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Abstract— A new system for object detection in cluttered
RGB-D images is presented. Our main contribution is a new
method called Bingham Procrustean Alignment (BPA) to align
models with the scene. BPA uses point correspondences between
oriented features to derive a probability distribution over
possible model poses. The orientation component of this distri-
bution, conditioned on the position, is shown to be a Bingham
distribution. This result also applies to the classic problem of
least-squares alignment of point sets, when point features are
orientation-less, and gives a principled, probabilistic way to
measure pose uncertainty in the rigid alignment problem. Our
detection system leverages BPA to achieve more reliable object
detections in clutter.

I. INTRODUCTION

Detecting known, rigid objects in RGB-D images relies

on being able to align 3-D object models with an observed

scene. If alignments are inconsistent or inaccurate, detection

rates will suffer. In noisy and cluttered scenes (such as

shown in figure 1), good alignments must rely on multiple

cues, such as 3-D point positions, surface normals, curvature

directions, edges, and image features. Yet there is no existing

alignment method (other than brute force optimization) that

can fuse all of this information together in a meaningful way.

The Bingham distribution1 has recently been shown to

be useful for fusing orientation information for 3-D object

detection [6]. In this paper, we derive a surprising result

connecting the Bingham distribution to the classical least-

squares alignment problem, which allows our new system

to easily fuse information from both position and orienta-

tion information in a principled, Bayesian alignment system

which we call Bingham Procrustean Alignment (BPA).

A. Background

Rigid alignment of two 3-D point sets X and Y is a well-

studied problem—one seeks an optimal (quaternion) rotation

q and translation vector t to minimize an alignment cost

function, such as sum of squared errors between correspond-

ing points on X and Y . Given known correspondences, t

and q can be found in closed form with Horn’s method [8].

If correspondences are unknown, the alignment cost func-

tion can be specified in terms of sum-of-squared distances

between nearest-neighbor points on X and Y , and iterative

algorithms like ICP (Iterative Closest Point) are guaranteed

to reach a local minimum of the cost function [4]. During
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Fig. 1: Object detections found with our system, along with the
feature correspondences that BPA used to align the model. Surface
features are indicated by red points, with lines sticking out of
them to indicate orientations (red for normals, orange for principal
curvatures). Edge features (which are orientation-less) are shown
by magenta points.

each iteration of ICP, Horn’s method is used to solve for an

optimal t and q given a current set of correspondences, and

then the correspondences are updated using nearest neighbors

given the new pose.

ICP can be slow, because it needs to find dense correspon-

dences between the two point sets at each iteration. Sub-

sampling the point sets can improve speed, but only at the

cost of accuracy when the data is noisy. Another drawback

is its sensitivity to outliers—for example when it is applied

to a cluttered scene with segmentation error.

Particularly because of the clutter problem, many modern

approaches to alignment use sparse point sets, where one

only uses points computed at especially unique keypoints in

the scene. These keypoint features can be computed from

either 2-D (image) or 3-D (geometry) information, and often

include not only positions, but also orientations derived from

image gradients, surface normals, principal curvatures, etc.

However, these orientations are typically only used in the

feature matching and pose clustering stages, and are ignored

during the alignment step.

Another limitation is that the resulting alignments are

often based on just a few features, with noisy position

measurements, and yet there is very little work on estimating

confidence intervals on the resulting alignments. This is

especially difficult when the features have different noise

models—for example, a feature found on a flat surface will

have a good estimate of its surface normal, but a high

variance principal curvature direction, while a feature on an

object edge may have a noisy normal, but precise principal

curvature. Ideally, we would like to have a posterior distri-

bution over the space of possible alignments, given the data,

and we would like that distribution to include information

from feature positions and orientation measurements, given

varying noise models.

As we will see in the next section, a full joint distribution

on t and q is difficult to obtain. However, in the original

least-squares formulation, it is possible to solve for the
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Fig. 2: Rigid alignment of two point sets.

optimal t∗ independently of q∗, simply by taking t∗ to be

the translation which aligns the centroids of X and Y . Given

a fixed t∗, solving for the optimal q∗ then becomes tractable.

