
2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1137

IEC61508 [5], a generic standard on functional safety
design, and describes SA using FTA approach. It leverages
features of RobotML (i) to capture information required for
formal analysis (ii) to propagate SA results back into the
MDE environment. The framework includes metamodels,
profiles, model transformation and FT generation plug-ins,
tools for formal verification and FTA. The use of the
proposed methodology and framework allows the safety
engineer to start SA from the early phases of RS
development which can significantly reduce time and cost
constraints.

We discuss a case study called Robotic Young
Challenge (RYC) which has been designed by the Proteus

1

project partners. RYC addresses problems of autonomous
motions of mobile robots in unknown structured
environment. Its main functionality is outdoor exploration
and target searching. Using this case study, we perform
preliminary SA by FT generation and further qualitative and
quantitative FTA according to IEC61508. We also show
how to use RobotML-based MDE environment to describe
possible effects of failures (or dysfunctional behavior) of
the Proteus RYC robot and to display generated FTs and
FTA results.

The remainder of the paper is organized as follows. In
section II, we analyze existing methods and tools for SA.
Then we introduce our SA methodology and toolset for RSs
in sections III. In section IV, we present the case study on
SA and conclude in section V.

II. RELATED WORKS AND PAPER CONTRIBUTION

In our research we focus on the preliminary SA phase of
SA flow shown in Figure 1. The goals of this phase are (i)
to evaluate RS architecture with respect to the list of
possible hazards obtained from the hazard analysis phase
and (ii) to derive safety requirements. RS architecture can
be evaluated using such methods as FTA [8][14][15],
FMEA [9][16], event tree analysis, etc. FTA and FMEA are
complementary methods aiming to analyze propagation of
faults through the system. FMEA is an inductive bottom up
method used to analyze a system on component level and
check what happens on system level. FTA, a deductive top-
down method, does the opposite by defining a state on
system level and checking what can cause this at component
level. In practice, FTA is performed on larger systems,
which makes it more suitable for SA of complex RSs.

FTA was originally developed by H.A. Watson in 1962
at Bell Laboratories [17]. A typical FT consists of the top
event and a set of basic and house events organized with the
logic gates (AND, OR, etc.). The qualitative analysis of FT
aims to find all the minimal combinations of basic events
(called minimal cut sets) resulting in the top event. The FT
quantitative analysis is also often used in probabilistic
computation.

The FT generation approaches fall into several
categories depending on the method used to annotate a
system with its dysfunctional behavior. Structured

1 http://www.anr-proteus.fr

approaches [8][18] use manually created models of failure
behavior. Such approaches are time consuming and rely
upon the ability of the safety engineer to predict the system
behavior and may lead to higher probability of errors.
Another group of approaches is based on the decision table
method [19]. They are quite efficient for small and middle
range systems but may require sophisticated tables for the
large systems with complex multi-level hierarchy.
Approaches based on failure modes injection extend each
component of the nominal system model with a set of
possible failure modes and then model the system
dysfunctional behavior using such an extended model. The
tools based on these approaches (for example,
FSAP/NuSMV [20]) translate an extended model into a
state machine and then use formal verification algorithms to
generate minimal cut sets and construct FTs. In the case of
complex systems, however, the application of such
approaches may result in combinatorial explosion when the
number of failure modes in state machines grows. Some FT
generation approaches are based on failure logic modelling.

These approaches use analytical expressions associated with
the system components to model the possible propagation
of failures. HiP-HOPS [21] or SafetyArchitect

2
 tools

support failure logic modelling.

TABLE I. METHODS AND TOOLS FOR FTA

Tools

SA

Saml KB3 HiP-

Hops

FSAP/Nu

SMV

Our MSA

framework

FT

generation

method

Min.

cut

sets

Ma-

nual

Analy-

tical

expr.

