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IEC61508 [5], a generic standard on functional safety 
design, and describes SA using FTA approach. It leverages 
features of RobotML (i) to capture information required for 
formal analysis (ii) to propagate SA results back into the 
MDE environment. The framework includes metamodels, 
profiles, model transformation and FT generation plug-ins, 
tools for formal verification and FTA. The use of the 
proposed methodology and framework allows the safety 
engineer to start SA from the early phases of RS 
development which can significantly reduce time and cost 
constraints.  

We discuss a case study called Robotic Young 
Challenge (RYC) which has been designed by the Proteus
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project partners. RYC addresses problems of autonomous 
motions of mobile robots in unknown structured 
environment. Its main functionality is outdoor exploration 
and target searching. Using this case study, we perform 
preliminary SA by FT generation and further qualitative and 
quantitative FTA according to IEC61508. We also show 
how to use RobotML-based MDE environment to describe 
possible effects of failures (or dysfunctional behavior) of 
the Proteus RYC robot and to display generated FTs and 
FTA results. 

The remainder of the paper is organized as follows. In 
section II, we analyze existing methods and tools for SA. 
Then we introduce our SA methodology and toolset for RSs 
in sections III. In section IV, we present the case study on 
SA and conclude in section V. 

II. RELATED WORKS AND PAPER CONTRIBUTION 

In our research we focus on the preliminary SA phase of 
SA flow shown in Figure 1. The goals of this phase are (i) 
to evaluate RS architecture with respect to the list of 
possible hazards obtained from the hazard analysis phase 
and (ii) to derive safety requirements. RS architecture can 
be evaluated using such methods as FTA [8][14][15], 
FMEA [9][16], event tree analysis, etc. FTA and FMEA are 
complementary methods aiming to analyze propagation of 
faults through the system. FMEA is an inductive bottom up 
method used to analyze a system on component level and 
check what happens on system level. FTA, a deductive top-
down method, does the opposite by defining a state on 
system level and checking what can cause this at component 
level. In practice, FTA is performed on larger systems, 
which makes it more suitable for SA of complex RSs. 

FTA was originally developed by H.A. Watson in 1962 
at Bell Laboratories [17]. A typical FT consists of the top 
event and a set of basic and house events organized with the 
logic gates (AND, OR, etc.). The qualitative analysis of FT 
aims to find all the minimal combinations of basic events 
(called minimal cut sets) resulting in the top event. The FT 
quantitative analysis is also often used in probabilistic 
computation. 

The FT generation approaches fall into several 
categories depending on the method used to annotate a 
system with its dysfunctional behavior. Structured 
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approaches [8][18] use manually created models of failure 
behavior. Such approaches are time consuming and rely 
upon the ability of the safety engineer to predict the system 
behavior and may lead to higher probability of errors. 
Another group of approaches is based on the decision table 
method [19]. They are quite efficient for small and middle 
range systems but may require sophisticated tables for the 
large systems with complex multi-level hierarchy. 
Approaches based on failure modes injection extend each 
component of the nominal system model with a set of 
possible failure modes and then model the system 
dysfunctional behavior using such an extended model. The 
tools based on these approaches (for example, 
FSAP/NuSMV [20]) translate an extended model into a 
state machine and then use formal verification algorithms to 
generate minimal cut sets and construct FTs. In the case of 
complex systems, however, the application of such 
approaches may result in combinatorial explosion when the 
number of failure modes in state machines grows. Some FT 
generation approaches are based on failure logic modelling. 

These approaches use analytical expressions associated with 
the system components to model the possible propagation 
of failures. HiP-HOPS [21] or SafetyArchitect
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support failure logic modelling. 

TABLE I.  METHODS AND TOOLS FOR FTA 

Tools 

SA 

Saml KB3  HiP-

Hops 

FSAP/Nu

SMV  

Our MSA 

framework 

FT 

generation 

method 

Min. 

cut 

sets 

Ma-

nual 

Analy-

tical 

expr. 