In a Bayesian analysis of the least-squares alignment prob-

lem, we seek a full distribution on q given t, not just the

optimal value, q∗. That way we can assess the confidence of

our orientation estimates, and fuse p(q|t) with other sources

of orientation information, such as from surface normals.

Remarkably, given the common assumption of indepen-

dent, isotropic Gaussian noise on position measurements

(which is implicit in the classical least-squares formulation),

we can show that p(q|t) is a Bingham distribution. This

result makes it easy to combine the least-squares distribu-

tion on q|t with other Bingham distributions from feature

orientations (or prior distributions), since the Bingham is

a common distribution for encoding uncertainty on 3-D

rotations represented as unit quaternions [5], [6], [2].

The mode of the least-squares Bingham distribution on

q|t will be exactly the same as the optimal orientation

q∗ from Horn’s method. When other sources of orientation

information are available, they may bias the distribution

away from q∗. Thus, it is important that the concentration

(inverse variance) parameters of the Bingham distributions

are accurately estimated for each source of orientation infor-

mation, so that this bias is proportional to confidence in the

measurements. (See the appendix for an example.)

We use our new alignment method, BPA, to build an object

detection system for known, rigid objects in cluttered RGB-D

images. Our system combines information from surface and

edge feature correspondences to improve object alignments

in cluttered scenes (as shown in figure 1), and acheives state-

of-the-art recognition performance on both an existing Kinect

data set [1], and on a new data set containing far more clutter

and pose variability than any existing data set2.

II. BINGHAM PROCRUSTEAN ALIGNMENT

Given two 3-D point sets X and Y in one-to-one cor-

respondence, we seek a distribution over the set of rigid

transformations of X , parameterized by a (quaternion) ro-

tation q and a translation vector t. Assuming independent

Gaussian noise models on deviations between corresponding

points on Y and (transformed) X , the conditional distribution

2Most existing data sets for 3-D cluttered object detection have very
limited object pose variability (most of the objects are upright), and objects
are often easily separable and supported by the same flat surface.

p(q|t, X, Y ) is proportional to p(X,Y |q, t)p(q|t), where

p(X,Y |q, t) =
∏

i

p(xi,yi|q, t) (1)

=
∏

i

N(Q(xi + t)− yi;0,Σi) (2)

given that Q is q’s rotation matrix, and covariances Σi.

Given isotropic noise models3 on point deviations (so

that Σi is a scalar times the identity matrix), p(xi,yi|q, t)
reduces to a 1-D Gaussian PDF on the distance between yi

and Q(xi + t), yielding

p(xi,yi|q, t) = N(‖Q(xi + t)− yi‖; 0, σi)

= N(di; 0, σi)

where di depends on q and t.

Now consider the triangle formed by the origin (center of

rotation), Q(xi+ t) and yi, as shown on the left of figure 3.

By the law of cosines, the squared-distance between Q(xi+
t), and yi is d2 = a2 + b2 − ab cos(θ), which only depends

on q via the angle θ between the vectors Q(xi + t) and yi.

(We drop the i-subscripts on d, a, b, and θ for brevity.) We

can thus replace p(xi,yi|q, t) with

p(xi,yi|θ, t) =
1

Z
exp

{

ab cos(θ)

σ2

}

(3)

which has the form of a Von-Mises distribution on θ.

Fig. 3: Distance between corresponding points as a function of
orientation.

Next, we need to demonstrate how θ depends on q.

Without loss of generality, assume that yi points along

the axis (1, 0, 0). When this is not the case, the Bingham

distribution over q which we derive below can be post-

rotated by any quaternion which takes (1, 0, 0) to yi/‖yi‖.

Clearly, there will be a family of q’s which rotate xi + t

to form an angle of θ with yi, since we can compose q with

any rotation about xi + t and the resulting angle with yi

will still be θ. To demonstrate what this family is, we first

let s be a unit quaternion which rotates xi + t onto yi’s

axis, and let x′

i = S(xi + t), where S is s’s rotation matrix.

