking neurons, 
which indicates the spatiotemporal pattern captured from the 
subject’s hand motion. The red rectangle is EPSP, and it 
gradually diminishes, turns blue, and becomes smaller. 
 

 
Figure 6.   The robot performs associative learning interacting with the 

person 
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C. User-adaptive learning 
Human can perform long-term communication to learn 

others’ preferences in a conversation. By associative 
learning, the robot can learn a language, however the robot 
does not consider human preferences. In order to learn 
human preference as well, user-adaptive learning is applied. 

Although the robot can easily recollect what was learned 
repeatedly, but what is being learned only once may be 
important as well. Kitano proposed the hormonal modulation 
learning which combined a genetic algorithm and 
reinforcement learning for this problem [22]. Furthermore, 
Suga et al. applied this method to communication of human 
and robot. We are arranging the method by interactive 
evolutionary computing which Suga et al. [9] proposed for 
conversation. 

The flowchart of user-adaptive learning is depicted in Fig. 
7. 
 

 
Figure 7.  The flowchart of user-adaptive learning 

1. ε-greedy selection chooses an action at random by a 
certain probability epsilon, and the rest chooses the action 
with the greatest Q-value [23]. By ε-greedy selection, the 
robot chooses the contents of the conversation from the 
long-term memory to the working memory. Working 
memory is selected from long-term memory and it decides 
the next utterance in the conversation.  
 
2. The robot performs a conversation with human using the 
selected utterance, and the human evaluates the utterance. 
The robot sets the selection probability of the selected 
utterance to 0 as a lethal gene if the evaluation is punished. 
If the evaluation is rewarded, the selection probability is set 
to half. Here, the Q-value is the selection probability of the 
utterances. If the Q-value is low, we judge the user having 
no interests in the conversation because the average of 
Q-value is decreasing if the human gives punishment. 
Reversely, if the human gives reward, the average of 
Q-value is big. It estimates that the human is satisfied with 
the conversation. So the average of Q-value is taken as 
desire to utterance. For the evaluation, we use a touch 
interface for the input to evaluate the robot’s utterance.  
 

3. Genetic operation will be performed if the selected genes 
are evaluated. Mutation randomly increases the selection 
probability of the contents of the selected utterance. It is 
applied in order to make the conversation content not to 
consist of only those contents, which has similar attributes. 
Crossover increases the selection probability of that 
utterance that has similar attributes with the selected 
utterance. This can lead to choose that utterance that the 
human is interested in. 
In the crossover, the selection probability of the contents 
close to the selected utterance is updated by the following 
formula:  

Qt+1(s,a ') = (1−α )Qt (s,a) +α[r + γQt (s,a)]   (7) 
where s expresses a state and it is chosen from small, 
medium, or big value of self-efficacy. Self-efficacy will be 
explained in the next Section. In Eq. (7) a is the contents of 
utterance, r is the reward/punishment. In case of reward r is 
1, in case of punishment r is -1. α is learning rate and γ is 
discount rate. a’ is decided by the smallest distance among 
the attribute of utterances: 

a ' = argmin
i
(wj ,a − wj ,i )       (8) 

Reinforcement learning updates the last behavior, but it is 
meaningless to utter the same content repeatedly during the 
communication. By the cognitive principle of the relevance 
in relevance theory, information processing of humans pays 
attention to the information, which has relation for himself or 
herself [24]. Minewaki et al. proposed an interpretation 
method of utterances using relevance theory [25]. They 
define the cognitive effect and the processing effort, and 
apply those to multi-objective optimization. We use the 
distance of the attributes as fitness function. We assume that 
the robot selects the utterance of the smallest distance of the 
attributes since the processing effort is small, and the robot 
chooses it as utterance at t+1. 

 

IV. SELF-EFFICACY AND SELF-REGULATED LEARNING 
USING FUZZY CONTROL  

A. Self-efficacy of the robot  
Generally, the self-efficacy is expressed by the extent with 

three dimensions of Level, Strength, and Generality in 
efficacy expectation (Fig.8).  
 

