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Abstract— A robot testbed for writing Chinese and Japanese
calligraphy characters is presented. Single strokes of the callig-
raphy characters are represented in a database and initialized
with a scanned reference image and a manually chosen initial
drawing spline. A learning procedure uses visual feedback to
analyze each new iteration of the drawn stroke and updates
the drawing spline such that every subsequent drawn stroke
becomes more similar to the reference image. The learning
procedure can be performed either in simulation, using a simple
brush model to create simulated images of the strokes, or with a
real robot arm equipped with a calligraphy brush and a camera
that captures images of the drawn strokes. Results from both
simulations and experiments with the robot arm are presented.

I. INTRODUCTION

Chinese and Japanese calligraphy (the art of beautifully
writing with a brush) requires complex motions. Human
calligraphy masters need years of practice. This makes it a
challenging problem for robot learning. In addition, robotic
calligraphy requires the trajectory for creating an accurate
brush stroke to be determined beforehand because the soft
tip of a calligraphy brush (which bends easily) does not allow
for any force feedback and makes it difficult to accurately
observe the drawing process with a camera.

In the past other robotic platforms for Chinese and
Japanese calligraphy have been presented. In [1], [2] robots
with three degrees of freedom (DOF) were used, in [3]
the rotation around the z-axis (4 DOF) was additionally
considered, and in [4] the pitch and roll (5 DOF) were also
considered.

Most algorithms for reproducing Chinese characters fall
into one of three groups. Algorithms from the first group
extract the drawing trajectories from an image of a Chinese
character [1], [5], [6]. Algorithms from the second group
obtain a brush model and its parameters from experiments
[7], [8] and then use these models to find the trajectories
for drawing the Chinese character [7], [9]. The properties of
brushes were studied in detail in [3]. Algorithms from the
third group parametrize the strokes and tune the parameters
manually [10].

Human calligraphers, on the other hand, learn and hone
their skills over many years of training, during which they
repeat the strokes over and over again. Little research has
been done on improving the calligraphy skills of robots using
experience from previous iterations. One notable exception
is [11], where the researchers have used visual feedback
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Fig. 1. The experimental setup consisting of a KUKA Light Weight Robot,
a Prosilica GC 655C camera, and a brush.

to correct the xy-coordinates of the strokes, specifically the
connection points of strokes.

Here we present a robotic drawing system that uses visual
feedback from an attached camera and a novel iterative learn-
ing process to improve its drawing performance by using
its experience from previous iterations. This process is also
shown in the attached video. In section II the components
for the experimental setup and their implementation will
be explained, and some experimental results are shown and
discussed in section III. Finally, section IV will summarize
the results and give an outlook on the future direction of the
project.

II. SYSTEM SETUP

A. Hardware Platform

Fig. 1 depicts the drawing setup, which consists of a
KUKA Light-Weight Robot [12], a camera and a calligraphy
brush. The robot is mounted onto a table, which operates as
the drawing surface. The Prosilica GC655C gigabit ethernet
camera has a resolution of 659x493 pixels. It is attached to a
bent metal plate that is screwed between a collet chuck and
the robot’s tool flange. The collet chuck holds the calligraphy
brush and provides a secure grip while allowing the brush
to be mounted and exchanged quickly. Currently, the brush
must be removed and dipped into the ink manually after each
drawing iteration. The characters are drawn on standard A4
recycling paper that is secured to the surface of the table
using two weights.

The robot is connected to a KUKA Robot Controller,
which is responsible for low-level control. The KUKA Robot
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Fig. 2. Drawing procedure for the robotic calligraphy system.

Controller is connected to a remote computer via a Fast
Research Interface [13]. All algorithms described hereafter
run on this remote computer and use the Robot Operating
System [14]. The algorithms that take care of the real-time
interaction with the robot and the trajectory execution use
the Orocos framework [15].

B. Drawing procedure

The drawing procedure is depicted in Fig. 2. The database
contains a reference image and a description of the brush tra-
jectory for each stroke. The brush trajectories are represented
as splines. The drawing node takes these descriptions and
transforms them into a trajectory that is then executed by the
robot. Before drawing the stroke, the pose (position and ori-
entation) of the paper on the table is detected automatically
using the camera. Four dots representing the corners of the
12x12cm drawing area mark the paper’s surface. By using
the camera image as feedback, the camera is rotated and
positioned directly above the center of the drawing area on
the paper. The position of the drawing area is now calculated
using the robot’s inverse kinematics, the constraints for the
paper to lie flat on the table, and the camera calibration. Each
time a character is drawn, the robot positions the camera
above the paper, and the camera node detects the drawing
area, processes the image, and sends it to the learning node.
Then the learning node calculates the error between the
reference character and the drawn character and uses this
error to update the trajectory information, which is then
stored in the database for the next iteration.