Then, let r (with rotation matrix R) be a quaternion that

rotates x′

i to Q(xi + t), so that q = r ◦ s. Because yi and

x′

i point along the axis (1, 0, 0), the first column of R, n̂1,

will point in the direction of Q(xi + t), and form an angle

3This is the implicit assumption in the least-squares formulation.
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of θ with yi, as shown on the right side of figure 3. Thus,

n̂1 · (1, 0, 0) = n̂11 = cos θ.

The rotation matrix of quaternion r = (r1, r2, r3, r4) is

R =

[

r2
1
+r2

2
−r2

3
−r2

4
2r2r3−2r1r4 2r2r4+2r1r3

2r2r3+2r1r4 r2
1
−r2

2
+r2

3
−r2

4
2r3r4−2r1r2

2r2r4−2r1r3 2r3r4+2r1r2 r2
1
−r2

2
−r2

3
+r2

4

]

Therefore, cos θ = n̂11 = r21 + r22 − r23 − r24 = 1−2r23 −2r24 .

We can now make the following claim about p(xi,yi|q, t):

Claim 1. Given that yi lies along the (1, 0, 0) axis, then

the probability density p(xi,yi|q, t) is proportional to a

Bingham density4 on q with parameters

Λ = (−
2ab

σ2
,−

2ab

σ2
, 0) and V =

[

0 0 0
0 0 1
1 0 0
0 1 0

]

◦ s = W ◦ s ,

where “◦” indicates column-wise quaternion multiplication.

Proof. The Bingham density in claim 1 is given by

p(q|Λ, V ) =
1

F
exp

3
∑

j=1

λj((wj ◦ s)
Tq)2 (4)

=
1

F
exp

{

−
2ab

σ2
r23 −

2ab

σ2
r24

}

(5)

=
1

F ′
exp

{

ab cos θ

σ2

}

(6)

since (wj ◦ s)Tq = wj
T (q ◦ s−1) = wj

T r, and cos θ =
1− 2r23 − 2r24 . Since (6) is proportional to (3), we conclude

that p(q|Λ, V ) ∝ p(xi,yi|q, t), as claimed.

Claim 2. Let s′ be a quaternion that rotates (1, 0, 0) onto

the axis of yi (for arbitrary yi). Then the probability density

p(xi,yi|q, t) is proportional to a Bingham density on q with

parameters

Λ = (−
2ab

σ2
,−

2ab

σ2
, 0) and V = s′ ◦

[

0 0 0
0 0 1
1 0 0
0 1 0

]

◦ s ,

where “◦” indicates column-wise quaternion multiplication.

As explained above, the distribution on q from claim 1

must simply be post-rotated by s′ when yi is not aligned

with the (1, 0, 0) axis. The proof is left to the reader. Putting

it all together, we find that

p(q|t, X, Y ) ∝
∏

i

Bingham(q; Λi, Vi) · p(q|t) (7)

= Bingham(q; Λ̃, Ṽ ) · p(q|t) (8)

where Λi and Vi are taken from claim 2, and where Λ̃
and Ṽ are computed from the formula for multiplication of

Bingham PDFs, which is given in the appendix.

Equation 8 tells us that, in order to update a prior on q

given t after data points X and Y are observed, one must

simply multiply the prior by an appropriate Bingham term.

Therefore, assuming a Bingham prior over q given t (which

includes the uniform distribution), the conditional posterior,

p(q|t, X, Y ) is the PDF of a Bingham distribution.

4See the appendix for an overview of the Bingham distribution.

To demonstrate this fact, we relied only upon the assump-

tion of independent isotropic Gaussian noise on position

measurements, which is exactly the same assumption made

implicitly in the least-squares formulation of the optimal

alignment problem. This illustrates a deep and hitherto

unknown connection between least-squares alignment and

the Bingham distribution, and paves the way for the fusion

of orientation and position measurements in a wide variety

of applications.