 

Figure 8.  The dimensions of self-efficacy 
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In this paper, we use Strength and Generality. The robot 
makes an utterance suited for the human’s capability. The 
value of self-efficacy has three states, small, medium, and 
big. Self-efficacy is used to evaluate the robot’s own 
learning state.   
   SS refers the strength of confidence that executes how 
much possibility is in each action. It is determined by the 
number of replies, that the robot gets when the robot speaks 
to humans: 

SS =
nR
nI            (9) 

nR is the number of replies from human, and nI is the number 
of interaction. There are 3 rules. If the robot talked to a 
person in Japanese and the person answered in Japanese, nR 
increases. If the robot talked in English and the person 
answered in English, nR increases. If the person answered in 
Japanese, nR does not increase. 	
  
    SG means the generality of contents adapting to similar 
circumstances. Generality is defined by how much 
knowledge is utilized. It is decided by how much relevance 
of the robot’s word has:  
 

SG =
wj ,i

i=1
∑

j=1
∑

N         (10) 
where N is the number of connections, wj,i is the connection 
weight between the jth and the ith neurons in the neural 
network. 
 We apply simplified fuzzy inference to express 
self-efficacy because the fuzziness and self-efficacy may be 
different to individuals. We used fuzzy system to control 
mobile robot in our previous research [26], because fuzzy 
rules can be easily designed. In general, a fuzzy if-then rule 
is described as follows, 

 
If S1 is Ai,1 and ... and Sm is Ai,m Then Stotal is Bi 

 
where Ai,j and Bi are the membership function for the jth 
input and the singleton for the output of the ith rule, and m is 
the number of inputs. The fuzzy inference is described by, 

µAi , j
(Sj ) = 1−

ai, j − Sj
bi, j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

      (11) 

µi = µAi , j
(Sj )

j=1

m

∏           (12) 

Stotal
∗ =

µiBi
i=1

n

∑

µ j
j=1

n

∑
            (13) 

where ai,j and bi,j are the central value and the width of the 
membership function Ai,j. In our case the fuzzy system has 
two inputs, SS and SG, and one output for deciding the total 
value of self-efficacy, Stotal. Table II illustrates the fuzzy rule 
base, where the membership function PS means a=0, b=1; 
PM means a=0.5, b=0.5; and PB means a=1, b=1. 

 
TABLE II. FUZZY RULE BASE 

 
 

By enhancing self-efficacy, the robot tries to speak 
English positively if the robot thinks it can get replies. When 
self-efficacy is big, we are willing to communicate [27]. The 
robot estimates the English skills of humans, which will be 
improved in this way. Self-efficacy is used as a criterion for 
judgment to speak English or Japanese. Moreover, Stotal has 
three states. When Stotal is small, the robot utters one word. 
When Stotal is medium, the robot asks an easy question. 
When Stotal is big, the robot asks a question which contains 
idiom or composed by a long sentence. 

For example, when the word “dream” is selected, if 
self-efficacy is small, the robot utters only “dream” and the 
human utters the Japanese translation of “dream”. If 
self-efficacy is medium, the robot utters “Do you often see 
dreams?” and the human answers “yes” or “no”. If 
self-efficacy is big, the robot utters “What types of dream do 
you have often?” and the human answers what type of dream 
he or she had. Figure 9 shows the complete conversation 
examples. 

 

 
(a) Self-efficacy is small 

 

 
(b) Self-efficacy is medium 

 

 
 (c) Self-efficacy is big 

Figure 9.  Conversation examples 
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Figure 10 shows the concept of self-efficacy in a 
conversation. An outcome expectation is defined as a 
person’s estimate that a given behavior will lead to certain 
outcomes. An efficacy expectation is the conviction that one 
can successfully execute the behavior required to produce 
the outcomes.  

Outcome expectation shows the degree whether the robot 
can get a reply or not, and efficacy expectation decides if the 
robot speaks English or Japanese (Fig. 10.). 