C. Trajectory representation

B-splines were chosen to describe the drawing trajectories
of the strokes, because they provide advantages such as
guaranteed smoothness, free choice of interpolated data and
local control. Including the speed as an attribute of the
spline’s control points enables the smooth interpolation of
the drawing speed. However, the presented implementation
keeps the speed constant.

C(t) =

n∑
i=0

QiNi,p(t) (1)

Ni,j(t) =
t−ti

ti+j−tiNi,j−1(t) +
ti+j+1−t

ti+j+1−ti+1
Ni+1,j−1(t)

Ni,0(t) =

{
1 if ti ≤ t < ti+1 and ti < ti+1

0 otherwise
(2)

Equation (1) is the general equation of a B-spline describ-
ing a curve C(t) with the running parameter t ∈ [0, 1]. The
control points Qi are weighted by a recursive basis function
Ni,p described in equation (2). B-splines have local control,
i.e. a point on the curve represented by a B-spline of degree
p is influenced only by the p+1 surrounding control points.
This property is important for the learning procedure since
it allows details of the stroke to be improved locally without
affecting the rest of the stroke. The control points are not
limited to geometric information, but can contain any number
of entities that should be interpolated, such as position,
orientation, velocity, or acceleration. In the implementation
of the presented robotic drawing platform the control points
contain Cartesian coordinates and the speed along the curve.
The orientation of the brush is assumed to be strictly vertical
at all times. Cubic, clamped, uniform B-splines were chosen
to represent the strokes. Below is a brief characterization
of the chosen spline representation. A general discussion of
B-splines can be found in [16].

cubic:
The degree p = 3 was chosen for the splines
because cubic splines are sufficiently smooth and
intuitive, and they keep the changes local.

clamped:
A clamped B-spline starts and ends exactly at the
first and last control point. This property facilitates
the connection of multiple strokes when forming a
character.

uniform:
The distance between the knots in the spline’s knot
vector indicates the speed with which the running
parameter t progresses along the spline. A uniform
knot vector causes a uniform speed along the curve
and simplifies the stroke description, as the knot
vector is only determined by the number of control
points. In the case of a non-uniform knot vector, all
knot values must be part of the stroke description.

D. Drawing Node

Two different ways for generating trajectories are used
in the system. Most motions are simple transition to a new
pose (position and orientation). Time optimal trajectories are
generated for these motions using the trajectory generator
described in [17]. However, this method is not suitable for
following a given trajectory. Therefore, the drawing trajecto-
ries are directly created from the B-spline that represents
the given stroke according to the pseudocode shown in
Pseudocode 1.

E. Camera Node

After a drawing cycle the camera is positioned at the
previously determined location above the drawing area and
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// Initialization
C = loadSpline(selected_stroke_ID);
t = 0;
step_size = 0.00001;
command_rate_of_robot = 0.02;
reached_stroke_end = false;
current_trajectory_point = C.evaluate(t); //

Calculate point on spline at t
while (not reached_stroke_end) {

distance_total = 0;
// In our implementation the control points

contain speed information
distance_max = current_trajectory_point.

desired_speed * command_rate_of_robot;
while (distance_total < distance_max && t < 1)

{
t += step_size;
t = min(u, 1.0); // Keep t in interval [0,1]
next_point = C.evaluate(t);
distance_total = EuclideanDistance(

current_trajectory_point, next_point);
}
if (t >= 1) {

reached_stroke_end = true;
continue

}
next_point = TransformToRobotCoordinateFrame(

next_point);
robot_joint_angles = InverseKinematics(

next_point); // 1Calculate joint angles
from Cartesian pose

trajectory.push_back(robot_joint_angles);
current_trajectory_point = next_point;

}
return trajectory

Pseudocode 1. Pseudocode for generating the drawing trajectory from the
stroke description.

an image is acquired. It is converted to grayscale, rectified
using the camera calibration, and filtered by an adaptive
thresholding algorithm. The adaptive threshold technique
eliminates blurriness induced by the fixed-focus camera and
copes with the shadows cast by the robot as well as different
lighting conditions (see Fig. 3(a)). The four markings at the
corners of the drawing area are detected and its content is
rectified using a perspective transformation. The result is
saved at a normalized dimension of 300x300 pixels, resulting
in a resolution of 2.5 px/mm (see Fig. 3(b)). The resolution
is currently limited by the hardware setup, as the fixed-focus
camera has a resolution of 659x493 pixels and it cannot be
positioned closer to the drawing surface due to the mounted
brush.

