
A Modally Adaptive Control for Multi-Contact Cyclic Motions

in Compliantly Actuated Robotic Systems

Dominic Lakatos, Martin Görner, Florian Petit, Alexander Dietrich, and Alin Albu-Schäffer

Abstract— Compliant actuators in robotic systems improve
robustness against rigid impacts and increase the performance
and efficiency of periodic motions such as hitting, jumping
and running. However, in the case of rigid impacts, as they
can occur during hitting or running, the system behavior is
changed compared to free motions which turns the control
into a challenging task. We introduce a controller that excites
periodic motions along the direction of an intrinsic mechanical
oscillation mode. The controller requires no model knowledge
and adapts to a modal excitation by means of measurement
of the states. We experimentally show that the controller is
able to stabilize a hitting motion on the variable stiffness
robot DLR Hand Arm System. Further, we demonstrate by
simulation that the approach applies for legged robotic systems
with compliantly actuated joints. The controlled system can
approach different modes of motion such as jumping, hopping
and running, and thereby, it is able to handle the repeated
occurrence of robot-ground contacts.

I. Introduction

Intrinsic elasticities in biological and robotic multi-body
systems enable the execution of highly dynamic and complex
motions, such as hitting and throwing, or walking and run-
ning. The compliant actuator behavior improves the mecha-
nism robustness during rigid contacts with the environment
and increases performance and energy efficiency. However,
the generation of effective and efficient motions is not trivial.
In this work we aim at robustly controlling periodic motions
for robotic systems with variable stiffness actuation (VSA)
[1], [2], [3]. The idea is to exploit the natural dynamics of
these robotic systems and to control them such that they
are able to robustly handle contacts, in a similar way as
their biological archetype. However, due to environmental
contacts and the variable stiffness mechanism, the open-loop
system dynamics are strongly nonlinear. Therefore, the basic
assumption is that the considered systems intrinsically fea-
ture internal nonlinear oscillation modes, which correspond
to motion patterns mentioned above. The goal of this paper is
to find an appropriate control strategy, which firstly identifies
and secondly excites one of these oscillation modes such
that the repeated occurrence of contacts can even be used to
preload the springs.

In our previous work [4] we analyzed the oscillatory
behavior of VSA robotic arms. We showed that the existence
of quasi-independent oscillation modes strongly depends
on the availability of sufficient damping in parallel to the
springs, which ensures the decay of oscillations excited in
the other modes. From observations of humans controlling
a compliantly actuated system by force/visual feedback,
we derived a simple bang-bang controller, which is able
to excite and sustain periodic motions for such systems
[4]. The controller is triggered by a generalized force and
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switches the equilibrium position of the spring in a selected
joint. Thereby, energy gets injected into the system and
oscillations are excited. Since the controller requires almost
no system knowledge, it performs very robustly and is
predestined for systems with model uncertainties, including
robot-environment contacts.

The goal of this work is to extend the ideas initiated in [4]
for systems and tasks including robot-environment contacts,
with a focus on legged robotic systems. Our conclusions
for legged systems go along with different experimentally
supported hypotheses of biologists [5] and related work
on compliant quadrupeds [6]. Full and Koditschek [5] hy-
pothesize that fast locomotion is dominated by the mainly
feedforward controlled mechanical system and its interac-
tion with the environment. Following their arguments, the
high-dimensional, nonlinear system dynamics anchored in a
complex animal collapse to simple template dynamics like
the spring loaded inverted pendulum (SLIP). This requires
that coupled, nonlinear, neural and mechanical oscillators
synchronize in phase and excite coordinated periodic mo-
tions. These hypotheses are further supported by the work
of Ijspeert [7] and Buchli et al. [6]. In [7] multiple neural
oscillators are coupled to a compliant segmented mechan-
ics model of a salamander. By proper parametrization, the
model shows coordinated traveling and standing waves along
the body that result in swimming and walking motions,
respectively. The work in [6] shows that adaptive frequency
oscillators are able to find, to adapt to and to enforce
intrinsic, mechanical modes of locomotion of a quadruped
with rigidly actuated hip and passively compliant knee joints.

