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Abstract— Communication blackouts and latency are sig-
nificant bottlenecks for planetary surface exploration; rovers
cannot typically communicate during long traverses, so human
operators cannot respond to unanticipated science targets
discovered along the route. Targeted data collection by point
spectrometers or high-resolution imagery requires precise aim,
so it typically happens under human supervision during the
start of each command cycle, directed at known targets in
the local field of view. Spacecraft can overcome this limitation
using onboard science data analysis to perform autonomous
instrument targeting. Two critical target selection capabilities
are the ability to target priority features of a known geologic
class, and the ability to target anomalous surfaces that are
unlike anything seen before.

This work addresses both challenges using probabilistic
surface classification in traverse images. We first describe a
method for targeting known classes in the presence of high mea-
surement cost that is typical for power- and time-constrained
rover operations. We demonstrate a Bayesian approach that
abstains from uncertain classifications to significantly improve
the precision of geologic surface classifications. Our results show
a significant increase in classification performance, including a
seven-fold decrease in misclassification rate for our random
forest classifier. We then take advantage of these classifications
and learned scene context in order to train a semi-supervised
novelty detector. Operators can train the novelty detection
to ignore known content from previous scenes, a critical
requirement for multi-day rover operations. By making use
of prior scene knowledge we find nearly double the number
of abnormal features detected over comparable algorithms. We
evaluate both of these techniques on a set of images acquired
during field expeditions in the Mojave Desert.

I. INTRODUCTION

Exploration spacecraft are increasing in both mobility
and their capacity to collect large volumes of science data,
making communications latency and bandwidth a critical
bottleneck for mission science return [1], [2]. Recent tests
have demonstrated the ability of rovers to traverse multiple
kilometers a day [3], and the recently-launched Mars Science
Laboratory rover carries an order of magnitude more instru-
ment mass than any previous rover mission [4]. Missions
are exploiting these payloads to actively and passively ana-
lyze habitats, detect biosignatures, and characterize chemical
abundances, yet spacecraft mobility and potential to collect
scientific data greatly outpace their communications ability
[2]. Limited communication windows with Earth, commu-
nications blackouts, and low-bandwidth transfer methods
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hinder the amount of information returned and the rate
of discovery of spacecraft [1], [2], greatly reducing the
lifetime scientific return of a mission and necessitating the
development of reliable onboard analysis methods.

This is particularly important for the next generation of
astrobiology-inspired rover missions. Even ignoring commu-
nication restraints, the search for peleohabitat indicators is
particularly challenging because any evidence is likely to
be sparse, isolated, and difficult to detect from a distance
[5]. Onboard data analysis can play an important role to
maximize scientific return and reduce the number of missed
observation opportunities. In recent years a number of algo-
rithms have been developed that aid in scene understanding,
automated targeting, and data summary. Advances include
rock detection and classification of rock characteristics [2],
[6], and detection and tracking of dust devils [7]. The AEGIS
system [8], currently operating on the Mars Exploration
Rovers, autonomously discovers scientifically interesting fea-
tures and targets them for followup observations by high-
resolution imagery on the same command cycle.

Onboard data analysis can be particularly transformative
for missions to the farthest and harshest regions of the Solar
System. Hostile environments such as the intense heat on
the surface of Venus or the radiation of Europa mean that
landers have an extremely limited amount of time to target
instruments, take readings, and transmit this data to Earth.
When the communications delay between the probe and
Earth is nearly as long or longer than the expected lifetime of
the spacecraft, onboard data analysis can be used to prioritize
key measurements, detect and target anomalous regions, and
return low bandwidth maps and compressed representations
of scenes.

Instrument targeting typically involves finding specific fea-
tures of scientific interest like rock outcrop, layered strata, or
specific geologic facies [9], and then taking aimed measure-
ments with instruments like high-resolution cameras or point
spectrometers. Finding these target surfaces is tantamount
to a traditional classification problem. However, planetary
science has special requirements that differ from those of
generic classification tasks. First, automatic instrument tar-
geting requires excellent classifier precision. Time and power
resources for followup data collection are highly constrained
so the system must be very confident in the classification
before diverting from its plan for opportunistic data collec-
tion. It is likely that an explorer robot will visit environments
viewed in a variety of lighting or environmental conditions. It
will be critical to for the analysis system to be able to adjust
to these conditions, even if that means forgoing classification
of portions of the scene. Second, it is also important that the
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system find anomalous surfaces that appear different from
anything the mission has seen previously. Such anomalies
are critically valuable for exploration.