In existing dialogue systems, it was not measured whether 
the dialog have succeeded or not. Therefore, it is thought that 
a dialog does not continue for a long time. It is because the 
robot does not know whether the human understands the 
robot’s contents of utterance. Then, self-efficacy is used in 
order to carry out conversation made consistent with the 
degree of comprehension in order to show whether the 
conversation has succeeded. If the self-efficacy increases, it 
will be thought that the robot can talk well. Self-efficacy 
shows whether the robot can talk with human well. 

 

 
Figure 10.  Representation of self-efficacy in a conversation 

B. The content of self-regulated learning 
It is important to raise a student’s self-evaluation in 

education. However, the robot does not have the evaluation 
to itself. If the robot has self-evaluation, the robot will be 
able to choose behavior appropriately according to it.  

Self-regulated learning has focused on how a student 
controls his academic ability cognitively, motivationally, 
and aggressively [14]. Since a robot is for education, it is set 
up to have the intention to make the human to learn. 
Therefore, it aims at assuming that a robot has desire of 
enhancing self-efficacy, the robot should choose suitable 
learning. The learning strategies chosen here are as follows. 
 

(1) User-adaptive learning mode 

The robot selects that utterance which is easy to obtain 
replies for. 

(2) Associative learning mode 

The robot asks a learner to teach a new word. Then the 
robot learns the relationship. 

Usually the robot selects user-adaptive learning. When 
self-efficacy is increased, it thinks that the level of desire 
goes up like in Maslow’s need-hierarchy theory [28], and the 
robot selects associative learning. Since the robot’s 
conversation contents do not change if a new word is not 

taught, a learner will get bored. In order to get a new 
conversation pattern, associative learning is performed. We 
propose that the robot gets bored with conversation when the 
self-efficacy of the robot is big and the average of Q-value is 
small. 

V. EXPERIMENTAL RESULTS  
This section presents experimental results of the proposed 
method for language education. In the experiment a human 
and a robot perform conversation. By showing that the three 
types of learning are effective, we demonstrate that mutual 
learning is possible. Associative learning is performed first. 
The result is presented here.  
 The initial value of the Q-value is set randomly. The value 
of self-efficacy is set to 0. We taught words to the robot and 
made the robot learn relationship between words and images 
beforehand (associative learning mode). In this paper, 
although the learning process is not described, the robot 
learns the relation of a word with color, shape and gesture by 
image processing (Fig.11). Here, the information is acquired 
from image processing in a situation when learning the word 
without having any information about the word itself. The 
number of words to learn is 30 (see Table III), the number of 
colors is 4, the number of shapes is 3 (round, triangle, 
rectangle), and the gestures are classified according to 
self-organizing maps automatically. 
 The intermediate progress is detailed here. The result of 
the user-adaptive learning enables the robot to do 
conversation by using Interactive Evolutionary Computation 
(IEC) [29]. It can select relevant words. Table IV shows the 
Q-values corresponding to the words in Table III. First, these 
are given at random, but as interactions are performed 
repeatedly the robot learns the user’s preference. The red 
zone indicates values over 0.5. By giving rewards to the 
robot, it recognized the user’s preference. 
 

 

Figure 11.  The relationship between words and perceptual information. 
This presents long-term memory. 
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TABLE III.    30 WORDS HAVE BEEN TAUGHT TO THE ROBOT AND 10 
ADDITIONAL WORDS (RIGHT MOST) 

 
 

TABLE IV. THE Q-VALUES OF UTTERANCE WORDS CORRESPONDING TO 
TABLE III 

 
 
 Next, we present the result of self-regulated learning. 
Here, since the user experienced all the patterns that the 
robot has, the user gave punishments. After that the average 
of the Q-values was gradually decreasing.  
   We show an experimental result without fuzzy control in 
Figure 12 (Left). The generality is about 0.83, and the 
strength becomes about 0.5. Accordingly, the total value of 
the self-efficacy becomes about 0.4. Therefore, the utterance 
level is medium. In this case, the effect of one variable is 
high. If one variable has small value, the total value is small 
even if the other input is big. Thus, the learning mode is not 
changed even if the Q-value is small.  