Min. cut

sets

Analytical

expr., Min.

cut sets

Support of

hierarchical

systems

9 - 9 9 9

FTA 9 9 9 9 9
Formal

verification

9 - - 9 9

Input

language

Saml Figa-

ro

Matlab

EAST-

ADL

SMV RobotML,

AltaRica,

OpenPSA

The comparative analysis of existing approaches and
tools for FT generation and analysis is given in TABLE I.
We list here only academic approaches, since industrial
solutions generally rely on a part of them. Although some of
these tools [20][21] perform automatic FT generation, their
capabilities are limited for SA of complex RSs. First, they
lack convenient representation of the input system models.
For example, FSAP/NuSMV, SAML [22] or ARC

3
 tools

use formal symbolic languages such as SMV, SAML [22]
or AltaRica [23] to describe a system. This might require
certain time efforts from the SA engineer to formulate and
enter the model in these formats. Second, they lack a
convenient representation of the final results of SA. In HiP-
HOPS, for instance, safety annotations can be entered
through a profile of the EAST-ADL implementation in the
Papyrus

4
 tool, but there are no elaborated mechanisms to

2 http://all4tec.net/index.php/en/model-based-safety-analysis/25-safety-

architect-a-mbsa-tool
3 http://altarica.labri.fr/forge/projects/arc/wiki
4 http://www.eclipse.org/modeling/mdt/papyrus/

1138

1139

a mobile robot and go through the safety modeling flow
associated with our approach in the next section.

IV. CASE STUDY

We validate the methodology and framework described
in the previous sections by analyzing one of the case studies
developed in the scope of the Proteus project. The
considered example is a scenario defined by Robotic Youth
Challenge (RYC) and deployed in a WifiBot robot

7
. The

RYC targets autonomous motion of mobile robots in
unknown structured environment. The main scenario for the
robot is outdoor exploration and target searching. The RYC
architecture developed in RobotML using RobotML
modeling environment is shown in Figure 4. The top
hierarchical level includes nine components: Mission

Generator generates RYC missions, Path Planner

calculates a path for the RYC robot using the global map
and information on current mission and position, Navigator

delivers local trajectory for the pilot taking into account the
local map, Pilot calculates the left and right wheel speed
setpoints that the robot is supposed to reach to follow the
input trajectory, Servoings transforms the speed commands
to the format (tics) used by the wifibot robot, Sensors

captures information on surrounding environment,
Proximetry builds a map in polar coordinate with only
meausres from sensors directly printed in it, Local Map

builds a relative Cartesian 2D map with obstacles placed in
it, Global Map builds an absolute map of the scene.

In this example, we consider a hazardous event when
³7KH�RYC robot does not follow the commands´�� ,Q�RWKHU�
words, this will be a top event of the tree.

A. Model Annotation

The RYC model described in RobotML is annotated
with failure behavior. Information on hazards, derived from
the hazard analysis according IEC61508, is taken into
account while defining possible failures of RYC
components. The dysfunctional behavior is represented as a
set of analytical expressions showing how deviations in the
component outputs can be caused by internal failures of the
component and/or possible deviations in the component
inputs. Only components of the finest level defined for SA
(or basic components, BCs) are annotated with the
analytical expressions. For example, the output deviation
expression for the output Path of the BC called Path

Planner (Figure 4.) has the following format:

(NOT f) AND Mission_Type AND Position AND Map.

It means that the output Path does not propagate failure
behavior if (i) there is no failure I� �³Path Planner internal

failure´ of the component Path Planner and (ii)
information on the input ports Mission_Type, Position and

Map is correct.

The dysfunctional behavior of the components
representing higher hierarchical levels is simulated by
model checking engine. It is a composition of state
machines obtained after model transformation into the

7 http://www.wifibot.com

AltaRica language from the output deviation expressions of
BCs.

We assign output deviation expressions using a UML
profile mechanism in Papyrus environment. The framework
contains an annotation profile enabling to stereotype each
BC output port with deviation expressions. During the
model translation process, the failure states and events
related to the RYC components are automatically extracted
from these expressions.