This work demonstrates a probabilistic surface classifi-
cation approach for target selection during rover traverse.
We first introduce a general algorithm for increasing the
precision of surface classification. The proposed system
prioritizes low-risk classifications, removing the most am-
biguous pixels from the final output. We describe the cost
of abstention as a fixed error, making it straightforward
to compute Bayes-optimal decisions about which pixels to
classify. This exploits the fact that full scene classification is
not needed for most instrument targeting applications. By
only classifying regions of high confidence, a rover may
operate in a large variety of environments or new imaging
conditions over long periods while maintaining a high level
of targeting precision. The cost of abstention is directly
related to classifier confidence and misclassification costs,
and can easily be adjusted for varying applications.

Building on these results, we use these classifications to
direct novelty detection in a semi-supervised manner. We
use the classification results from a new image to seed a
distance-based anomaly detector with known background
regions. The system can thus be trained to ignore specific
features or surfaces that are known to be non-anomalies.
The novelty score not only provides an in-image ranking
of each window’s novelty, but also provides a standardized
metric with which we can compare windows across an
entire traverse, allowing the rover to make more intelligent
decisions about instrument targeting or optimize the return of
the most novel regions when a data uplink becomes available.

We evaluate our algorithms on a random forest classifier
trained on geologic textures. The classifier identifies patterns
in image channels, such as an object’s color, range from the
camera, vertical height, or state of illumination, in order to
provide scene analysis and autonomous instrument targeting
[10]. These patterns are used to ascribe classification labels
to physical surfaces in the spacecraft environment. Classified
images can be used to guide instrument placement to features
that exemplify local terrain, as well as score dissimilar
regions for further analysis.

Section II discusses related work, the classification algo-
rithm, and our use of these classifications for instrument
targeting. Section III outlines our experimental dataset as
well as our training and testing procedures. Section IV
reports experimental results.

II. APPROACH

The initial scene analysis classifies each pixel of an image
according to the physical texture. We favor a random forest
classifier [11], an ensemble of decision tree classifiers T ,
each trained on a random subset of the training data. Trees
are made up of nodes n and leaves L = (l1, ...lm), where
each leaf stores a learned class distribution P (c|n) [Here
and elsewhere P designates probability, while pixels are
designated pi], or simply the probability of being a member

(a) Example test image (b) Ground truth comparison

(c) Smooth basalt class probability (d) Overlayed classification

Fig. 1: Sample classification process. We learn texture from
images such as (a) using ground truth shown in (b). The
blue label indicates vesicular basalt, green indicates smooth
basalt, and red indicates sand. (c) shows a heatmap of
the smooth basalt class, warmer colors indicating higher
confidence in that classification. (d) is the final output of the
classifier overlayed on the original image, showing excellent
agreement with the geologist classification.

of class c given the path of nodes traversed before reaching
the given leaf.

Classifications are made by starting at the root node of
each tree and branching left or right at each node according
to the response of a node-specific operation on the vector of
inputs. The class of the input vector is then assigned as the
Maximum A Posteriori (MAP) class after averaging across
all trees:

P (c|L) =
1

T

T∑
t=1

P (c|lt) (1)

A. Random Forest Generation

To generate a random forest, we train each tree on a
small random subset I ′ ⊆ I of available training images I .
We select training points from I ′ using a random sampling
method. At each node n of the tree, we split the data at that
node, In, recursively into left and right subsets, Il and Ir,
respectively, according to a threshold τ of a split function f
on the feature vector v:

Il = i ∈ In|f(vi) < τ (2)
Ir = In − Il (3)

At each node, we generate a number of candidate functions
for f . Our algorithm uses five main binary comparisons: the
value at pixel pi, or the difference, sum, absolute difference,
or ratio between two pixel values pi and pj within a window.
Pixel values can be from any color or pre-processing channel,
and the channels of pi and pj do not have to be the same.
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Candidates for f are a random combination of these binary
comparisons and relative pixel locations for pi and pj .