A. Incorporating Orientation Measurements

Now that we have shown how the orientation information

from the least-squares alignment of two point sets X and

Y is encoded as a Bingham distribution, it becomes trivial

to incorporate independent orientation measurements at some

or all of the points, provided that the orientation noise model

is Bingham. Given orientation measurements (OX , OY ),

p(q|t, X,Y,OX , OY )

∝ p(X,Y,OX , OY |q, t) · p(q|t)

= p(X,Y |q, t) · p(OX , OY |q, t) · p(q|t) .

Similarly as in equation 8, p(OX , OY |q, t) is the product

of Bingham distributions from corresponding orientation

measurements in (OX , OY ), and so the entire posterior

p(q|t, X, Y,OX , OY ) is Bingham (provided as before that

the prior p(q|t) is Bingham).

B. The Alignment Algorithm

To incorporate our Bayesian model into an iterative ICP-

like alignment algorithm, one could solve for the maximum

a posteriori (MAP) position and orientation by maximizing

p(q, t|X,Y, . . .) with respect to q and t. However, for

probabilistic completeness, it is often more desirable to draw

samples from this posterior distribution.

The joint posterior distribution p(q, t|Z)—where Z con-

tains all the measurements (X,Y,OX , OY , . . .)—can be bro-

ken up into p(q|t, Z)p(t|Z). Unfortunately, writing down a

closed-form distribution for p(t|Z) is difficult. But sampling

from the joint distribution is easy with an importance sam-

pler, by first sampling t from a proposal distribution—for

example, a Gaussian centered on the optimal least-squares

translation (that aligns the centroids of X and Y )—then

sampling q from p(q|t, Z), and then weighting the samples

by the ratio of the true posterior (from equation 2) and the

proposal distribution (e.g., Gaussian times Bingham).

We call this sampling algorithm Bingham Procrustean

Alignment (BPA). It takes as input a set of (possibly ori-

ented) features in one-to-one correspondence, and returns

samples from the distribution over possible alignments. In

section V, we will show how BPA can be incorporated into

an iterative alignment algorithm that re-computes feature

correspondences at each step and uses BPA to propose a

new alignment given the correspondences.

III. BUILDING NOISE-AWARE 3-D OBJECT MODELS

Our first step in building a system to detect known, rigid

objects—such as the ones in figure 4—is to build complete

3-D models of each object. However, the end goal of model

building is not just to estimate an object’s geometry correctly.

2160



Fig. 4: The 18 objects in our new Clutter data set.

Rather, we seek to predict what an RGB-D sensor would see,

from every possible viewing angle of the object. To generate

such a predictive model, we will estimate both the most

likely observations from each viewing angle, and also the

degree of noise predicted in those measurements. That way,

our detection system will realize that depth measurements

near object boundaries, on reflective surfaces, or on surfaces

at a high oblique angle with respect to the camera, are

less reliable than front-on measurements of non-reflective,

interior surface points.

In our model-building system, we place each object on

a servo-controlled turntable in 2-3 resting positions and

collect RGB-D images from a stationary Kinect sensor at 10◦

turntable increments, for a total of 60-90 views. We then find

the turntable plane in the depth images (using RANSAC),

and separate object point clouds (on top of the turntable)

from the background. Next we align each set of 30 scans

(taken of the object in a single resting position) by optimizing

for the 2-D position of the turntable’s center of rotation, with

respect to an alignment cost function that measures the sum-

of-squared nearest-neighbor distances from each object scan

to every other scan. We then use another optimization to

solve for the 6-dof translation + rotation that aligns the 2-3

sets of scans together into one, global frame of reference.

After the object scans are aligned, we compute their sur-

face normals, principal curvatures, and FPFH features [10],

and we use the the ratio of principal curvatures to estimate

the (Bingham) uncertainty on the quaternion orientation

defined by normals and principal curvature directions at each

point5. We then use ray-tracing to build a 3-D occupancy

grid model, where in addition to the typical probability

of occupancy, we also store each 3-D grid cell’s mean

position and normal, and variance on the normals in that

cell6. We then threshold the occupancy grid at an occupancy

probability of 0.5, and remove interior cells (which cannot

be seen from any viewing angle) to obtain a full model

point cloud, with associated normals and normal variance

estimates. We also compute a distance transform of this

model point cloud, by computing the distance from the center

5The idea is to capture the orientation uncertainty on the principal
curvature direction by measuring the “flatness” of the observed surface
patch; see the appendix for details.

