
Rapid Semantic Mapping: Learn Environment Classifiers On the Fly

Bertrand Le Saux and Martial Sanfourche∗

Abstract— We propose solutions to provide unmanned aerial
vehicles (UAV) with features to understand the scene below and
help the operational planning. First, using a visual mapping
of the environnement, interactive learning of specific targets
of interest is performed on the ground control station to
build semantic maps useful for planning. Then, the learned
target detectors are transformed to be applied to new images
captured by the UAV. On the technical side, we present: (i) an
online gradient boost algorithm to interactively design context-
dependent detectors; (ii) a video-domain adaptation method to
use object detectors on on-board-camera images. We verify our
approach on challenging data captured in real-world conditions.

I. INTRODUCTION
Extensive research work has been done to provide Un-

manned Aerial Vehicles (UAVs) with a model of their
environment ([1] for a recent example). Environment maps
typically contain a 2D or 3D geometric representation com-
bined with sensor-based information such as image textures
when cameras are used. The underlying assumption is that
it represents a step towards more autonomy, by allowing
localization, path planning and object recognition. The step
further consists in semantic maps [2] which in addition
contain a mapping of the geometric features to higher-level
semantic information like labels of known classes of objects.

In practical situations like security monitoring, search-
and-rescue or other civil applications, UAVs are not fully
autonomous yet, but at least partially remotely operated. At
the ground countrol station (GCS), qualified professionals
work in close collaboration with the UAV operator for de-
signing intervention schemes. Environment maps are useful
to give them the big picture of the situation and allow to
spot targets of interest. For building semantic maps, we
propose to interactively train the detectors on the GCS using
the environment maps in order to overcome the problem of
required training data and transform them for use on the UAV
camera.

Among typical state-of-the-art approaches, [3] generates
semantic labeling of places for a ground robot in an indoor
environment by using supervised classification with the ad-
aboost algorithm on laser and vision-based features. In [4],
several known classes of objects are recognized by a bag-of-
feature approach coupled with extraction of key-points in im-
ages captured by the robot. Both techniques require training
samples with associated labels beforehand (in the latter case
an internet connection was used to retrieve relevant images).
For aerial vehicles, the aspect of objects varies depending on
the altitude and this leads to different approaches. For indoor
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Fig. 1. Graphical abstract. Our approach for interactively designing ad
hoc classifiers for search-and-rescue missions. (1) Data collection The UAV
collects videos, 3D Lidar data and GPS positions. (2) Geometric mapping
In the ground station, rapid 3D mapping of the environment is processed by
bundle adjustement. (3) Semantic mapping An interpret designs classifiers
for specific targets (trees, cars...) using online gradient boost. (4) Video-
domain adaptation of detectors Classifiers are geometrically adapted to
the onboard camera image domain and sent-back to the flying UAV.

environment where sensors can capture images with enough
details, [5] proposes to use scalable part-based models to
detect people. Outdoor, at further distance with a more-or-
less vertical point of view, a wide range of detectors for
specific targets exists, such as cars [6], [7] or buildings and
road artefacts [8]. All these detectors assume a pre-existing
model. In [9], the authors propose to propagate and reinforce
semantic labeling in new images captured while the robot
evolves, but they still use prebuilt semantic classifiers to
initialize the process.

In this paper, we introduce an alternative approach for
designing semantic classifiers on site. Starting with an en-
vironment map that is build on the GCS from data (video
images and laser measures) captured in flight by a UAV, we
take benefit of the expert in the loop to define by online
learning on the map what is a relevant target for the current
operation. Concretely, (i) the expert selects target samples
the appearance of which is used to interactively train an
online gradient boost classifier; (ii) the resulting classifiers
are adapted to execute on the camera images and sent back
to the UAV. The outputs are detections of targets both geo-
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localized on the environment map for mission planning and
in the video-stream for the UAV navigation (cf. Fig. 1).