We select the candidate function and threshold that max-
imizes the expected information gain over the classes in In:

E[∆H] = − |Il|
|In|

H(Il)−
|Ir|
|In|

H(Ir) (4)

where H(I) is the Shannon entropy of the classes in I . Once
the best operation from the random set has been chosen,
we split the training points and create two leaf nodes. We
then compute P (c|n) for each class using its population
of training data. This splitting continues recursively until
a maximum number of splitting operations has occurred.
We disallow splits that would create a child population with
fewer than 32 pixels.

We select thresholds with an exhaustive search. It should
also be noted that the training data may be biased towards
more frequently occurring classes. To account for this, we
normalize the leaf distributions by weighting each sample by
the inverse of its class frequency.

We use a random forest classifier inspired by Shotton et al.
[12]. The classifier used here resembles their work with two
main differences. First, the Shotton et al. work uses splitting
functions based on single pixel values and fast comparisons
between them: pixel differences, absolute differences, and
sums. We augment these features with pixel ratios, increasing
performance slightly for our dataset. Second, their work
includes a number of post-processing steps based on bag of
semantic textons to improve overall scene consistency. We
forgo these steps, and instead only perform a single pixel-
wise classification.

B. Classification with Abstention

Instrument targeting requires very precise classification
since time and power are constrained and any opportunistic
data collection displaces other science activities. However,
there is typically a surplus of target surface so that precision
only matters where the rover chooses to collect data, i.e. in
small regions of an image. Consequently we can improve
task performance by abstaining from uncertain classifica-
tions. In our scenario, the random forest classifier provides
an average estimate of posterior class probabilities. We
propose a Bayesian approach that uses these classification
confidences to choose when to abstain. Our cost function
gives appropriate penalties to both misclassifications and
abstentions.

During a single pixel’s classification, each tree in the
forest provides a posterior probability P (C = c|x) of a
pixel of class C being classified as class c given inputs
x. The agent takes an action a, either ascribing a specific
class or abstaining. The agent then incurs a cost based on
the true class c and the action taken. Correct classifications
are considered to have no cost, while misclassifications
have a per-class cost of βc and abstentions have a cost α
(0 ≤ α ≤ minc βc). In an instrument targeting scenario,
the flexibility of per-class misclassification costs allows us
to weight the risk of misclassification against the cost of

sampling. Common classes may have a high misclassification
cost to reduce mistargeting risk, while infrequent classes may
warrant a lower one.

Given n classes and the pixel’s features, the expected loss
of choosing an action a ∈ {abstain, classify as c} is:

E[L|x, a] =
1

n

∑
c

L(c, a)P (C = c|x) (5)

where L(c, a) =

 0 if a = c
βc if a 6= {c, abstain}
α if a = abstain

(6)

It is optimal to choose the action that is associated with the
smallest expected loss. Extrapolating to m trees (t1, ..., tm),
the optimal action is found by averaging the expected loss
across all trees:

argmina E[L|x, a] =
1

n

∑
c

L(c, a)
1

m

∑
t

pt(C = c|x) (7)

By varying α, we increase or decrease the number of
unclassified pixels. A high value for α will lead to fewer
abstentions, while a lower value will lead to many.

There is considerable prior research in abstaining and reli-
able classifiers, especially in medical disciplines demanding
highly accurate diagnoses. Elazmeh et al. [13] propose using
Tango’s test to find regions of receiver operating charac-
teristic (ROC) curves that contain reliable classifications.
Vanderlooy et al. [14] propose ROC isometrics, or methods
with which to find unreliable regions of the ROC graph.
Eliminating these regions increases the overall precision of
the classifier. Unfortunately, many of these works deal with
binary classification problems, so they do not translate as
well to the multiclass scenario proposed here.

The abstention method that most closely resembles this
work is that of Chow [15]. Chow proposes a Bayes-optimal
method for selecting a ’rejection threshold’ (a confidence
score below which a classifier should abstain). Chow shows
that when the loss is defined by rejection and misclassifi-
cation rates, the rejection threshold is sufficient to exactly
specify a particular classifier in the Pareto-optimal set. Here
we expand this formulation to an arbitrary multiclass loss
function, in which both the threshold and cost for incorrect
classifications can be altered to best suit the task at hand.
This retains the theoretical elegance of the Chow approach,
while providing the additional flexibility of asymmetric mis-
classification loss to distinguish high-value targets.