The main contribution of this paper is the extension of
the single-input single-output controller presented in [4] to
the multi-input multi-output case. This is achieved by an
adaptive part which converges to a coordinate transformation
of the dominant oscillation mode of the plant. The coordinate
transformation is then used to modally distribute the energy
input over the joints and thereby increases the effectiveness
of the limit cycle excitation. The modally adaptive control
strategy is validated for robotic systems in the presence of
contacts. In an initial experimental test with a multi-joint
VSA robotic arm, we demonstrate that the controller is able
to stabilize a cyclic hammering motion. Then, we apply the
control approach to the simulation of a legged system with
compliant actuation in the joints and show that jumping and
running motions can be excited easily. In contrast to [6] or
[8], [9], which address rigid actuators or full rigid body
motions, respectively, we aim at exciting the mechanical
intrinsic oscillation modes. Hereby, a main difference is
that we consider systems with compliant actuators for all
joints. We propose (building up on [4]) a completely new
approach of adaptive feedback controlled modal excitation.
It is a fundamentally different concept from the basically
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open loop intrinsic pattern generators, even in their version
with adaptive oscillation frequency [6], trying to mimic the
fast adaptive nature of biological motion generation. The
introduced method offers the capability to distribute the
energy input over the joints and to achieve the directed
excitation of a specific oscillation mode, using an adaptive
feedback control, which approaches an excitation in the
intrinsic frequency of the system and task. Thereby, the
adaptive part accounts for the distribution of the excitation
amplitudes (similar to the eigenvectors in linear oscillation
theory) such that they fit to and properly excite an intrinsic
oscillation mode of the system.

The paper is structured as follows: In Section II we
introduce the control approach. Then, we experimentally
demonstrate that the controller can handle contacts for a
hitting motion (Section III). In Section IV we perform a
simulation study with a legged system. A brief conclusion is
given in Section V.

II. Controller design

First, we revisit the bang-bang control introduced in [4].
Then, we propose an extension to multi-joint robots, using
an adaptive law, which converges to the coordinate transfor-
mation corresponding to a dominant oscillation mode of the
plant.

A. Bang-bang control for a single compliantly actuated joint

Consider the model of a single compliantly actuated joint

Iq̈ + dq̇ = τ , (1)

bθ̈ + τ = τm , (2)

where q, θ ∈ R are link and motor coordinates, respectively,
τm is the control input, and

τ = ψ(θ − q) (3)

is the joint torque. The motor inertia b acts over a nonlinear
spring ψ(θ − q) on the link inertia I. Additionally, viscous
damping dq̇ acts on the link. Considering the control τm =

−kDθ̇ − kPθ + kPθd (where kP and kD are positive controller
gains), the singular perturbation assumption [10]:

ǫ
(

bθ̈ + τ + kDθ̇
)

= θd − θ , (4)

with ǫ = 1/kP and ǫ → 0, reduces (1)–(3) to

Iq̈ + dq̇ + ψ(q − θ) = 0 , (5)

where θ is the new control input.

Our goal to excite and stabilize periodic motions in the link
coordinate q can be achieved by the discontinuous control
law

θ(q, θ−) =

{

sign (τ(q, θ−)) θ̂ if |τ(q, θ−)| > ǫτ
0 otherwise

, (6)

where ǫτ > 0 is a threshold, θ̂ a constant switching amplitude
and θ− the state of θ before the switching. It is worth
mentioning that, if the joint torque τ or equivalently the
deflection (θ − q) can be measured, the controller (6) will
not require any model knowledge.

B. Modeling VSA robotic systems

Variable stiffness actuated robots can be represented by
Euler-Lagrange equations [11], satisfying

d

dt

(

∂L(x, ẋ)

∂ẋ

)

−
∂L(x, ẋ)

∂x
= τgen − d(x, ẋ) , (7)

where the Lagrangian L(x, ẋ) = T (x, ẋ) − U(x) is the
difference of the kinetic energy T (x, ẋ) and potential energy
U(x). The potential energy U(x) = Ug(x)+Uψ(x) is the sum
of a gravity and elastic potential, respectively. The position
states x = (θT , qT )T ∈ Rm+n can be divided into motor
positions θ ∈ Rm and link positions q ∈ Rn. The vector
of generalized forces τgen = (uT , τT

ext)
T is composed of the

control u ∈ Rm and the external torques τext ∈ R
n. Only the

motor states (θT , θ̇
T

)T are directly actuated via the control
input u. Moreover, d(x, ẋ) ∈ Rm+n represents a damping
force, where ẋT d(x, ẋ) ≥ 0 holds.