Min. cut 

sets 

Analytical 

expr., Min. 

cut sets 

Support of 

hierarchical 

systems 

9  - 9  9  9  

FTA 9  9  9  9  9  
Formal 

verification 

9  - - 9  9  

Input 

language 

Saml Figa-

ro 

Matlab

EAST-

ADL 

SMV RobotML, 

AltaRica, 

OpenPSA 

The comparative analysis of existing approaches and 
tools for FT generation and analysis is given in TABLE I. 
We list here only academic approaches, since industrial 
solutions generally rely on a part of them. Although some of 
these tools [20][21] perform automatic FT generation, their 
capabilities are limited for SA of complex RSs. First, they 
lack convenient representation of the input system models. 
For example, FSAP/NuSMV, SAML [22] or ARC

3
 tools 

use formal symbolic languages such as SMV, SAML [22] 
or AltaRica [23] to describe a system. This might require 
certain time efforts from the SA engineer to formulate and 
enter the model in these formats. Second, they lack a 
convenient representation of the final results of SA. In HiP-
HOPS, for instance, safety annotations can be entered 
through a profile of the EAST-ADL implementation in the 
Papyrus

4
 tool, but there are no elaborated mechanisms to 
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a mobile robot and go through the safety modeling flow 
associated with our approach in the next section. 

IV. CASE STUDY 

We validate the methodology and framework described 
in the previous sections by analyzing one of the case studies 
developed in the scope of the Proteus project. The 
considered example is a scenario defined by Robotic Youth 
Challenge (RYC) and deployed in a WifiBot robot

7
. The 

RYC targets autonomous motion of mobile robots in 
unknown structured environment. The main scenario for the 
robot is outdoor exploration and target searching. The RYC 
architecture developed in RobotML using RobotML 
modeling environment is shown in Figure 4. The top 
hierarchical level includes nine components: Mission 

Generator generates RYC missions, Path Planner 

calculates a path for the RYC robot using the global map 
and information on current mission and position, Navigator 

delivers local trajectory for the pilot taking into account the 
local map, Pilot calculates the left and right wheel speed 
setpoints that the robot is supposed to reach to follow the 
input trajectory, Servoings transforms the speed commands 
to the format (tics) used by the wifibot robot, Sensors 

captures information on surrounding environment, 
Proximetry builds a map in polar coordinate with only 
meausres from sensors directly printed in it, Local Map 

builds a relative Cartesian 2D map with obstacles placed in 
it, Global Map builds an absolute map of the scene. 

In this example, we consider a hazardous event when 
³7KH�RYC robot does not follow the commands´�� ,Q�RWKHU�
words, this will be a top event of the tree.  

A. Model Annotation 

The RYC model described in RobotML is annotated 
with failure behavior. Information on hazards, derived from 
the hazard analysis according IEC61508, is taken into 
account while defining possible failures of RYC 
components. The dysfunctional behavior is represented as a 
set of analytical expressions showing how deviations in the 
component outputs can be caused by internal failures of the 
component and/or possible deviations in the component 
inputs. Only components of the finest level defined for SA 
(or basic components, BCs) are annotated with the 
analytical expressions. For example, the output deviation 
expression for the output Path of the BC called Path 

Planner (Figure 4. ) has the following format:  

(NOT f) AND Mission_Type AND Position AND Map. 

It means that the output Path does not propagate failure 
behavior if (i) there is no failure I� �³Path Planner internal 

failure´ of the component Path Planner and (ii) 
information on the input ports Mission_Type, Position and 

Map is correct. 

The dysfunctional behavior of the components 
representing higher hierarchical levels is simulated by 
model checking engine. It is a composition of state 
machines obtained after model transformation into the 
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AltaRica language from the output deviation expressions of 
BCs. 

We assign output deviation expressions using a UML 
profile mechanism in Papyrus environment. The framework 
contains an annotation profile enabling to stereotype each 
BC output port with deviation expressions. During the 
model translation process, the failure states and events 
related to the RYC components are automatically extracted 
from these expressions.  

B. Model Translation 

The next step is to extract information on the failure 
states and events from the output deviation expressions and 
to convert the RobotML model into the AltaRica language. 
The transformation method used for conversion of 
RobotML model to AltaRica language relies upon the MDE 
approach. TABLE II. lists the mapping we defined for our 
transformation algorithm implemented in the framework. 

TABLE II.  TRANSFORMATION RULES 

Concept RobotML AltaRica Descr. 
Component 

type 

Robot Node main RS under  

analysis 

Component 

 

 

 

 

 

 

 

 

/Prototype 

Software, Hardware, RoboticSystem, 

SensorSystem, ActuatorSystem, 

CameraSystem, GPSSystem, Object-

DetectionSensorSystem, Sensor-

Driver, ImageSensorSystem, 

EngineSystem, WheelSystem, 

ObjectTrackingSensorSystem, 

LocalizationSensorSystem, 

SimulatedSystem 

Part 

Node 

 

 

 

 

 

 

 

 

Field:sub 

RS 

components 

Flow variable 

/Type 

 