6In fact, we store two “view-buckets” per cell, each containing an
occupancy probability, a position, a normal, and a normal variance, since
on thin objects like cups and bowls, there may be points on two different
surfaces which fall in the same grid cell.
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Fig. 5: Our noise models predict range and normal errors (standard
deviations) as functions of surface angle and edge distance (both
with respect to the viewpoint).

of each cell in the occupancy grid to the nearest model point

(or zero if the cell contains a model point).

Next, for a fixed set of 66 viewing angles across the

view-sphere, we estimate range edges—points on the model

where there is a depth discontinuity in the predicted range

image seen from that view angle. We also store the minimum

distance from each model point to a range edge for each

of the 66 viewing angles. Using these view-dependent edge

distances, along with the angles between surface normals and

viewpoints, we fit sigmoid models across the whole data set

to estimate the expected noise on range measurements and

normal estimates as functions of (1) edge distance, and (2)

surface angle, as shown in figure 5.

IV. LEARNING DISCRIMINATIVE FEATURE MODELS FOR

DETECTION

Similarly to other recent object detection systems, our

system computes a set of feature model placement score

functions, in order to evaluate how well a given model place-

ment hypothesis fits the scene according to different features,

such as depth measurements, surface normals, edge locations,

etc. In our early experiments with object detection using the

generative object models in the previous section, the system

was prone to make mis-classification errors, because some

objects scored consistently higher on certain feature scores

(presumably due to training set bias). Because of this prob-

lem, we trained discriminative, logistic regression models

on each of the score components using the turntable scans

with true model placements as positive training examples

and a combination of correct object / wrong pose and wrong

object / aligned pose as negative examples. Alignments of

wrong objects were found by running the full object detection

system (from the next section) with the wrong object on the

turntable scans. By adding an (independent) discriminative

layer to each of the feature score types, we were able to

boost the classification accuracy of our system considerably.

V. DETECTING SINGLE OBJECTS IN CLUTTER

The first stages of our object detection pipeline are very

similar to many other state-of-the-art systems for 3-D object

detection, with the exception that we rely more heavily

on edge information. We are given as input an RGB-D

image, such as from a Kinect. If environmental information

is available, the image may be pre-processed by another

routine to crop the image to an area of interest, and to label

background pixels (e.g., belonging to a supporting surface).
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Fig. 6: Single object detection pipeline.

As illustrated in figure 6, our algorithm starts by esti-

mating a dense set of surface normals on the 3-D point

cloud derived from the RGB-D image. From these surface

normals, it estimates principal curvatures and FPFH features.

In addition, it finds and labels three types of edges: range

edges, image edges, and curvature edges—points in the

RGB-D image where there is a depth discontinuity, an image

intensity discontinuity7, or high negative curvature. This edge

information is converted into an edge image, which is formed

from a spatially-blurred, weighted average of the three edge

pixel masks. Intuitively, this edge image is intended to

capture the relative likelihood that each point in the image is

part of an object boundary. Then, the algorithm uses k-means

to over-segment the point cloud based on positions, normals,

and spatially-blurred colors (in CIELAB space) into a set of

3-D super-pixels.

Fig. 7: Examples of objects correctly aligned by BPA with only
two correspondences.

Next, the algorithm samples possible oriented feature

correspondences from the scene to the model8. Then, for

each correspondence, a candidate object pose is sampled

using BPA. Given a set of sampled model poses from single

correspondences, we then reject samples for which more

than 20% of a subset of 500 randomly-selected model points

project into free space—places where the difference between

observed range image depth and predicted model depth is

above 5cm. Next, we run a pose clustering stage, where we

group correspondences together whose sampled object poses

are within 2.5cm and π/16 radians of one another. After

pose clustering, we reject any sample with less than two

correspondences, then re-sample object poses with BPA.

At this stage, we have a set of possible model placement

hypotheses, with at least two features correspondences each.