This model represents a large class of compliantly actuated
robots and highlights the generality of the control approach
proposed in the remainder of the paper.

In the following experimental and simulative evaluation,
we consider serial elastic actuation. Thereby, the elastic
potential Uψ = Uψ(x, θψ) depends on parameters θψ ∈ R

m to
adjust the stiffness characteristics. In this work we deal with
constant stiffness preset (although nonlinear), i.e. θ̇ψ = 0.

C. Adapting the modal coordinate transformation

Our goal is to control periodic motions in the link position
coordinates q ∈ Rn using the bang-bang control (6) as
presented above for the single joint case. Since the controller
accounts only for scalar quantities, we seek a transformation
such that the motion q(t) can be represented by a single
coordinate, for instance, y1(t). The basic idea is sketched in
Fig. 1 and will be explained in a context of differential ge-
ometry as follows. Consider the time series of joint positions
q(t) representing the motion of the multi-joint robot, where
q ∈ Q ⊂ Rn are coordinates of a manifold Q. Assume that
we can represent the trajectory q(t) on a lower dimensional
manifold Y, with coordinates y ∈ Y ⊂ Rp≤n. (In particular,
for the bang-bang control it is required that p = 1.) Assume
further that the mapping

y = F(q,W) (8)

can be parameterized by constant weights W and the inverse
mapping

q = G(y,W) (9)

exists. Then, similar to what was done in [12], we can define
an error function

S = ‖q(t) − (G ◦ F) (q(t),W)‖2 . (10)

For a perfect reconstruction mapping, the sum of error
functions evaluated at each point of the trajectory q(t) must
be identically zero. In general, this leads to a nonlinear opti-
mization problem, where the matrix of weights Ŵ represents
the optimal solution.

To clarify the meaning of the reduction mapping (8), let
us review the linear, second order system

Mq̈ + Kq = 0 , (11)
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Fig. 1. The idea of the modal transformation

where M, K ∈ Rn×n are constant, symmetric, and positive
definite matrices. With eigenvectors ŵi ∈ R

n of the matrix1

A ≔ K−1/2 MK−1/2 (where ŵi are normalized such that
ŵT

i ŵ j = δi j and δi j is the Kronecker delta), the motion of
the system (11) can be expressed as

q(t) = ŵ1y1(t) + ŵ2y2(t) + . . . + ŵnyn(t) , (12)

where yi(t) = âi sin(ωit − φi) are time modulations of the
eigenmodes corresponding to motions along ŵi. Hereby, âi

are amplitudes, ωi eigenfrequencies and φi phase angles.
From (12) it can be seen that

q =
∑

i

wiyi , (13)

where wi ∈ R
n are parameters of the mappings (13) and

q ∈ Rn and yi ∈ R represent the instantaneous values of the
trajectory q(t) and yi(t), respectively. Due to orthogonality of
wi, the modal reduction mapping has the form

yi = wT
i q . (14)

Remark 1: Equation (13) is the representation of the linear
differential equation (11) as a superposition of independent
modal oscillations. If only one mode is excited, the motion
can be exactly represented by only a single coordinate yi ∈ R

and S in (10) becomes zero.

Remark 2: In the general case of nonlinear mappings
(8) respectively (9), differential geometry provides clear
rules how to transform contravariant vectors (velocities) and
covariant vectors (forces) between the manifolds Q and
Y [13]. For instance, velocity vectors transform with the
Jacobian, i.e. q̇ = (∂G(y)/∂y)ẏ and force co-vectors with
the transposed Jacobian, i.e. τy = (∂G(y)/∂y)T

τq. In the
case of linear, orthogonal transformations (13) respectively
(14), the transformation matrix is equal to the Jacobian, e.g.
∂G(y)/∂y ≡W. Moreover, W−1 ≡WT . It is worth mentioning
that in this paper we will always apply the clear rules of
differential geometry also to the nonlinear case.