C. Novelty Detection

When scenes are well-represented by training data, classi-
fiers can provide a complete interpretation. However, when
anomalous scene characteristics are encountered, novelty
detection can leverage a probabilistic classification to mark
regions of image for further analysis, instrument targeting,
or prioritized uplink. Taken across an entire traverse, novelty
detection can provide summary statistics that alert scientists
to unusual events. Such a system must also be trainable so
that it is not fooled by local anomalies that are pervasive in
historical data.
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We propose a semi-supervised system that utilizes the
results of the abstaining classifier as a background model
leading to a per-pixel novelty detection score. We begin by
classifying the image and build a probability density model
using high-confidence classifications.

The feature space consists of the HSV color values and
m Gabor wavelets of various scales and orientations to
provide local texture statistics. Thus each pixel pi in the
scene becomes a vector of length m+ 3:

pi = (xh, xs, xv, xg1, ..., xgm)T (8)

Using the classification labels as pixel priors, the mean µc

and covariance S are calculated over the pixels of each class
c:

µc = (µh,c, µs,c, µv,c, µg1,c, ..., µgm,c)
T (9)

Using these, a per-pixel distance to each class is then
calculated using the Mahalanobis distance metric:

Dc(pi) =
√

(pi − µc)TS−1(pi − µc) (10)

The novelty score for a given pixel S(pi) is thus the
minimum Mahalanobis distance to any class:

S(pi) = min
c
Dc(pi) (11)

As the novelty scores for nearby pixels can have a high
variance, we average the pixel-level scores within a window
w of a fixed size N :

Sw =
1

N

N∑
i=1

S(pi) (12)

Window novelty scores can then be compared directly to
determine the regions within the scene of the highest novelty.
See Figure 2 for example scores and resulting novel regions.

It is worth noting that a Mahalanobis distance over m+ 3
image channels is directly related to a p-value from a χ2

distribution with m+3 degrees of freedom. Thus, using Ma-
halanobis as a distance metric provides us with a normalized
score that is consistent across an entire traverse, allowing our
system to also rank novel regions between multiple images.

There has been much prior work on calculating image
novelty, as novel regions in an image often contain features
of high information content. Multiple approaches have used
saliency as a method for automated video indexing [16],
[17], greatly reducing the required amount of manual re-
view. Other works use machine learning techniques to find
abnormalities in an image by training against sample data,
making the assumption that such training sets exist and have
consistent features [18], [19].

Much prior work presents anomaly detection under the
more general theme of image saliency. Given a sample image
or series of images, their detectors find a ranked list of
salient regions. Itti et al. propose a method that simulates
the visual search process of humans [20]. They calculate
responses to center-surround operations, color contrast, and
contrast between local orientation responses, then linearly

(a) Novelty heatmap (b) Original image with novel re-
gions marked

Fig. 2: Example novelty detection. We use classifications of
the true color image shown in (b) as class priors. Using the
average minimum Mahalanobis distance over image windows
we calculate the heatmap shown in (a). Windows are ranked
with a novelty score and are shown overlayed in (b).

combine them to calculate saliency scores. Hou et al. con-
sider the same scenario, yet approach it using a spectral
residual model [21]. The spectral residual approach shows
improvement over Itti’s method, and we compare against it
in the evaluations below. For a more comprehensive survey
on saliency techniques, we refer the reader to [22].

In an exploration context, finding novel regions or images
has many benefits. Primarily, novelty algorithms are able
to address data management issues, such as automating
data analysis of a traverse or improving the relevancy of
information returned through limited data uplinks. Johnson-
Robertson et al. use an entropy-based saliency method to
analyze large amounts of underwater data, both to find salient
images and salient pixel regions, greatly reducing the amount
of manual examination required [23]. Wagstaff et al. do not
explicitly calculate novel pixels, yet propose a method in
which regions of images are selectively compressed if they
have low information content [24]. Thompson et al. use a
semi-supervised eigenbasis approach to novelty detection in
radio astronomy time series data to distinguish abnormal
radio signals from background noise [25].

III. EXPERIMENTAL DETAILS

This section evaluates image interpretation for instrument
targeting in a challenging field environment: the Cima vol-
canic fields in the Mojave National Preserve.