/Direction 

DataFlowPort 

/ Type 

 

/ Direction 

Field: Flow 

/bool,integer, 

float,domain 

/In , Out 

RS ports 

Connection 

components 

Connector Assertion Connection 

between 

components 

Output 

deviation 

expression 

Stereotyped DataFlowPort Failure states and 

events, output 

assertions 

Component 

failure 

behavior 

By default, we assume that the RYC robot is operating 
normally. Consequently, all extracted failure states 
associated with BCs (or nodes in AltaRica) are initialized as 
³IDOVH´ in AltaRica. Based on information on the extracted 
failure states, we create a set of events resulting in the 
occurrence of these states and then generate appropriate 
transactions. The declaration of the main node in AltaRica 
model relies upon information extracted from RobotML top 
architecture diagram: the system parts are translated into 
sub-nodes connected via assertions. 

C. Fault Tree Generation and Analysis 

In this phase RYC is assessed by using FTA method. 
The framework uses integrated model checking engine 
called ARC and script generator to compute minimal cut 
sets for a considered top event. Then FT is built with FT 
generator. We consider only static FTs, however, the ARC 
engine can provide the facilities to further analyze a 
dynamic behavior of RSs. 

FT generation includes several steps. First, we obtain all 
possible minimal combinations of component failures 
violating a given failure event. Second, we group these 
combinations, called minimal cut sets, in a tree structure as 
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follows. The events from each minimal cut set are 
considered as basic and grouped using AND gate. Then we 
connect all the AND gates to the OR gate which, in turn, is 
linked to the top event.  

The qualitative FTA has shown that the top event ³7KH�
5<&� URERW� GRHV� QRW� IROORZ� WKH� FRPPDQGV´ occurs if any 
sequence of basic failure events given in TABLE III. 
occurs. Once a FT has been obtained, we carry out a 
quantitative FTA using integrated XFTA engine. This 
engine performs quantitative analysis of FTs and provides 
information on the top event probability for different 
mission times, importance factors of basic events, common 
cause failure analysis, etc. According to the standard 
IEC61508, we assess the probability of the considered top 
event based on the statistical data on failure rates of basic 
events of the considered components. In addition, the 
probability and contribution of each minimal cut set are 
computed (TABLE III. ). Moreover, we define the most 
critical part of RYC, the Sensors sub-system, since its 
failure has the highest impact on the failure of the whole 
RS. 

D. Propagation of FTA Results 

The automatically generated FT can be either 
represented in open-PSA format, the FT specific format 
developed for describing complex FTs, or in a graphical 
form via dedicated profile. By using the FT profile, we can 
present FTs that consist of basic, house and top events 
organized with AND or OR gates, as well as FTA results. 
Thus, the use of such a profile helps to construct FTs in 
RobotML/Papyrus environment and provides a better 
connection between system functional and dysfunctional 
behavior through MDE. 

V. CONCLUSION 

In this work, we propose the methodology and 
framework which provide a support for safety engineers by 
integrating safety techniques within a model-driven 
engineering process. The methodology relies on the generic 
standard on functional safety design IEC61508 and shows 
how to automate safety assessment process of robotic 
systems in the early development phases. The use of the 
proposed methodology aims to fill the gap between system 
modeling and safety assessment tools and helps to better 
cope with system engineering time and cost constraints. 
Indeed, the results of preliminary safety assessment can 
reveal the most safety-critical parts of the system which 
should be mitigated.  

To implement the proposed methodology, we develop a 
safety modeling framework which automates safety 
assessment of robotic applications in the RobotML-based 
modeling environment. The framework is an alternative to 
such safety assessment tools as HiP-HOPS, FSAP/NuSMV, 
KB3, SAML. As opposed to these tools, the framework is 
oriented to the robotic domain and provides the facilities of 
RobotML domain specific language to develop safety-
critical robotic applications. Furthermore, the framework 
supports a common system model for system and safety 

engineers, by using UML profile mechanisms in Papyrus. 
This allows to integrate all data linked with safety 
assessment in the same system model, as well as to 
customize an interface to show different results within one 
uniform environment and reuse this information for further 
reliability studies. 
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Figure 4.  The RYC architecture 

 

TABLE III.  FAULT TREE ANALYSIS RESULTS 

Qualitative FTA Quantitative FTA 
N Minimal Cut Set Probability Contribution 

1 (sensors.camera_FireWire.Incorrect_video_c

apturing_occurs, 

sensors.camera_FireWire.Incorrect_calibratio

n_occurs) 