With the above considerations in mind, let us now derive
an adaptive law for the linear system (11), which converges
to the parameters wi of the mappings (13), (14) under the
assumption of unknown K and M. Assume therefore that we
measure a new value of the actual joint position q(k) at each

1The matrix A ≔ K−1/2 MK−1/2 results from the transformation q =
K−1/2 z, i.e. z̈ + Az = 0, where A is still symmetric and positive definite.
The eigenvectors of A are related to the generalized eigenvectors of K, M
[14, chap. 4.5].

q...

q1

qn

y1

Y

Q

wi(1)
wi(2)

wi(k)

Fig. 2. Local approximation of the modal transformation

discrete time instance k. Consider further the error function

S =
1

4

∥

∥

∥

∥

∥

∥

∥

q(k) −
∑

i

wiw
T
i q(k)

∥

∥

∥

∥

∥

∥

∥

2

, (15)

which represents the squared distance between the input q(k)
and the auto associative mapping wiw

T
i

q(k)2 at time instance
k. Then, the gradient descent rule

w̃i(k) = w̃i(k − 1) − γ
∂S (q(k),wi(k − 1))

∂wi

, (16)

where γ > 0 determines the convergence rate and

∂S (q(k),wi(k − 1))

∂wi

= −yi(k) (q(k) − yi(k)wi(k − 1)) , (17)

minimizes the error function (15) recursively and provides
a new guess w̃i ∈ R

n at each time instance k. (Note that
yi(k) = wi(k − 1)T q(k)). Since the algorithm (16), (17) does
not ensure orthogonality of the weights w̃i, we incorporate
the Gram-Schmidt orthogonalization (see, e.g. [14, chap.
0.6]) as implicit constraints:

w̄i(k) = w̃i(k) −
∑

j<i

w j(k − 1)T w̃i(k)w j(k − 1) ,

wi(k) =
(

w̄i(k)T w̄i(k)
)−1/2

w̄i(k) .

Thereby, the step from w̃i to w̄i ∈ R
n performs the or-

thogonalization and the latter step normalizes w̄i such that
wT

i
w j = δi j. Assuming that γ ≪ 1 and neglecting terms of

order O(γ2), we obtain the learning rule

wi(k) = wi(k − 1) + γyi(k)
[

q(k) − yi(k)wi(k − 1)

−2
∑

j<i

y j(k)w j(k − 1)

















, (18)

proposed by [15].
Remark 3: The p dominant eigenvectors ŵ1, . . . , ŵp of

the data covariance matrix3 C = E(QQT ), where Q =
[

q(1), q(· · · ), q(k)
]

∈ Rn×k, represent asymptotically stable
fixed-points of the difference equations (18). The proof
therefore is given in [16], [17].

Remark 4: For the linear system (11), the eigenvectors
ŵ1, . . . , ŵp of the data covariance matrix C are related to
the oscillation modes, i.e. ŵi are eigenvectors of the matrix
A which are represented in the particular motion. In the

2The auto associative mapping wiw
T
i

q(k) is the composition of the
reduction mapping (14) and the inverse mapping (13).

3The operator E(·) denotes the expectation value of the argument.
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presence of damping, the eigenvectors of the matrix C
approximate the eigenvectors of the resonant modes. These
properties are proven, respectively discussed in [18].

As can be seen in (7), the link side dynamics of a multi-
joint robotic system are nonlinear. Therefore, the notion
of eigenmodes as in the case of linear systems might be
replaced by so-called nonlinear normal modes [19]. For the
present approach, we assume that the dominant mode is
synchronous in amplitudes (i.e. the oscillations of the joints
are in phase) such that the motion along this mode can be
represented by a single curvy-linear coordinate. Therefore,
when the algorithm described by (18) converges sufficiently
fast, the weight vector wi(k) approximates the instantaneous
linearization of the nonlinear normal mode. This is sketched
in Fig. 2. Finally, it is worth mentioning that the order
of the weight vectors wi(k) depend on the motion q(k),
which is the only ”information source” of the adaptation
algorithm. The first weight vector w1 corresponds to the most
dominant principal component of the trajectory q(k), i.e. to
the eigenvalue of the matrix C with the largest magnitude.