B. Model Translation

The next step is to extract information on the failure
states and events from the output deviation expressions and
to convert the RobotML model into the AltaRica language.
The transformation method used for conversion of
RobotML model to AltaRica language relies upon the MDE
approach. TABLE II. lists the mapping we defined for our
transformation algorithm implemented in the framework.

TABLE II. TRANSFORMATION RULES

Concept RobotML AltaRica Descr.
Component

type

Robot Node main RS under

analysis

Component

/Prototype

Software, Hardware, RoboticSystem,

SensorSystem, ActuatorSystem,

CameraSystem, GPSSystem, Object-

DetectionSensorSystem, Sensor-

Driver, ImageSensorSystem,

EngineSystem, WheelSystem,

ObjectTrackingSensorSystem,

LocalizationSensorSystem,

SimulatedSystem

Part

Node

Field:sub

RS

components

Flow variable

/Type

/Direction

DataFlowPort

/ Type

/ Direction

Field: Flow

/bool,integer,

float,domain

/In , Out

RS ports

Connection

components

Connector Assertion Connection

between

components

Output

deviation

expression

Stereotyped DataFlowPort Failure states and

events, output

assertions

Component

failure

behavior

By default, we assume that the RYC robot is operating
normally. Consequently, all extracted failure states
associated with BCs (or nodes in AltaRica) are initialized as
³IDOVH´ in AltaRica. Based on information on the extracted
failure states, we create a set of events resulting in the
occurrence of these states and then generate appropriate
transactions. The declaration of the main node in AltaRica
model relies upon information extracted from RobotML top
architecture diagram: the system parts are translated into
sub-nodes connected via assertions.

C. Fault Tree Generation and Analysis

In this phase RYC is assessed by using FTA method.
The framework uses integrated model checking engine
called ARC and script generator to compute minimal cut
sets for a considered top event. Then FT is built with FT
generator. We consider only static FTs, however, the ARC
engine can provide the facilities to further analyze a
dynamic behavior of RSs.

FT generation includes several steps. First, we obtain all
possible minimal combinations of component failures
violating a given failure event. Second, we group these
combinations, called minimal cut sets, in a tree structure as

1140

follows. The events from each minimal cut set are
considered as basic and grouped using AND gate. Then we
connect all the AND gates to the OR gate which, in turn, is
linked to the top event.

The qualitative FTA has shown that the top event ³7KH�
5<&� URERW� GRHV� QRW� IROORZ� WKH� FRPPDQGV´ occurs if any
sequence of basic failure events given in TABLE III.
occurs. Once a FT has been obtained, we carry out a
quantitative FTA using integrated XFTA engine. This
engine performs quantitative analysis of FTs and provides
information on the top event probability for different
mission times, importance factors of basic events, common
cause failure analysis, etc. According to the standard
IEC61508, we assess the probability of the considered top
event based on the statistical data on failure rates of basic
events of the considered components. In addition, the
probability and contribution of each minimal cut set are
computed (TABLE III.). Moreover, we define the most
critical part of RYC, the Sensors sub-system, since its
failure has the highest impact on the failure of the whole
RS.

D. Propagation of FTA Results

The automatically generated FT can be either
represented in open-PSA format, the FT specific format
developed for describing complex FTs, or in a graphical
form via dedicated profile. By using the FT profile, we can
present FTs that consist of basic, house and top events
organized with AND or OR gates, as well as FTA results.
Thus, the use of such a profile helps to construct FTs in
RobotML/Papyrus environment and provides a better
connection between system functional and dysfunctional
behavior through MDE.