A. Dataset

The dataset used in this work is a series of images of
vesicular and smooth basalt formations in the Cima vol-
canic field in the Mojave Desert. These fields are a part
of the Mojave Cima Volcanic Range, which includes 40
volcanic cinder cones and associated basaltic lava flows. The
flows formed when the cinder cones erupted as relatively
benign liquid fountains. Gases escaping from the cooling
lava created bubbles or “vesicles” directly visible in the rock
surface. The number and size of vesicles indicates distinctive
processes and compositions associated with different parts of
the flow. We identified a portion of the flow containing three
main classes: smooth basalt, vesicular basalt, and sand. While
sand is typically easily identifiable, smooth and vesicular
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basalt formations are often of similar color and illumination,
mainly differing in texture. Furthermore, without contextual
cues it is often unclear where one class ends and another
begins, making classification difficult.

We simulated multiple rover imaging sequences, approach-
ing the rock face from a distance and collecting images
at 0.5m intervals. This is similar to a navigation sequence
collected by a rover approaching a sampling target during
single-command instrument placement. We acquired images
from a color stereo rig with a 12cm baseline, providing
color as well as accurate range information. The midday sun
provided bright overhead illumination and clear distinctive
cast shadows.

We create two versions of our ground truth images. One
version contains labels for smooth and vesicular basalt, as
well as sand. These are used as labels in the classification
training and evaluation processes, and were labeled by a
geologist. Vegetation and ambiguous regions in which a
trained geologist cannot identify a class are left unlabeled,
excluded from both the training and test process. Evaluation
of the abstaining classifier is performed using this version.

The second version of ground truth images contains the
same labels as the first, but also includes the labeling of
vegetation and interesting rock features. Interesting rock
features in this context are discolorations in a rock face, rocks
of unusual color or texture, or veins within a rock face. All
test images contain between five and ten of these features.
Evaluation of all novelty detection methods are performed
using this set.

B. Classifier Training and Test Procedure

We evaluate performance on 23 images from our dataset.
We convert all images to the HSV color space which we have
found gives a slight increase in classification performance
over an RGB representation. We train our classifier using
100 trees, 50,000 sample points per tree, 64 expansions
within each tree, and a window size of 41 pixels in which
the algorithm searches for pixel comparisons that maximize
information gain. We find our test results are insensitive to
the precise training parameters used.

We evaluate performance using leave-one-out cross valida-
tion, comparing posterior classification probabilities against
ground truth. We ignore classification of abstained pixels and
assume a constant misclassification cost βc for all classes.

We experimented with using stereo range values as an
additional input channel as in [26]. For this dataset, incor-
porating the range data as a feature decreased generalization
performance and provided no other noticeable benefits. How-
ever, we did find an increase in classification performance
when multiple classifiers were used, each trained on a subset
of range values. We partition the training data into groups
of pixels having similar distances from the camera, creating
three subsets: a close-range subset from 0−2m, a mid-range
subset from 2 − 6m, and a and long-range subset beyond
6m. These distinctions are significant for rover operations;
the first interval is roughly the workspace for arm-mounted
contact sensors, the second interval may have valid remote

(a) α = 0.5 (b) α = 0.3

Fig. 3: Decreasing the cost of abstention causes the classifier
to become more conservative, leaving a larger fraction of
pixels unlabeled. Brighter colors are misclassifications of
the correspondingly-colored class and are indicated in (a)
by arrows.

sensing targets, and the long-range interval would probably
require further driving to investigate. Range data from a
new scene determines the appropriate classifier for each new
pixel, and pixels without range data are ignored in both
training and classification.

We note that classification is greatly improved when
performed on well-lit regions. In this case we smooth the
image with a boxcar filter and then apply an intensity thresh-
old to find lit and shadowed surfaces, operating under the
assumption that the image has first been contrast-normalized
in prior processing or through automatic exposure and gain
settings on the physical camera.

C. Novelty Test Procedure

We evaluate novelty performance using the same set of
23 images. We perform classification with abstention as
described above using a conservative abstaining threshold of
α = 0.4, chosen because it provides a good tradeoff between
the number of pixels classified and classifier performance, as
shown in Figure 4. The classified pixels are then used to seed
a background model in the density estimation. As outlined
above, we combine HSV color channels with ten Gabor
wavelets of differing orientation and scale, then calculate the
mean of each image channel and covariance of each class and
use these to calculate the minimum Mahalanobis distance
from each unclassified pixel to the class means.