0.0000045 0.0000370239 

2 (sensors.camera_FireWire.internal_Camera_f

ailure_occurs) 

0.008 0.0658203 

3 (sensors.LaserRange.Incorrect_laser_scan_oc

curs) 

0.004 0.0329102 

4 (pilot.pilot.Pilot_doesnt_avoid_obstacles_see

n_in_approximetric_map_occurs) 

0.0065 0.053479 

5 (pilot.pilot.Pilot_follows_wrong_trajectory_

when_calculating_set_points_in_operating_sp

ace_occurs) 

0.003 0.0246826 

6 (pilot.iKM.IKM_doesnt_transform_velocities

_from_operational_to_articular_space_occurs

) 

0.002 0.0164551 

7 (navigator.navigator.Incorrect_velocity_analy

sis_occurs, 

navigator.navigator.Incorrect_position_analys

is_occurs, 

navigator.navigator.Incorrect_local_map_ana

lysis_occurs, 

navigator.navigator.Incorrect_path_analysis_

occurs) 

0.0015 0.0123413 

8 (navigator.navigator.Internal_failure_of_Navi

gator_occurs) 

0.005 0.0411377 

9 (missionGenerator.mission.internalFailure_oc

curs) 

0.002 0.0164551 

10 (sensors.wifibot_Frame_Out.internalFailure_

occurs) 

0.003 0.0246826 

11 (sensors.odometer.internalFailure_occurs) 0.0015 0.0123413 

12 (proximetry.amer_Identif.Incorrect_interpreta

tion_camera_results_occurs) 

0.005 0.0411377 

13 (proximetry.amer_Identif.Internal_failure_Am

er_Identif_occurs) 

0.003 0.0246826 

14 (proximetry.proximetric_Map.Incorrect_bit_

map_generation_occurs) 

0.0065 0.053479 

15 (proximetry.proximetric_Map.Internal_failure

_Proximetric_Map_occurs) 

0.006 0.0493652 

16 (sensors.IMU.internalFailure_occurs) 0.001 0.00822754 

17 (proximetry.superDKM.internalFailure_occur

s) 

0.007 0.0575928 

18 (pathPlanner.path_Planner.Wrong_path_gene

ration_based_on_correct_input_data_occurs) 

0.003 0.0246826 

19 (pathPlanner.path_Planner.Internal_failure_of

_Path_Planner_occurs) 

0.0065 0.053479 

20 (proximetry.superDKM.Wrong_velocity_calc

ulation_using_correct_input_data_occurs) 

0.003 0.0246826 

21 (proximetry.superDKM.Wrong_position_calc

ulation_using_correct_input_data_occurs) 

0.0035 0.0287964 

22 (proximetry.superDKM.Internal_failure_Supe

r_DKM_module_occurs) 

0.006 0.0493652 

23 (local_Map.amer_Loc.Internal_failure_Amer

_Relative_occurs) 

0.005 0.0411377 

24 (local_Map.local_Map.Incorrect_analysis_of_

proximetric_map_occurs, 

local_Map.local_Map.Incorrect_analysis_of_

GPS_data_occurs, 

local_Map.local_Map.Incorrect_analysis_ofv

elocity_occurs, 

local_Map.local_Map.Incorrect_analysis_of_

position_occurs) 

0.0000157 0.00011565 

25 (local_Map.local_Map.Memory_failure_occu

rs) 

0.007 0.0575928 

26 (local_Map.local_Map.Internal_failure_Local

_Map_occurs) 

0.0015 0.0123413 

27 (global_map.global_Map.Incorrect_analysis_

of_position_data_occurs, 

global_map.global_Map.Incorrect_analysis_o

f_local_map_data_occurs, 

global_map.global_Map.Incorrect_analysis_o

f_GPS_data_occurs) 

0.0000167 0.00005877 

28 (global_map.global_Map.Internal_failure_of_

GlobalMap_module_occurs) 

0.004 0.0329102 

29 (sensors.GPS.Internal_GPS_failure_occurs) 0.008 0.0658203 

30 (in_Robot._isAbsent) 0.005 0.0411377 

31 (servoing.servoings.Incorrect_interpretation_

of_command_Left_occurs, 

servoing.servoings.Incorrect_interpretation_o

f_command_Right_occurs) 

0.0000385 0.00031676 

32 (servoing.frame_In.Internal_failure_of_modul

e_WifiBot_Frame_In_occurs) 

0.0045 0.0370239 

Top Event Probability 

The RYC robot does not follow the commands 0.121543 
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