V. CONCLUSION

In this work, we propose the methodology and
framework which provide a support for safety engineers by
integrating safety techniques within a model-driven
engineering process. The methodology relies on the generic
standard on functional safety design IEC61508 and shows
how to automate safety assessment process of robotic
systems in the early development phases. The use of the
proposed methodology aims to fill the gap between system
modeling and safety assessment tools and helps to better
cope with system engineering time and cost constraints.
Indeed, the results of preliminary safety assessment can
reveal the most safety-critical parts of the system which
should be mitigated.

To implement the proposed methodology, we develop a
safety modeling framework which automates safety
assessment of robotic applications in the RobotML-based
modeling environment. The framework is an alternative to
such safety assessment tools as HiP-HOPS, FSAP/NuSMV,
KB3, SAML. As opposed to these tools, the framework is
oriented to the robotic domain and provides the facilities of
RobotML domain specific language to develop safety-
critical robotic applications. Furthermore, the framework
supports a common system model for system and safety

engineers, by using UML profile mechanisms in Papyrus.
This allows to integrate all data linked with safety
assessment in the same system model, as well as to
customize an interface to show different results within one
uniform environment and reuse this information for further
reliability studies.

ACKNOWLEDGMENT

The authors thank Hadi Jaber for his strong contribution

to this work during his internship in CEA.

REFERENCES

[1] J.J. Biesiadecki, M.:�� 0DLPRQH�� ³7KH� 0DUV� exploration rover

surface mobility flight software: driving ambition�´�,(((�$HURVSDce

Conference Proceedings, March 2006, Montana, USA.

[2] $�� 5DQNLQ�� &�� %HUJK�� 6�� *ROGEHUJ�� DQG� /�� 0DWWKLHV�� ³3DVVLYH�

SHUFHSWLRQ�V\VWHP�IRU�GD\�QLJKW�DXWRQRPRXV�RIIURDG�QDYLJDWLRQ�´�,Q�

SPIE UGV Symposium, Orlando, FL, April 2005.

[3] -�� $�� (VWHIDQ�� ³6XUYH\� RI� model-based Systemse (MBSE)

methodologies�´�5HY�$��,QFRVH�0%6(�)RFXV�*URXS�������

[4] 6��'KRXLE��6��.FKLU��6��6WLQFNZLFK��7��=LDGL��0��=LDQH��´5RERW0/��

a domain-specific language to design, simulate and deploy robotic

applications�´� ,QW�� &RQIHUHQFH� RQ� 6LPXODWLRQ�� 0RGHOLQJ� DQG�

Programming for Autonomous Robots, pp. 149-160, 2012.

[5] IEC, 61508: 1998 and 2000, part 1 to 7. Functional safety of

electrical, electronic and programmable electronic systems, 2000.

[6] ARP-4754: Certification considerations for highly-integrated or

complex aircraft systems, Society of Automotive Engineers (SAE)

standard, 1996.

[7] IEC 61882: Hazard and operability studies, application guide, 2001.

[8] Fault tree handbook with aerospace applications. NASA, 2002.

[9] IEC 60812: Analysis techniques for system reliability - Procedures

for FMEA, 1985.

[10] 3��'DYLG�HW�DO���³5HOLDELOLW\�VWXG\�RI�FRPSOH[�SK\VLFDO�V\VWHPV�XVLQJ�
6\V0/�´� 5HOLDELOLW\� (QJLQHHULQJ� DQG� V\VWHP� 6DIHW\�� (OVHYLHU�� SS.

431-450, 2010.

[11] P. Cuenot, D.J. Chen, S. Gerard, H. et al. Towards improving

dependability of automotive systems by using the EAST-ADL

architecture description language. Architecting Dependable Systems

IV, Lecture Notes in Computer Science, vol. 4615, pp, 39-65, 2006.

[12] 3��+��)HLOHU��'��3��*OXFK��³0RGHO-based engineering with AADL: an

introduction to the SAE architecture analysis & design language�´�

Addison-Wesley Professional, 1st ed., pp. 496, 2012.