We calculate the average novelty score for image regions
using windows of size 60 by 60 pixels, evaluated every
20 pixels. The highest-scoring windows are then combined
together until there are five distinct regions, and the convex
hull of these regions are checked for vegetation or rock
feature classes. A limit of five regions is chosen because, on
average, scenes in the dataset are labeled with approximately
eight novel regions, but sometimes as few as five.

We compare our method to three others: Hou’s spectral
residual method, a Gaussian mixture model (GMM), and a
similar semi-supervised approach which treats image chan-
nels as independent.

The GMM approach initializes three Gaussian clusters
using K-means clustering, then performs Expectation Maxi-
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Fig. 4: Top: AUC performance as the confidence threshold
α changes. The green line represents smooth basalt, blue
represents vesicular basalt, and red represents sand. An AUC
of 1 indicates perfect classification. Bottom: Percent of pixels
classified as α changes.

mization (EM) to shift the distributions to better fit the data.
If EM fails due to numeric instability or other causes, the test
uses the initial K-means solution. The means and covariances
of each class are calculated from the final mixture model
and the Mahalanobis distance is used to score novelty in
a similar manner to our proposed approach. Note that this
method simulates an unsupervised version of our approach in
which class labels are not known but are instead estimated.

The alternate semi-supervised method treats each channel
of the image as an independent Gaussian. The abstaining
classifications are used to calculate channel means and
variances for each class, and pixels are given the novelty
score of the minimum number of standard deviations from
class means across all channels.

For all test methods we designate a novel region as cor-
rectly labeled if that region contains at least 40% vegetation
or interesting rock feature classes. 40% is chosen here due to
the size of the vegetation and rock feature labels as compared
to the region size, as the convex hull of regions in all methods
often includes an area larger than the ground truth label.

IV. RESULTS

A. Abstention Results

We first investigate improving precision by abstaining
from classification. We evaluate this method on a classifier
trained using range segmentation on illuminated surfaces, the
highest performing strategy. We vary α, the cost of absten-
tion, increasing or decreasing the number of pixels within the
scene that are classified. At lower values of α the classifier is
very strict, ascribing only its most confident classifications,
while higher values of α lead to a higher number of classified

1 0.5 0.45 0.4 0.35 0.3 0.25 0.2

0

0.2

0.4

0.6

0.8

1

α

P
re

c
is

io
n

Fig. 5: Percent of pixels correctly classified across the entire
dataset while varying α.

pixels. Since the system incurs a misclassification cost of
one, it will ascribe a class whenever its posterior probability
exceeds 1−α. There are three possible classes, so reducing
α may not always reduce the number of classified pixels.

We evaluate the abstaining classifier by observing the
performance of each class as α is changed. We use the Area
Under the Curve, or AUC, metric, in which ROC curves
with a higher area are said to have better performance.
An AUC value of 1 indicates perfect performance. Figure
4 shows that as α decreases, the AUC increases for both
the smooth and vesicular basalt classes. The sand class has
high initial performance, yet tapers off as α decreases, pos-
sibly indicating mislabeled ground truth regions or confident
misclassifications of high saturation regions. However, for
the main basalt classification task, the AUC does increase,
suggesting the posterior probabilities are meaningful esti-
mates of classification confidence. As shown in the lower
part of Figure 4, there is a trade off between classification
performance and the amount of scene classified, but even a
moderate abstention cost improves performance, and can be
further adjusted to meet mission requirements.

Figures 3 and 6 show visually the change in classified re-
gions as α is decreased. As expected, increasing α causes the
system to omit ambiguous regions which are also the most
likely to be misclassified. Furthermore, some classes tend
to have higher confidence than others in the same scenes,
suggesting that some class distinctions are intrinsically more
subtle and challenging.