D. Bang-bang control in a modal direction

Let us now assume that we want to excite periodic motions
around the center θ0 ∈ R

m. Consider therefore the PD control

u = −KDθ̇ − KP (θ − θd) , (19)

where KD, KP ∈ R
m×m are symmetric and positive definite

controller gain matrices, and θd ∈ R
m is a new control input,

i.e. the desired motor position, for the system (7). Then, using
w1 ∈ R

m, provided by the adaptation algorithm (18), we can
compute the bang-bang control in the direction of the first
mode:

∆θz(τz) =

{

sign (τz) θ̂z if |τz| > ǫτz

0 otherwise
. (20)

Herein,

τz = wT
1













∂Uψ(θ, q)

∂θ
−
∂Uψ(θ, q)

∂θ

∣

∣

∣

∣

∣

∣

θ=θ0













∈ R (21)

is the generalized force acting in the direction of the first
mode, ǫτz

∈ R>0 the corresponding threshold and θ̂z ∈ R the
modal switching amplitude. Finally, the control input θd in
(19) has the form:

θd = θ0 + ∆θ . (22)

Thereby, we interpret ∆θz(τz) ∈ R as a tangent vector of the
modal manifold such that it transforms with the Jacobian w1

of the inverse reduction mapping (13), i.e. ∆θ = w1∆θz(τz).
Remark 5: As discussed in Section II-C, w1 converges

to a local approximation of the nonlinear mode. Therefore,
the control (18) and (19)–(22) slightly excites the other,
”undesired” modes. To ensure that oscillations excited in the
other modes decay, the system requires a small amount of
damping in parallel to the springs [4].

III. Experiments

In this section we experimentally validate the ability of
the control to stabilize limit cycles, even when contacts with
the environment occur. Therefore, we apply the control (18)
and (19)–(22) to the first four joints of the DLR Hand
Arm System [3] and choose the initial configuration θ0,

x

y

z

0.2

50

deflection (rad)

to
rq

u
e

(N
m

)

nonlinear spring

Fig. 3. Hitting experiment with the DLR Hand Arm System. The plot in
the upper right corner depicts the characteristic of springs in the joints for
the adjustment used in the experiments.
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Fig. 4. Results of the hitting experiment. The plots depict the motion of
the end-effector and the time evolution of the desired motor positions in
terms of end-effector positions. Both representations refer to the coordinate
system fixed to the ground, displayed in Fig. 3.

the controller parameters, PD controller gains KP and KD,
threshold ǫτz

, and switching amplitude θ̂z, such that the end-
effector gets in contact with the environment. To initially
start the oscillations, the end-effector is manually deflected
and released. Figure 3 shows the test setup including the
robotic arm in the initial configuration. Additionally, a video
showing the experiment, is attached.

In Fig. 4, it can be seen that after the initial disturbance
the motion in the x- and y-directions approaches the periodic
steady state within one oscillation cycle. Thereby, in the y-
direction, the amplitude of the positive deflection is larger
than the amplitude of the negative deflection. Additionally,
the trajectory of the negative deflection is sharper than
in the positive direction. This is due to the end-effector
hitting the environment. Moreover, Fig. 5 depicts the phase
plot of the corresponding end-effector motion in the steady
state. Therein, it can be seen that even in the presence of
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Fig. 5. Phase plot of the end-effector motion corresponding to Fig. 4. Only
the steady state part of the trajectory is depicted. The position signal is low-
pass filtered with a cut-off frequency of 50 Hz. The velocity is estimated by
numerical differentiation of the filtered position signal.

periodically occurring contacts, the controller stabilizes a
cyclic motion within a small error band.

From the experiment with the robotic arm we conclude
that the control approach might be applicable for systems
with compliantly actuated legs. Hereby, hopping, jumping,
walking and running constitute periodic motions of oscilla-
tory systems that are dominated by contact sequences. The
question of how to apply the control to such a type of
systems, will be tackled next.

IV. Simulations

In the following, we validate the approach with multi-
legged, compliantly actuated robotic systems in simulation.
The biological counterparts of these systems are able to per-
form periodic tasks, such as jumping, hopping, walking and
running. Thereby, the challenge is to handle multiple contacts
and under-actuation. However, the control law described in
Section II requires only the states of the actuated joints. No
knowledge of the rigid body model, of the degree of under-
actuation, or of the contact state are needed. Therefore, the
controller is applicable to excite periodic motions for tasks,
where the degree of under-actuation changes (zero, one, or
two legs are in contact) and possibly occurring sequences of
contact states are not known in advance.