F. Learning Node

The Learning Node contains the following iterative learn-
ing procedure:

1) Generate error data from the difference between the
reference image and the image of the current drawing.

2) Fit an error spline to the error data.
3) Update the stroke description of the next drawing

spline based on the previous drawing spline and the
error spline.

To generate the error data, the reference image is overlayed
with the image of the drawing from the current iteration

(a) A raw camera image, includ-
ing the dots that mark the draw-
ing area.

(b) Normalized 300x300 pixel
image stored in the character
database.

Fig. 3. Image acquisition

Fig. 4. The learning algorithm adapts the drawing trajectory iteratively to
the bending of the calligraphy brush.

and each pixel is classified according to one of the fol-
lowing categories: background, reference-only, overlapping
and current-iteration-only. This classification is visualized
in Fig. 5(a). The drawing spline is evaluated and its x-
y position is projected onto the image (dotted blue line
in Fig. 5(b)). The pixels are analyzed along the projected
trajectory’s normal line at each point pk. The pixels of the
normal line are determined by Bresenham’s line algorithm
[18]. For each pixel m on the normal line, the vector vm

pointing to it from the point pk on the projected trajectory is
weighted depending on the category of the pixel. Background
and overlapping types have a weight of wm = 0, reference-
only pixels have a weight of wm = 1, and current-iteration-
only regions have a weight of wm = −1. The resulting error
point on the xy-plane Pk,xy that corresponds to the point pk

on the projected trajectory is the calculated as follows:

Pk,xy = pk +
∑

m∈normal line

wm · vm.

This causes reference-only pixels to have an attractive behav-
ior pulling the trajectory towards them because in the current
iteration they have not been covered with ink, whereas
current-iteration-only pixels have a repellent behavior be-
cause they have been covered by the ink but should not have
been covered.

To adjust the z-coordinate, the width dref of the stroke in
the reference image and the width di of the current iteration
i is measured along the normal line at each point pk and its
difference is used to correct the z-coordinate of the brush:

zk,i+1 = zk,i + c(di − dref ),

with c being a constant that represents the relation between
a change in the z-coordinate and the corresponding change
in the thickness of the stroke.
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(a) Overlay of reference stroke
and current iteration. The four
categories of the pixel clas-
sification are colored accord-
ingly: background (white); refer-
ence stroke only (blue); current
iteration only (yellow); overlap-
ping area (green).

(b) To generate error data, a
normal line (red) perpendicular
to the trajectory (blue dotted
line) is analyzed. The vectors
from each point on the trajec-
tory to the pixels on its asso-
ciated normal line are weighted
by the indicated numbers, re-
sulting in a repellent behavior
of the yellow area while making
the blue area attractive to the
error data.

Fig. 5. Generating error data.

Next, data points for fitting the error spline are created by
combining this information Pk = [PT

k,xy, zk,i+1]
T .

Because the algorithm tends to contract the spline, an ad-
dition was made to expand the trajectory: After the spline is
completely evaluated, its beginning and end are tangentially
extended and the same strategy is applied to create the error
data points for the tangents. This ensures that the spline can
grow along the reference, as can be seen in Fig. 7.

Next, an error spline is fitted through the (m + 1) data
points in the error point cloud P̂ . Let Q̂ be a column vector
that contains (n+ 1) control points.

Q̂ =

Q0

...
Qn

 , P̂ =

P0

...
Pm


The control points in Q̂ should be determined such that

the sum of the squared errors E(Q̂) is minimal. The least
squares problem is formulated as follows:

E(Q̂) =
1

2

m∑
k=0

∣∣∣∣∣∣
n∑

j=0

Nj,p(tk)Qj −Pk

∣∣∣∣∣∣
2

.

The term
∑n

j=0 Nj,p(tk)Qj is a point on the yet unknown
B-spline at parameter position tk. Nj,p(tk) denotes the basis
function of the B-spline as defined in equation (2).

The minimum of the error is found by taking the derivative
with respect to the control points Qi and setting it to zero:

∂E

∂Qi

!
= 0 =

m∑
k=0

 n∑
j=0

Nj,p(tk)Qj −Pk

Ni,p(tk)

=

m∑
k=0

n∑
j=0

Ni,p(tk)Nj,p(tk)Qj −
m∑

k=0

Ni,p(tk)Pk.

Using the matrix

A =


N0,p(t0) N1,p(t0) ... Nn,p(t0)
N0,p(t1) N1,p(t1) ... Nn,p(t1)

...
...