Figure 5 shows quantitatively the precision of our absten-
tion policy on a pixel-wise level. As expected, increasing α
greatly increases the precision of the classifier. A handful
of images, approximately five of our 23 test images, include
high-confidence misclassifications and are shown as outliers.
Over half of the images have a precision of greater than
99% when α = 0.3 is used, and all but the five outliers are
classified with a precision greater than 99% when α = 0.2.
This has large implications for scenarios such as instrument
placement, providing approximately a 22% increase in preci-
sion over non-abstaining classifiers (shown in Figure 5 when
α = 1) and a 66% increase over random classification.
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Fig. 6: Column 1 shows original images. Column 2 shows ground truth labels. Column 3 shows a scene labeling. Columns
4 and 5 show the classifications when α equals 0.6 and 0.45, respectively. Misclassified regions are colored black. Regions
without ground truth or range information are excluded, and multiple range segmentations are combined As α increases the
number of classified pixels is reduced, but the accuracy of the overall classification increases.

B. Novelty Results

We compute the top five most novel regions for every
training image using each of the described algorithms, giving
a total of 115 regions. Results are show in Table I.

TABLE I: Overall novelty results

Algorithm Correctly Novel % Correct
Mahalanobis Distance 74 64.3%
Independent Channels 61 53.0%

GMM 44 38.3%
Hou 37 32.2%

We see that the Mahalanobis distance metric outperforms
all other novelty metrics, correctly finding novel regions
approximately two thirds of the time. Table II shows the
class breakdown of the novel regions for each method. We
note that our proposed method tends to focus on vegetation,
potentially due to a covariance relationship between strongly-
reacting Gabor wavelets. The independent channel method
is able to find more overall rock features, yet also labels a
number of smooth and vesicular regions as novel.

V. CONCLUSION

We have demonstrated methods for enabling autonomous
rover instrument targeting using probabilistic geologic sur-
face classifications. We describe a Bayes-optimal approach
to an abstaining classifier in which the overall precision of
a scene classification can be increased by only evaluating
pixels which have high confidence. Our results show in-
creased precision in classification, a characteristic paramount
to remote exploration spacecraft applications, while retaining

the flexibility to be tailored to mission requirements. Further-
more, the generic nature of our approach lends itself to any
classification method with a confidence metric or posterior
class probability.

We also describe a semi-supervised method for using these
precise classifications to improve in-image novelty detection.
Given a scene classification, the method is straightforward
and efficient to calculate and greatly improves novelty de-
tection rates by taking advantage of contextual scene infor-
mation.

We have shown the class posterior probabilities produced
by random forest classification are meaningful, providing a
method for greatly increasing the precision of an instrument
without costly pre- or post-processing steps. We are able to
decrease the overall failure rate of the pixelwise classification
from approximately 14% to 2%, a seven-fold decrease over
a non-abstaining classifier. This is a crucial decrease when
dealing with space applications, allowing for high-precision
autonomous instrument placement or scene interpretation.

By eliminating ambiguous classifications, it is possible
and indeed beneficial to use the remaining classifications as
class priors for other operations, such as novelty detection.
When compared against state of the art saliency methods
we find that utilizing this information can nearly double the
efficiency of a novelty detection system. Furthermore, this
method has the advantage that novelty scores are inherently
normalized, allowing for the valid comparison or ranking of
novel regions not just within a single window, but across an
entire traverse.

VI. ACKNOWLEDGMENTS

This research was partially carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, with

781



Our method Hou’s method

Fig. 7: Example novel regions. The top row shows success cases. The bottom row shows failure cases. The left three
columns are calculated using our semi-supervised method. The right three columns are calculated using Hou’s spectral
residual method.

TABLE II: Class breakdown of novel regions

Algorithm Unlabeled Vesicular Smooth Sand Vegetation Rock Feature
Mahalanobis Distance 8 25 3 9 52 18
Independent Channels 11 18 21 8 33 24

GMM 18 24 16 15 28 14
Hou 21 9 46 2 15 22

support from the JPL Graduate Fellowship program. Copy-
right 2013 California Institute of Technology. All Rights
Reserved; U.S. Government Support Acknowledged. The
TextureCam project is supported by the NASA Astrobiology
Science and Technology Instrument Development program
(NNH10ZDA001N-ASTID). This work was supported by a
NASA Office of the Chief Technologists Space Technology
Research Fellowship, as well as ASTEP grant NNX11AJ87G
and STTR grant NNX11CC51C.