Because BPA uses additional orientation information, two

7We use the Canny edge detector to find image edges.
8We currently use only FPFH correspondences in the first stage of

detection as we did not find the addition of other feature types, such as
SIFT [9] or SHOT [12], to make any difference in our detection rates.

correspondences is often all it takes to lock down a very pre-

cise estimate of an object’s pose when the correspondences

are correct (Figure 7).

We proceed with a second round of model placement

validation and rejection, this time using a scoring function

that includes (1) range and normal differences, which are

computed by projecting a new subset of 500 randomly-

selected model points into the observed range image, (2)

visibility—the ratio of model points in the subset that are

unoccluded, (3) edge likelihoods, computed by projecting

the model’s edge points from the closest stored viewpoint

into the observed edge image, and (4) edge visibility—

the ratio of edge points that are unoccluded. Each of the

feature score components is computed as a truncated (so

as not to over-penalize outliers), average log-likelihood of

observed features given model feature distributions. For score

components (1) and (3), we weight the average log-likelihood

by visibility probabilities, which are equal to 1 if predicted

depth < observed depth, and N(∆depth; 0, σvis)/N(0; 0, 1)
otherwise9.

After rejecting low-scoring samples in round 2, we then

refine alignments by repeating the following three steps:

1) Assign observed super-pixel segments to the model.

2) Align model to the segments with BPA.

3) Accept the new alignment if the round 2 model place-

ment score has improved.

In step (1), we sample a set of assigned segments according

to the probability that each segment belongs to the model,

which we compute as the ratio of segment points (sampled

uniformly from the segment) that are within 1cm in position

and π/16 radians in normal orientation from the closest

model point. In step (2), we randomly extract a subset

of 10 segment points from the set of assigned segments,

find nearest neighbor correspondences from the keypoints

to the model using the model distance transform, and then

use BPA to align the model to the 10 segment points.

Segment points are of two types—surface points and edge

points. We only assign segment edge points to model edge

points (as predicted from the given viewpoint), and surface

points to surface points. Figures 1 and 8 show examples

of object alignments found after segment alignment, where

red points (with red normal vectors and orange principal

curvature vectors sticking out of them) indicate surface point

9We use σvis = 1cm in all of our experiments.
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correspondences, and magenta points (with no orientations)

are the edge point correspondences10.

After round 2 alignments, the system removes redundant

samples (with the same or similar poses), and then rejects

low scoring samples using the scores found at the end of

the segment alignment process. Then, it performs a final,

gradient-based alignment, which optimizes the model poses

with a local hill-climbing search to directly maximize model

placement scores. Since this alignment step is by far the

slowest, it is critical that the system has performed as much

alignment with BPA and has rejected as many low-scoring

samples as possible, to reduce the computational burden.

Finally, the system performs a third round of model

placement evaluation, then sorts the pose samples by score

and returns them. This third round of scoring includes several

additional feature score components:

• Random walk score—starting from an observed point

corresponding to the model, take a random walk in the

edge image (to stay within predicted object boundaries),

then measure the distance from the new observed point

to the closest model point.

• Occlusion edge score—evaluate how well model oc-

clusion edges (where the model surface changes from

visible to occluded) fits the observed edge image.

• FPFH score—computes how well observed and model

FPFH features match.

• Segment score—computes distances from segment

points to nearest model points.

• Segment affinity score—measures how consistent the

set of assigned segments is with respect to predicted

object boundaries (as measured by the observed edge

image, and by differences in segment positions and

normals).

VI. DETECTING MULTIPLE OBJECTS IN CLUTTER

To detect multiple objects in a scene, we run the individual

object detector from the previous section to obtain the 50 best

model placements for each model, along with their individual

scores. Then, following Aldoma et. al [1], we use simulated

annealing to optimize the subset of model placements (out of

50×N for N models) according to a multi-object-placement

score, which we compute as a weighted sum of the following

score components: (1) the average of single object scores,

weighted by the number of observed points each object

explains, (2) the ratio of explained / total observed points,

and (3) a small penalty for the total number of detected

objects. We also keep track of the top 100 multi-object-

placement samples found during optimization, so we can

return a set of possible scene interpretations to the user

(in the spirit of interpretation tree methods [7]). This is

particularly useful for robot vision systems because they can

use tracking, prior knowledge, or other sensory input (like

touch) to provide additional validation of model placements,

and we don’t want detections from a single RGB-D image

to filter out possible model placements prematurely.