. . .
...

N0,p(tm) N1,p(tm) ... Nn,p(tm)



this can be written as

ATAQ̂−AT P̂ = 0

and the control points can be calculated by solving the matrix
equation

Q̂ =
(
ATA

)−1
AT P̂ .

The control points Ci+1 of the trajectory for the next iteration
i + 1 are obtained by linearly combining the control points
from the error spline with the ones from the previous
trajectory:

Ci+1 = kp · Q̂+ (1− kp) · Ci,

where kp ∈ [0, 1] is the learning rate.

III. EXPERIMENTS

A. Learning the initial stroke in simulation

It takes roughly two minutes to complete one drawing
iteration, which consists of placing and localizing the paper,
drawing, letting the ink dry, acquiring and processing the
image. A simulation was developed to speed up this process,
where the trajectory is learned in simulation until conver-
gence before the first iteration is executed on the robot. The
required number of iterations depends on the learning rate
kp, the number of control points, and the initial spline. After
simulating various combinations the results presented in this
section use a learning rate kp = 0.2 and twelve control points
because these parameters achieved a good error score after
few iterations.

The simulation uses the simplest possible brush model:
a horizontal cross section of a cone, i.e. a circle with a
radius proportional to the brush’s negative z-coordinate. This
approach yields a good initial approximation of the trajectory
in simulation, which can then be adapted to the real test bed
in only a few iterations.

Fig. 6 depicts the decrease in the global error over several
iterations in simulation, which is shown in Fig. 7. The
error does not converge to zero because the brush model
is too simple and the number of control points is too low to
accurately represent the reference stroke.

B. Robotic calligraphy

Fig. 8 shows the results when executing the trajectory that
was learned in simulation (Fig. 8(b)) on the robot using a
real brush (Fig. 8(c)). The real drawing is then improved
using the same learning process (Fig. 8(d)).

C. Drawing repeatability

The brush itself introduces a surprisingly high amount of
noise into the drawing. It is reasonable to expect that subse-
quent drawings made immediately and without removing the
brush and dipping it into the ink would be nearly identical.
However that is not the case, as can be observed in Fig. 9.
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Fig. 6. Number of pixels that were not classified as background or
overlapping when learning the ‘na’ stroke shown in Fig. 7. The iterations
in simulation converge to an optimum that depends on the number of used
control points. The learned trajectory (iteration 20) is then executed on the
robot (iteration 20 to 36).

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a robotic calligraphy system that
was used to draw single strokes of Chinese and Japanese
calligraphy characters. The main contribution of this paper is
the described learning procedure that iteratively improves the
drawing quality by using visual feedback after each iteration.
B-splines were chosen to describe the drawing trajectories
of the strokes, because they provide advantages such as
guaranteed smoothness, free choice of interpolated data and
local control.

With the current implementation convergence is not guar-
anteed (see Fig. 10) and depends on the initial condition,
such as the position or shape of the initial spline. This could
be solved by upgrading the system with image processing
capable of generating an initial spline that is already close
to the shape of the reference as presented in e.g. [5].

Some strokes in Chinese and Japanese calligraphy have
very complex motions at their beginnings and ends. The
drawing result is approximated by our system, but the learned
trajectories are very different from the ones used by humans.

Several extensions to the presented procedure are planned.
One of these is to implement an automated procedure for
dipping the ink that also standardizes the initial shape of the
brush. Another is to implement an automated procedure that
determines the optimal number of control points necessary
to represent a stroke and to investigate other strategies for
adapting the drawing spline, such as using an ellipse instead
of the normal line. These strategies may eliminate the need
to extend the trajectory’s beginning and end to expand the
spline and may address the problems shown in Fig. 10.
Another more ambitious plan is to automatically combine
the learned strokes into characters.
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(a) 1st iteration.
Error score: 3205

(b) 2nd iteration.
Error score: 3184

(c) 3rd iteration.
Error score: 2760

(d) 4th iteration.
Error score: 2217

(e) 6th iteration.
Error score: 1281

(f) 8th iteration.
Error score: 581

(g) 10th iteration.
Error score: 266

(h) 12th iteration.
Error score: 197

(i) 14th iteration.
Error score: 181

(j) 16th iteration.
Error score: 172

Fig. 7. Learning series of the slanted down stroke ‘na’. Black: reference
shape; gray: simulated drawing of current iteration; green dots: generated
error data; light blue line: trajectory of current iteration; orange line: B-
spline fitted to error data; red line: trajectory of next iteration; circles: control
points of B-splines.
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