The rest of the paper is organized as follows. In section
II we describe the UAV setup and the process to build
the global mapping of the environment. In section III we
detail the interactive learning approach and in section IV the
adaptation of the detectors to the video domain. Finally, the
whole approach is assessed by results presented in section
V, that we discuss in section VII.

II. ENVIRONMENT MAPPING

Though the construction of non-semantic mapping is be-
yond the scope of this paper, this section describes the system
that was used to perform experiments and briefly explains the
generation of orthomosaı̈cs.

A. System overview

The platform used for experiments is a Yamaha
RMAX helicopter equipped with various sensors: a 1,3MP
monochrome camera for video and a 4-line-scan laser mea-
surement sensor (Sick LD-MRS) for range data. The lo-
calization of the helicopter is given by a decimeter-class
GPS-RTK system. For security sake, the UAV is remotely
controlled from the GCS which receives its attitude and
speed information along with sensor data.

B. Environment maps

Given video and range data captured from the UAV, we
build 3D environment maps in a 3-step workflow. First, the
geometric constraint induced by points of interest tracked
over the video-sequence is used to refine the trajectory,
using a sparse bundle adjustment algorithm [10]. Second,
given the new UAV positions, range data are aggregated to
form a 3D-point cloud that is the basis for the environment
map (cf. Fig 2). Finally, a Digital Elevation Model (DEM)
generated from the point cloud can be textured by mapping
the radiometry of each video-frame to the DEM pixels, which
yields in easy-to-understand orthomosaı̈cs.

The trajectory refinement is required to obtain useful
environment maps because in spite of the precise localization
provided by a high grade GPS-RTK, a direct mapping of
range data using these measures leads to artefacts (ghost
buildings and misplaced landmarks) in the resulting DEM
(cf. Fig 3)

III. INTERACTIVE LEARNING OF TARGETS OF
INTEREST

Orthomosaı̈cs give an operator the global situation of the
scene and allow him to enhance the UAV capability by
learning objects of interest: for example trees for landing
obstacle avoidance or cars for target detection. For this
purpose, we adapted the method of [11] to such images. We
show this is effective for learning patterns other than man-
made structures, and specifically the ones that can be useful
for UAV guidance.

Fig. 2. 3D environment map built from the range data using the precise
trajectory estimated by sparse bundle adjustment using the video-images.

(a) (b) (c)
Fig. 3. Quality of the mosaı̈c: comparison of a ground-truth aerial
photography (a) with 2 DEMs: (b) one built using only raw UAV parameters
and which leads to reconstruction artifacts; (c) the output of our method
which matchs the real buildings observable in the ground-truth.

A. Feature extraction

The operator is presented the generated orthomosaı̈c in an
interface that allows to select areas of interest and irrelevant
areas (cf. Fig. 5). Then the system extracts small patches
from the selected zones and computes appearance descriptors
for each of them (cf. Fig. 4). The resulting features constitute
the training set (with both positive and negative samples) that
is used to learn the target of interest. We use the combination
of Histograms of Oriented Gradients (HOG [12]) and Local
Binary Patterns (LBP [13]). These features were proven
efficient in aerial images [11] as well as standard videos,
since they were used as the low-level image descriptors in
the approach that won the PASCAL visual object classes
detection challenge in 2011 [14].

Orthomosaı̈c patches corrrespond to sets of locations de-
noted by {mp}1≤p≤P . In our implementation, HOG quan-
tifies the edge direction information with a 60-dimensional

(a) (b) (c)
Fig. 4. Detail of the original ortho-rectified image (a) and corresponding
extracted features: (b) Histograms of Oriented Gradients (HOG) as edge di-
rection descriptor and (c) Linear Binary Patterns (LBP) as texture descriptor.
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smoothed histogram. LBP is a texture feature that computes
a 10-interval histogram of rotation-invariant patterns at 2
different scales, resulting in a vector of dimension 20. We
denote the concatenated vector (dimension D = 80) of HOG-
LBP features by:

xn = fHOG−LBP({mp}1≤p≤P ) (1)

and the training set of the features with the label yn of the
area they come from by:

X =
{
(x1, y1), · · · , (xN , yN ), xn ∈ RD, yn ∈ {+1,−1}

}
B. Fast online learning

Learning is then performed by online gradient boost, the
aim of which is to build a decision rule able to discriminate
the image descriptors. An online procedure is preferred
because it allows the operator to give relevance feedback in
order to design an efficient detector. In a few words, boosting
is a machine learning approach which builds a good (strong)
meta-classifier F from a set of weak classifiers fm (presently,
the ith component of the HOG-LBP descriptor):

F (x) =

M∑
m=1

fm(x) (2)

Several variants of the initial adaboost algorithm [15] have
been proposed, including the online boosting used in [16].
The trick for obtaining an online version of boosting is
to use cumulative errors over the set of samples for each
weak classifier instead of computing an error that estimates
the difficulty of each data xn. Boosting can be considered
as an approximate gradient descent in the weak-classifier
space [17], and this result yields in a more generic family
of boosting methods named online gradient-boost [18] that
builds the strong classifier F by minimizing the empirical
loss defined by:

L(F ) =

N∑
n=1

l(ynF (xn)) (3)

where l(.) is a loss function. Standard loss functions are:

exponential: exp(−x)
logit: log(1 + exp(−x))

doomII: 1− tanh(x)

savage: ((1 + exp(2x))2)−1

hinge: max(0, 1− x)

The area selection process often suffers from imprecise
drawings of the user or wrong labelling. It implies more
mislabelled data than in a carefully controlled training set.
Now, it has recently been shown that boosting algorithms
with a convex loss function (among which adaboost) are
particularly sensitive to noise [19]. This leads us to imple-
ment Algorithm 1 with the non-convex DoomII loss function
that is less sensitive to noisy data, as shown in [11].

Moreover, in the images we are dealing with, positive
samples are often scarce while it is easier to find areas of
non interest. It often implies the training set is unbalanced.
To counterbalance this problem, we define a new set of loss
functions that take into account the prior probabilities of the
training sets:

l(x)← l(x)

p(y)
(4)

where priors are estimated by counting the number of posi-
tive samples n+ and negative ones n−:

p(y = 1) =
n+

n+ + n−
(5)

p(y = −1) =
n−

n+ + n−
(6)

This results in Algorithm 1 which minimizes Eq. 3 in an
online fashion (i.e. each stage of the optimization yields
in a functionnal classifier and new samples can be added
incrementally). All sample weights are divided by p(y = yn),
such giving more importance to training samples of the class
that is underrepresented.

Algorithm 1 Online Gradient-Boost with a priori informa-
tion
Require: a training sample set (xn, yn)1≤n≤N , a differen-

tiable loss function l(.)
Require: M selectors (pools of weak learners) of K weak

learners (i.e. feature component) each
1: for all xn, n ∈ [1 : N ] do
2: Set F0() = 0
3: Set the weight wn = −l′(0)/p(y = yn) associated

with xn

4: for all selector m ∈ [1 : M ] do
5: for all weak learner k ∈ [1 : K] do
6: update weak learner fk

m = 0.5 log
(

p(xik |y=1)

p(xik |y=−1)

)
with (xn, yn)

7: update cumulative error ekm ← ekm +
wn1(sign(fk

m(x) 6= y)
8: end for
9: Select best weak learner with the least total

weighted error: km = argmink(e
k
m)

10: Set fm(xn) = fkm
m (xn)

11: Set Fm(xn) = Fm−1(xn) + fm(xn)
12: Set the weight wn = −l′(yn ∗ Fm(xn))/p(y = yn)
13: end for
14: Output model at stage n: F (x)
15: end for
16: Output the final model: F (x)

IV. DETECTION

The classifiers trained online have two potential outputs:
semantic maps of the local area, which can be superposed
to the orthomosaı̈c, and detectors that produce a semantic
labeling of what is seen by the UAV.
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A. Semantic maps

Once the training has been done, the final classifier is
expressed in a compact way by Formula 2. Weak learner
values are given by:

fm(x) = 0.5 log

(
p(xim |y = 1)

p(xim |y = −1)

)
(7)

where im is the HOG-LBP coefficient that was selected as
the best weak learner and p(xim |y = yn) are estimated using
online histograms computed over the training set.