[13] ISO/FDIS13482: Robots and robotic devices ± Safety requirements

for non-industrial robots ± Non-medical personal care robots (Final

Draft International Standard).

[14] &��&DUUHUDV��,�'��:DONHU��³,QWHUYDO�methods for fault-tree analysis in

robotics,´�,(((�7UDQV. on Reliability, Vol. 50, No. 1, 2001, pp. 3-11.

[15] ,�'��:DONHU��-�5��&DYDOODUR��³)DLOXUH�mode analysis for a hazardous

clean-up mDQLSXODWRU�´� 5HOLDELOLW\� (QJLQHHULQJ and System Safety,

Special Issue on Safety of Robotic Systems, Vol. 53, No3,

September 1996, pp. 277-290.

[16] 0�/�� 9LVLQVN\�� -�5�� &DYDOODUR� DQG� ,�'�� :DONHU�� ³5RERWLF� fault

detection and fault tolerance: a sXUYH\�´�5HOLDELOLW\�(QJLQHHULQJ�DQG�

System Safety, Vol. 46, #2, 1994, pp. 139-158.

[17] &�� (ULFVRQ�� ³)DXOW� 7UHH� $QDO\VLV� - $�+LVWRU\�´� 3URFHHGLQJV� of the

17th International Systems Safety Conference, 1999.

[18] I. Renault, et al.,³.%���computer program for automatic generation

RI�IDXOW�WUHHV�´�5HO��0DLQWDLQ��6\PS., pp. 389 -395, 1999.

[19] -��'��$QGUHZV��-��-��+HQU\��³$�FRPSXWHUL]HG�IDXOW�WUHH�FRQVWruction

PHWKRGRORJ\�´�LQ�3URF��RI�WKH�,QVWLWXWLRQ�RI�0HFKDQLFDO�(QJLQHHUV��

1997; 211(E), pp. 171±183.

[20] 0�� %R]]DQR�� &K�� -RFKLP�� ³7KH�)6$3�1X609-SA safety analysis

platform�´� ,QW�� -RXUQDO� RQ�6RIWZDUH�7RROV� IRU�7HFKQRORJ\�7UDQVIHU��

2007�Y��������SS���-24.

[21] 0�� :DONHU� HW� DO��� ³&RPSRVLWLRQDO� temporal fault tree analysis.

Computer safety, reliability, and security�´� /HFWXUH� 1RWHV� LQ�

Computer Science, vol. 4680, 2007, pp. 106-119.

1141

[22] M. GudemanQ��)�� 2UWPHLHU�� ³$�)UDPHZRUN� IRU� qualitative and

quantitative formal model-based safety analysis�´�,Q�Proc. 12th IEEE

High Assurance Systems Engineering Symp., pp. 132-141, 2010.

[23] A. Arnold, A. Griffault, G. 3RLQW��$��5DX]\��³7KH�$OWD5LFD�ODQJXDJH�

DQG� LWV� VHPDQWLFV�´� ,Q�)XQGDPHQWD� ,QIRUPDWLFDH�� YRO�� ���� SS� ���±

124, 2000.

Figure 4. The RYC architecture

TABLE III. FAULT TREE ANALYSIS RESULTS

Qualitative FTA Quantitative FTA
N Minimal Cut Set Probability Contribution

1 (sensors.camera_FireWire.Incorrect_video_c

apturing_occurs,

sensors.camera_FireWire.Incorrect_calibratio

n_occurs)

0.0000045 0.0000370239

2 (sensors.camera_FireWire.internal_Camera_f

ailure_occurs)

0.008 0.0658203

3 (sensors.LaserRange.Incorrect_laser_scan_oc

curs)

0.004 0.0329102

4 (pilot.pilot.Pilot_doesnt_avoid_obstacles_see

n_in_approximetric_map_occurs)

0.0065 0.053479

5 (pilot.pilot.Pilot_follows_wrong_trajectory_

when_calculating_set_points_in_operating_sp

ace_occurs)