A. Contact modeling

We consider visco-elastic point contacts in the direction
normal to the ground and viscous Coulomb friction tangential
to the ground. The normal force is emulated by

FN =

{

−min (kN∆pN + dN∆vN , 0) if ∆pN < 0
0 otherwise

, (23)

where ∆pN and ∆vN are the normal components of the
relative distance, respectively relative velocity, in between
the foot (penetrating ground) and the initial contact point
with respect to the contact surface. To approximate a rigid
contact, kN is a large coefficient which determines the contact
stiffness and dN is a viscous damping factor. The tangent
force is emulated by the viscous Coulomb friction model

FT =

{

−sign(vT )|µFN | if |FTst
| > |µFN |

FTst
otherwise

. (24)

qt

qr1

qr2

q f1

q f2

contact
point

VSA
joint

pr

pf

Fig. 6. Technical sketch of the planar system with two legs. The indices
f and r denote the front and rear leg, respectively.

Herein, FTst
is the stiction force, vT is the tangential com-

ponent of the absolute velocity of the considered body-fixed
point, and µ > 0 is the Coulomb friction coefficient. The
stiction force is approximated by

FTst
= −kT∆pT − dT vT , (25)

where ∆pT = pT − pT0
is the difference of the actual and

initial tangent position component, kT is a large stiffness
coefficient, and dT is a viscous damping factor. Finally, we
consider the contact dynamics in (7) as

τext = τcont. =

Ncont.
∑

i=1

(

∂pi(q)

∂q

)T [

FTi

FNi

]

, (26)

where Ncont. denotes the number of body-fixed contact points
and pi(q) is the absolute position of the i-th body-fixed
contact point.

B. A planar system with two legs

The system consists of a trunk and two double pendulum-
like legs. As schematically sketched in Fig. 6, the trunk
(main body) has two translational and one rotational degrees
of freedom. Thereby, the generalized coordinates qt ∈ R

3

represent the pose of the trunk. The upper legs are hinged
to the trunk and the lower legs are hinged to the upper legs.
Thereby, qjoint = (qr1

, qr2
, q f1 , q f2)

T represents the configu-
ration of the rear and front legs, respectively. The distance
between the suspension points of the legs is denoted lt and
the link length of the upper and lower legs l j, where j =
r1, r2, f1, f2, corresponds to the indices of the joint positions
qjoint (see, Fig. 6). The mass distributions of the trunk and
links are modeled as point masses mt respectively m j, where
the positions of the point masses w.r.t. to the body-fixed
frame ctx

and cty respectively c j are introduced as parameters.
A contact point (cf. Section IV-A) is attached to each lower
leg. The hip and knee joints are equipped with serial elastic
actuators. To analyze the influence of a nonlinear spring
characteristic, we consider the elastic potential

Uψ(qjoint, θ) =
∑

j

(

1

2
k1, j

(

q j − θ j

)2
+

1

4
k2, j

(

q j − θ j

)4
)

(27)

with k1, j > 0 and k2, j ≥ 0. Notice that k2, j = 0 corresponds
to a linear and k2, j > 0 to a cubic deflection-force relation.
Additionally, weak joint damping of the form

Dẋ =

















Djoint −Djoint 0
−Djoint Djoint 0

0 0 0



































θ̇

q̇joint

q̇t



















, (28)
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where Djoint ∈ R
4×4 is diagonal and positive, acts in parallel

to the springs (cf. (7) in Section II). Finally, we consider
the states of the actuated joints as measurable and compute
the control input u ∈ R4 in (7) using (18) and (19)–(22)
described in Section (II).

C. Comparison of a sinusoidal excitation and the modal
bang-bang control for a jumping motion

Initially, we consider a jumping motion for the system
described above and compare a sinusoidal excitation and the
modal bang-bang control. The system parameters and the
initial configuration are given in Table I. First, we test a sinu-
soidal excitation as desired motor position θd(t) = qjoint(t0)+

â sin(8πt), with amplitudes â = (0.2,−0.4,−0.2, 0.4)T. Sec-
ond, we compare it to the modal bang-bang control, with
controller settings ǫτz

= 4, θ̂z = ‖â‖ and initial conditions for
the adaptive part w1(t0) = â/‖â‖. For both cases (feedforward
and feedback control) the simulation starts with an initial
trunk height qt2 (t0) = 0.9 m and zero velocities.