Applying this classifier on the orthomosaı̈c produces de-
tection maps of the defined object. For a UAV, the interest
is two-fold. Target-detection maps (like cars or buildings)
are useful for defining the target of the UAV flight and thus
planning the path that leads to it. Obstacle-detection maps
(such as trees or buildings) are useful for planning paths
that avoid potential dangers, especially when approaching
the target.

B. Detectors for on-board camera

The classifier parameters are then used in a detector that
performs on frames of the video flow, and detect the objects
of interest in it. The compactness of the model allows to
upload it on a UAV even over a limited-bandwith channel.
However, the orthomosaı̈c is obtained by image synthesis and
has different viewing angle and resolution than the images
captured by the UAV on-board camera, so domain adaptation
has to be performed to use the classifiers in a different
geometry.

In Eq. 2, x is the feature computed over a patch according
to Eq. 1. In projective coordinates, a patch is composed of
points mk = (u, v, 1)> in the orthomosaı̈c plane. The same
real-world points are projected to points m′k = (u′, v′, 1)>

in the video-frames. The intrinsic parameters of the UAV-
camera are known and the 3D position of the UAV is given
by the GPS system. It is therefore possible to compute the
homography that relates both projections [20] according to:

mp = KOM ·HR,t ·K−1Cam ·m
′
p (8)

where KCam is the intrinsic-parameter matrix of the on-
board camera, HR,t = R − tn>

d is the transform between
the local coordinate systems of the camera and the world (R
is the rotation matrix that depends on the UAV attitude; t the
translation vector between the two origins; n the normal to
the orthomosaı̈c plane and d the UAV altitude) and KOM is
the transform matrix that encodes the change of origin and
resolution between the world and the orthomosaı̈c image.
The procedure for detecting objects of interest in a given
video-frame consists in Algorithm 2.

In practice, given that the camera viewpoint is vertical with
respect to the UAV, rotations are only due to UAV motions
and almost every area of the video-frames can be classified.
The benefit is that the UAV is able to detect obstacles or
targets that appear in its own field of view.

Algorithm 2 Detector adaptation to the video geometry
1: for all patch {m′p}1≤p≤P ∈ I ′: do
2: rectify patch in the orthomosaı̈c plane according to

Eq. 8
3: interpolate a new patch following the orthomosaı̈c

plane sampling grid
4: compute feature x according to Eq. 1
5: classify x according to Eq. 2
6: end for

(a) (b)
Fig. 5. (a) Initial selection of areas of interest (green) and non-interest
(purple) for designing a tree classifier. (b) Result of the detector (blue areas)
after 3 iterations of learning by online gradient boost.

V. EXPERIMENTS AND RESULTS

Data were captured during successive UAV flights above
a scene composed of buildings (individual housing), trees,
meadows and cars (more-or-less 4000 640x480 frames, with
resolutions from 5 to 10cm depending on the altitude).
Data of the first flight was used to build the environment
mapping (20cm-resolution mosaı̈c) to learn targets and create
semantic maps. Data of subsequent flights was used to test
the resulting detector on never-seen images.

A. Online Learning Experiments

In Fig. 5, we show an example of learning interactively a
classifier. Initially the orthomosaı̈c is shown in an interface
that allows to select positive and negative sample areas.
The system answers by showing on the image the areas
detected by the current classifier. After roughly 3 rounds of
interactions, the user may consider the detection of objects
of interest (here, trees for obstacle avoidance) is satisfactory
with only a few remaining false alarms and stop the learn-
ing. Fig. 6 shows such semantic maps for two topics that
exemplify objects of interest for the UAV: trees (obstacles)
and cars (targets).