0.003 0.0246826

6 (pilot.iKM.IKM_doesnt_transform_velocities

_from_operational_to_articular_space_occurs

)

0.002 0.0164551

7 (navigator.navigator.Incorrect_velocity_analy

sis_occurs,

navigator.navigator.Incorrect_position_analys

is_occurs,

navigator.navigator.Incorrect_local_map_ana

lysis_occurs,

navigator.navigator.Incorrect_path_analysis_

occurs)

0.0015 0.0123413

8 (navigator.navigator.Internal_failure_of_Navi

gator_occurs)

0.005 0.0411377

9 (missionGenerator.mission.internalFailure_oc

curs)

0.002 0.0164551

10 (sensors.wifibot_Frame_Out.internalFailure_

occurs)

0.003 0.0246826

11 (sensors.odometer.internalFailure_occurs) 0.0015 0.0123413

12 (proximetry.amer_Identif.Incorrect_interpreta

tion_camera_results_occurs)

0.005 0.0411377

13 (proximetry.amer_Identif.Internal_failure_Am

er_Identif_occurs)

0.003 0.0246826

14 (proximetry.proximetric_Map.Incorrect_bit_

map_generation_occurs)

0.0065 0.053479

15 (proximetry.proximetric_Map.Internal_failure

_Proximetric_Map_occurs)

0.006 0.0493652

16 (sensors.IMU.internalFailure_occurs) 0.001 0.00822754

17 (proximetry.superDKM.internalFailure_occur

s)

0.007 0.0575928

18 (pathPlanner.path_Planner.Wrong_path_gene

ration_based_on_correct_input_data_occurs)

0.003 0.0246826

19 (pathPlanner.path_Planner.Internal_failure_of

_Path_Planner_occurs)

0.0065 0.053479

20 (proximetry.superDKM.Wrong_velocity_calc

ulation_using_correct_input_data_occurs)

0.003 0.0246826

21 (proximetry.superDKM.Wrong_position_calc

ulation_using_correct_input_data_occurs)

0.0035 0.0287964

22 (proximetry.superDKM.Internal_failure_Supe

r_DKM_module_occurs)

0.006 0.0493652

23 (local_Map.amer_Loc.Internal_failure_Amer

_Relative_occurs)

0.005 0.0411377

24 (local_Map.local_Map.Incorrect_analysis_of_

proximetric_map_occurs,

local_Map.local_Map.Incorrect_analysis_of_

GPS_data_occurs,

local_Map.local_Map.Incorrect_analysis_ofv

elocity_occurs,

local_Map.local_Map.Incorrect_analysis_of_

position_occurs)

0.0000157 0.00011565

25 (local_Map.local_Map.Memory_failure_occu

rs)

0.007 0.0575928

26 (local_Map.local_Map.Internal_failure_Local

_Map_occurs)

0.0015 0.0123413

27 (global_map.global_Map.Incorrect_analysis_

of_position_data_occurs,

global_map.global_Map.Incorrect_analysis_o

f_local_map_data_occurs,

global_map.global_Map.Incorrect_analysis_o

f_GPS_data_occurs)

0.0000167 0.00005877

28 (global_map.global_Map.Internal_failure_of_

GlobalMap_module_occurs)

0.004 0.0329102

29 (sensors.GPS.Internal_GPS_failure_occurs) 0.008 0.0658203

30 (in_Robot._isAbsent) 0.005 0.0411377

31 (servoing.servoings.Incorrect_interpretation_

of_command_Left_occurs,

servoing.servoings.Incorrect_interpretation_o

f_command_Right_occurs)

0.0000385 0.00031676

32 (servoing.frame_In.Internal_failure_of_modul

e_WifiBot_Frame_In_occurs)

0.0045 0.0370239

Top Event Probability

The RYC robot does not follow the commands 0.121543

1142