As can be seen from Fig. 7 (and the video attachment),
we obtain a jumping motion for both types of excitations.
For the sinusoidal excitation, the trajectory of the vertical
trunk position does not converge to a periodic motion during
the considered simulation time. Using the modal bang-bang
control, the trajectory converges to a limit cycle within a
small error band. It should be mentioned that in the case
of the sinusoidal excitation, the frequency has been chosen
arbitrarily. Therefore, the frequency does not match the
intrinsic frequency of the jumping task. In further simulations
(not described here) it turned out that manually tuning the
frequency and phase of the sinusoidal excitation improves the
matching of the frequency to the task. In contrast the modal
bang-bang control adapts itself to the intrinsic frequency of
the system/task.

TABLE I

Parameters of the jumping system

index i trunk t rear r1 rear r2 front f1 front f2

mi (kg) 2.0 0.1 0.1 0.1 0.1
li (m) 0.9 0.25 0.2 0.25 0.2
ci (m) 0, 0 0.125 0.1 0.125 0.1

k1,i (Nm/rad) 70 70 70 70
k2,i (Nm/rad) 0 0 0 0
di (Nms/rad) 1 1 1 1
qi(t0) (deg) -120 70 -60 -70

D. From jumping to forward hopping by changing the mass
distribution and the stiffness characteristics

In order to excite a forward hopping mode, we slightly
change the parameters considered for the jumping system.
For a first test, we keep the parameters and the initial
configuration given in Table I and shift only the point mass
of the trunk such that ctx

= −0.2 m. This already leads
to a forward hopping motion, which decays as the energy
input due to the bang-bang control is smaller than the
dissipated energy. To increase the energy input due to the
bang-bang control, we change the spring characteristic such
that k2, j = 10k1, j. Notice that introducing a progressive spring
characteristic increases the input energy for the unmodified
switching amplitude θ̂z.

The resulting forward hopping motion is visualized in
Fig. 8 (and the video attachment). As can be seen in Fig. 9,
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Fig. 7. Comparison of a feedforward sinusoidal excitation and the modal
bang-bang control for a hopping motion.

the trunk performs a pitch oscillation, while moving forward
from right to left. After the initial transient, the trajectory of
joint positions form closed orbits in the phase space within
an error band (see, Fig. 10). Moreover, the contact forces are
depicted in Fig. 11. It can be seen that a flight phase appears
periodically. This phase is longer than the phase when one
or both feet are in contact with the ground.

Due to a slight change of the mechanical parameters, mass
distribution and spring characteristic, the intrinsic system
properties change and evolve from jumping towards a for-
ward hopping mode. Thereby, each dominant mode can be
excited by the modal bang-bang control.

Fig. 8. Image sequence of the forward hopping motion. The picture shows
approximately two motion cycles. Thereby, the motion evolves from right
to left. For reason of clarity, each image is horizontally shifted by a constant
offset.
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Fig. 9. Time evolution of the trunk pose for the forward hopping motion.
The coordinates qt1 and qt2 represent the horizontal respectively vertical
position and qt3 the orientation of the trunk.

E. A configuration predestined to excite a running mode

Due to the configuration dependent inertia matrix, the
initial configuration might influence which oscillation mode
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Fig. 12. Image sequence of the running motion in a ”crab” configuration. The picture shows approximately two motion cycles. Thereby, the motion
evolves from right to left. For reason of clarity, each image is horizontally shifted by a constant offset.
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Fig. 13. Time evolution of the trunk pose for the running motion. The coordinates qt1 and qt2 represent the horizontal respectively vertical position and
qt3 the orientation of the trunk.
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Fig. 10. Phase plot of joint motion in the steady-state phase of the forward
hopping motion.

becomes dominant. In the following, we change the initial
configuration such that the controlled system tends to con-
verge to a running mode. The system from Section IV-C
and IV-D corresponds to an idealized ”quadrupedal animal”
configuration, while the system considered in this section
represents rather a ”crab” configuration. Therefore, we con-
sider the parameters and the initial configuration given in
Table II. The bang-bang threshold is adjusted to ǫτ = 2 such
that the controller switches due to gravity. Moreover, the
switching amplitude θ̂z = 0.8 and the initial condition of the
adaptive part w1(t0) = (1, 0, 0, 0)T . In initial tests, it turned
out that the adaptive part always converges to the same values
ŵ1. Therefore, in further simulations, we set w1(t0) = ŵ1.