Thereafter, we applied fuzzy control to calculate the 
self-efficacy. First, we had triangle membership functions in 
the fuzzy control, and we optimized the membership 
functions using user’s training data by bacterial algorithm 
[30]. The training data were made by estimating self-efficacy 
based on strength and generality. In this way, the users can 
set up preferences for the way of communication. If a user 
makes self-efficacy big regarding to strength and generality, 
the self-efficacy becomes big faster. This is for those, who 
want to finish the study earlier. Otherwise, if a user sets the 
self-efficacy to small, it increases gradually and the user can 
go through the learning carefully. In our case, we set up the 
self-efficacy high as a training data. 

Next, we show the change of self-efficacy after tuning the 
membership functions (Fig.12, Right). In this case, the 
strength is medium and the generality is big, the total value of 
self-efficacy is big. We always used punishments and the 
conversation contents are changed every time. Moreover, the 
decrease of the Q-value is quick. Because of this, the time to 

change from user-adaptive learning to associative learning is 
shortened. The number of conversations is 15. When time is 
530, the learning mode changed to associative learning. 
Therefore the mutual learning continues. 

After associate learning, we performed user-adaptive 
learning again. The robot was taught 10 new words shown in 
the right most part of Table III. The robot gained a new 
utterance pattern, and the desire to utterance increased again. 
The human and the robot talked using the pattern. 

In the past, it was not able to distinguish utterances 
learned before and after. Therefore, it was not the 
conversation, which reflects the user’s preference to learn 
only the word itself that the user wants to learn. However, by 
user-adaptive learning, we can learn new words intensively 
and the words relevant to them (Table V). 
 It indicated that the robot has the ability to repeat 
associative learning and adaptive learning for long-term 
communication, and therefore the robot and the person could 
acquire English words and practice conversation.  
 The experimental subject is a man who is a graduate 
student. Because of this, the English words that used in this 
experiment are easy for him. Since it was difficult to use 
these words in conversation even if he knew the meaning of 
the word, we were dared to use the easy words. This time the 
words are for beginners, it is possible to adapt to various 
learners because they can select the words that they want to 
learn. 
 The most advantageous point of this method is that the 
autonomous robot can communicate and adapt in the 
conversation. Robot-assisted language learning mainly uses 
robots as a teacher giving a lecture or as a teaching assistant. 
In addition, a care-receiving robot has a role of a friend 
though it uses a Wizard-of-Oz method. As compared to 
Kawamoto’s self-regulated learning [10], although it shares 
similarity with our approach in changing a learning strategy, 
however its purpose is the interaction with the environment. 
Since our method differs from the research on human-robot 
communication, the self-efficacy for carrying out 
communication adapting to the person’s condition is 
effective. By contrast, if the person decreased his motivation 
for learning, the communication way of the robot will not 
change because the robot cannot learn the new words. 
Consequently, the term they can communicate depends on 
the learner’s motivation for learning. 

 
Figure 12.  Change of the value of self-efficacy and average Q-value 

without fuzzy control (Left) and with fuzzy control (Right) 
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TABLE V. THE Q-VALUES OF UTTERANCE WORDS AFTER THE SECOND 
USER-ADAPTIVE LEARNING 

 

VI. CONCLUSION 
In this paper, we discussed long-term communication as an 
example of language learning. First, we explained a dialogue 
system and conversational robot. Next, we discussed how to 
interact and communicate between human and robot in the 
language education. We proposed learning conversation 
system of physical robot partners. The essence of the 
proposed method is how humans and robots will improve 
each other’s communication ability. Although the problem 
of long-term communication has not been solved yet, since it 
was actually omitted from this experiment, the integration of 
multiple learning methods showed the possibility of enabling 
long-term communication. 
 As future works, we will produce several utterances in the 
conversation system. Along with doing conversation 
experiment for long-term communication and we will clarify 
the educational effect of this system. 
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