REFERENCES

[1] V. C. Gulick et al., “Autonomous image analyses during the 1999
marsokhod rover field test,” Journal of Geophysical Research, p.
77457763, 2001.

[2] R. Castaño et al., “Rover traverse science for increased mission science
return,” 2003 IEEE Aerospace Conference Proceedings, 2003.

[3] D. Wettergreen et al., “Long-distance autonomous survey and mapping
in the robotic investigation of life in the atacama desert,” in Interna-
tional Symposium on Artificial Intelligence, Robotics and Automation
in Space (iSAIRAS), February 2008.

[4] J. P. L. M. Relations, “Mars science laboratory fact sheet,” Jet
Propulsion Laboratory, Tech. Rep., 2012. [Online]. Available: http :
//mars.jpl.nasa.gov/msl/news/pdfs/MSL Fact Sheet.pdf

[5] K. Warren-Rhodes et al., “Robotic ecological mapping: Habitats and
the search for life in the atacama desert,” Journal of Geophysical
Research, 2007.

[6] R. Castaño et al., “Onboard autonomous rock shape analysis for
mars rovers,” IEEE Aerospace Conference, 2002. [Online]. Available:
ml.jpl.nasa.gov/papers/castano/castano-IEEEAC02.pdf

[7] ——, “Opportunistic rover science: finding and reacting to rocks,
clouds and dust devils,” in Aerospace Conference, 2006 IEEE, 2006.

[8] T. A. Estlin et al., “Aegis automated science targeting for the mer
opportunity rover,” ACM Trans. Intell. Syst. Technol., 2012.

[9] L. A. Edgar et al., “Sedimentary facies and bedform analysis observed
from the rocknest outcrop (sols 59-100), gale crater, mars,” in Lunar
and Planetary Science, 2013.

[10] D. R. Thompson et al., “Smart cameras for remote science survey,”
International Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space (iSAIRAS), 2012 (in press).

[11] L. Breiman, “Random forests,” Machine Learning, 2001.

[12] J. Shotton et al., “Semantic texton forests for image categorization
and segmentation,” IEEE Conference on Computer Vision and Pattern
Recognition (2008), 2008.

[13] W. Elazmeh et al., “A framework for comparative evaluation of
classifiers in the presence of class imbalance,” 2006.

[14] S. Vanderlooy, I. G. Sprinkhuizen-Kuyper, E. N. Smirnov, and H. J.
van den Herik, “The roc isometrics approach to construct reliable
classifiers,” Intelligent Data Analysis, 2009.

[15] C. Chow, “On optimum recognition error and reject tradeoff,” Infor-
mation Theory, IEEE Transactions on, 1970.

[16] M. Datcu et al., “Introduction to the special section on image in-
formation mining for earth observation data,” IEEE Transactions on
Geoscience and Remote Sensing, pp. 795–798, 2007.

[17] K. Lebart et al., “Automatic indexing of underwater survey video:
algorithm and benchmarking method,” IEEE Journal of Oceanic
Engineering, pp. 673–686, 2003.

[18] L. Tarassenko et al., “Novelty detection for the identification of masses
in mammograms,” in Fourth International Conference on Artificial
Neural Networks, 1995, pp. 442–447.

[19] A. Nairac et al., “Choosing an appropriate model for novelty detec-
tion,” in Fifth International Conference on Artificial Neural Networks,
1997, pp. 117–122.

[20] L. Itti et al., “A model of saliency-based visual attention for rapid
scene analysis,” in IEEE Transactions of Pattern Analysis and Machine
Intelligence, 1998.

[21] X. Hou et al., “Saliency detection: A spectral residual approach,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[22] K. Duncan et al., “Saliency in images and video: a brief survey,” IET
Computer Vision, 2012.

[23] M. Johnson-Roberson et al., “Saliency ranking for benthic survey
using underwater images,” in International Conference on Control,
Automation, Robotics, and Vision (ICARCV), 2010.

[24] K. Wagstaff et al., “Science-based region of interest image compres-
sion,” in Lunar and Planetary Science, 2004.

[25] D. R. Thompson et al., “Semi-supervised eigenbasis novelty detec-
tion,” Statistical Analysis and Data Mining, 2012.

[26] G. J. Brostow et al., “Segmentation and recognition using structure
from motion point clouds,” ECCV, 2008.

782