The resulting running motion is visualized in Fig. 12
(and the attached video). To test the robustness against a
disturbance, we introduce an obstacle in form of a pedestal
with a ramp at one side. As can be seen from the trunk
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Fig. 11. Contact forces acting in the steady-state phase of the forward
hopping motion. The components Frx and Fry correspond to the horizontally
respectively vertically acting forces of the rear foot (cf. Fig. 6). The
components F fx and F fy correspond analogously to the front foot. Due
to under-sampling effects, the signal is not periodical.

motion depicted in Fig. 13, the controlled system is able
to robustly handle this disturbance and converges back to
the initial running motion. Furthermore, the corresponding
contact forces are depicted in Fig. 14. It can be seen that
long flying phases alternate with short contact phases.

TABLE II

Parameters of the running system

index i trunk t rear r1 rear r2 front f1 front f2

mi (kg) 2.0 0.1 0.1 0.1 0.1
li (m) 1.0 0.5 0.5 0.5 0.5
ci (m) 0, 0.25 0.25 0.25 0.25 0.25

k1,i (Nm/rad) 70 84 70 84
k2,i (Nm/rad) 0 0 0 0
di (Nms/rad) 1 1 1 1
qi(t0) (deg) 30 -90 150 90

F. Comments on the contact forces

As can be seen in Fig. 11 and 14, the peaks of the contact
forces occurring during the forward jumping respectively
running motion are rather high with respect to the total
mass of the system. The high peak forces result due to a
combined effect: the switching in the bang-bang control (cf.
(20)–(22) in Section II) and the relatively high damping in
the joints (compared to the inertia and stiffness). From these
observations, one can deduce that the joints of the robotic
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Fig. 14. Contact forces acting during the running motion. The components
Frx and Fry correspond to the horizontally respectively vertically acting
forces of the rear foot (cf. Fig. 6). The components F fx and F fy correspond
analogously to the front foot.

system have to be designed such that the damping is as
low as possible. However, there is a lower bound for the
damping in parallel to the springs, which ensures the decay
of oscillations excited in the undesired modes [4].

G. Summary of the simulation results

The preceding simulation study demonstrates that the pro-
posed control method appropriately excites periodic motions
in compliantly actuated, legged robotic systems. In particular,
the feedback controller is able to adapt to the intrinsic
frequency of the system and task. This is a clear advantage
compared to a feedforward excitation. Furthermore, changing
the mechanical parameters or the initial configuration of the
systems leads to a different motion pattern. This indicates
that the controller excites dominantly appearing oscillation
modes, which correspond to intrinsic properties of the uncon-
trolled mechanical systems. Therefore, the modal bang-bang
control might be used to derive rough guidelines for choosing
a design for a mechanical system, which is appropriate
for performing a specific motion pattern. Finally, it should
be remarked that to reach a desired mode of motion, the
most challenging issue is to find a proper initial excitation,
mainly determined by the initial condition of the adaptive
part w1(t0) (cf. (18) in Section II). A directed method to find
an appropriate initial condition w1(t0) will be treated in a
future work.

V. Conclusion

A modal bang-bang controller is presented that excites
periodic motions in compliantly actuated robotic systems, in
the presence of robot-environment contacts. The approach
is experimentally tested on the DLR Hand Arm System
and has shown to robustly perform a hitting motion. The
controller requires only measurements of the states of the
actuated joints and no model knowledge. Therefore, as shown
in simulation, the approach can be straightforwardly applied
to legged robotic systems with compliantly actuated joints
such that the controlled system is able to execute periodic
tasks such as jumping, forward hopping, and running.

For a planar system with two legs, a simulation study
is performed. Thereby, the modal bang-bang controller is
compared to a feedforward sinusoidal excitation and the
influence of the mechanical parameters as well as the kine-
matic leg configuration is analyzed. Simulations of a jumping
motion show that the modal bang-bang controller adapts
to the jumping mode and synchronizes the task-intrinsic

frequency. Furthermore, it is shown that by changing the
mechanical parameters of the system and/or the equilibrium

configuration of the legs, the system evolves from a jumping
to a forward hopping and to a running mode. This indicates
that the controller excites intrinsic mechanical modes of the
system and task. Therefore, the approach is a useful tool to
find some design guidelines for such challenging systems.
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[2] A. Albu-Schäffer, O. Eiberger, M. Fuchs, M. Grebenstein, S. Had-
dadin, C. Ott, A. Stemmer, T. Wimböck, S. Wolf, C. Borst, and
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