In Fig 7, we show precision-recall curves of tree and car
detection in the orthomosaı̈c. Precision is the proportion of
relevant detections in the retrieved results and is defined as
Prec = TruePos/(TruePos + FalsePos) with respect to a
ground-truth. Recall is the proportion of real targets that were
retrieved and is defined by Rec = TruePos/(TruePos +
FalseNeg). A trade-off has to be established between these
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(a)

(b)
Fig. 6. Details of object-detection maps superimposed on the environment
map: (a) tree detection for landing obstacle avoidance. (b) car detection for
target localization.

two values. Our online gradient boost with a priori infor-
mation loss function was compared with two state-of-the-
art learning methods: standard online adaboost, and Support
Vector Machine (SVM). In this latter case, a parallel im-
plementation of the SVM [21] helped to keep interaction
times low. We used a Radial Basis Function (RBF) kernel and
optimal parameters were chosen by cross-validation and grid-
search. For each approach, we averaged detection results over
5 rounds of training and testing. Both boosting approaches
outperform the SVM-based detector, which is flawed by too
many false alarms when recall increases. Among the boosting
variants, the gradient boost method we proposed appears to
be more able to discriminate targets from clutter than the
standard adaboost.

B. Target Detection in a Video Flow

Detectors for various objects (trees, buildings and cars)
learned during the first flight are now applied on frames

(a)

(b)
Fig. 7. Precision-recall curves of detection in the orthomosaı̈c. (a) Tree
detection: both online gradient boost and standard adaboost gives better
detection results than the SVM. (b) Car detection: curves are less informative
since there is only one car in the dataset, so true positives correspond to
training data. However all three methods are able to learn what is not a car
and to avoid too much false positives.

extracted from the second video. These detectors were geo-
metrically adapted using the approach of section IV-B. Fig. 8
show that in spite of the change of viewpoint and scale, most
objects of interest are retrieved in the new images. Car and
building detections show that in spite of specific method to
handle object rotation at learning stage, objects with various
orientations can be detected.

Hardware requirements. We measured computing times
on a UAV payload system with a core 2 duo processor
(1.5 GHz clock rate). All detectors have a 1.6 Hz framerate
which corresponds to a UAV advance of less than 1 m: for
example landing-area obstacle detection remains tractable to
deal with. The boosting models have a typical size of 13.5
kB and are on average 20 times smaller than SVM models,
which make them more suitable for upload in restricted
bandwidth conditions.
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(a) (b)

(c) (d)

(e) (f)
Fig. 8. Detection results (blue squares) in video frames after geometric
transform. First row (a) & (b): tree detections; second row (c) & (d): car
detections; third row (e) & (f): house detections.

VI. PERSPECTIVES
The proposed learning and domain adaptation approaches

remain valid with different object models. Further work
will investigate different kinds of models that may allow to
discriminate a wider variety of objects. In aerial images with
vertical point of view, rotation is handled by our method
by relying on the variety of samples that are selected.
Rotation-invariant features will be tested along with schemes
to find objects at different orientations. Eventually, the real
challenge is to be able to learn directly 3D-objects of interest
by designing them in the 3D environment map, so the next
step will be to build textured 3D models that allow to learn
targets seen from any viewpoint.

VII. CONCLUSIONS
In this paper we presented a novel approach for rapid

semantic mapping for a UAV. Key-outputs are semantic
maps superimposable to environment maps of the explored
area and object detectors directly usable on the UAV. The
integrated workflow we presented goes beyond the standard
mapping procedure for control, by using this mapping to
generate ad hoc target classifiers in an interactive procedure
based on online gradient boost. We think that real-world
scenarios will require collaboration between a robot that is
autonomous for what it is efficient at and an operator in the
ground control station for defining objectives that require a
high level of conceptualization.
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