10In future work, we plan to incorporate edge orientations as well.

Fig. 9: The Clutter testing data set.

VII. EXPERIMENTAL RESULTS

We tested our object detection system on two Kinect-

based data sets—the Kinect data set from Aldoma et. al [1]

containing 35 models and 50 scenes, and a new, more

difficult data set with many more occlusions and object pose

variations that we collected for this paper which we will

refer to as Clutter, which contains 18 models and 30 scenes

(Figure 9). We used the same parameters (score component

weights, number of samples, etc.) on both data sets. In

table I, we compare the precision and recall of the top

scene interpretations (multi-object-placement samples) of our

method against Aldoma et. al on both data sets11.

this paper (BPA) this paper (ICP) Aldoma et. al [1]
precision recall precision recall precision recall

Kinect 89.4 86.4 71.8 71.0 90.9 79.5
Clutter 83.8 73.3 73.8 63.3 82.9 64.2

TABLE I: A comparison of precision and recall.

# samples 1 2 3 5 10 20
recall 73.3 77.5 80.0 80.8 83.3 84.2

TABLE II: Recall on the Clutter data set as a function of the number
of scene interpretation samples.

Our algorithm (with BPA) achieves state-of-the art recall

performance on both data sets. When multiple scene inter-

pretations are considered, we achieve even higher recall rates

(Table II). Our precisions are similar to the baseline method

(slightly higher on Clutter, slightly lower on Kinect). We

were unable to train discriminative feature models on the

Kinect data set, because the original training scans were not

provided. Training on scenes that are more similar to the

cluttered test scenes is also likely to improve precision on

the Clutter data set, since each training scan contained only

one, fully-visible object.

For our experiments, we implemented our algorithm in

C++ and ran them on a single 64-bit, 2.4 GHz Intel Xeon

processor. On a single CPU, each scene took 1-2 minutes to

process, compared to 10.4 seconds per scene for Aldoma’s

system, which ran in parallel on multiple CPUs [1]. We are

now in the process of porting our code to the GPU—our

11Since neither ours nor the baseline method uses colors in their object
models, we considered a model placement “correct” for the Clutter data set
if it was within a threshold of the correct pose (2.5cm, pi/16 radians) with
respect to the model’s symmetry group. For example, we don’t penalize
flipping boxes front-to-back or top-to-bottom, since the resulting difference
in object appearance is purely non-geometric. For the Kinect data set, we
used the same correctness measure as the baseline method (RMSE between
model in true pose and estimated pose), with a threshold of 1cm.
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Fig. 8: Object detections found with our system, along with the feature correspondences that BPA used to align the model. Surface features
are indicated by red points, with lines sticking out of them to indicate orientations (red for normals, orange for principal curvatures). Edge
features (which are orientation-less) are shown by magenta points.

current prototype system can detect single objects in about

1 second on an NDIVIA GeForce GTX 580 with 512 cores.

A. BPA vs. ICP

We evaluated the benefits of our new alignment method,

BPA, in two ways. First, we compared it to ICP by replacing

the BPA alignment step in round 2 with an ICP alignment

step12. This resulted in a drop of 10% in both precision and

recall on the Clutter data.
For a second test of BPA, we initialized 50 model place-

ments by adding random Gaussian noise to the ground truth

poses for each object in each scene of the Clutter data

set. Then, we ran BPA and ICP for 20 iterations on each

of the model placements13. We then computed the average

of the minimum pose errors in each alignment trial, where

the minimum at time t in a given trial is computed as the

minimum pose error from step 1 to step t. (The justification

for this measure is that this is approximately what the “accept

if score improves” step of round 2 is doing.) As shown in

figure 10, the pose errors decrease much faster in BPA.
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Fig. 10: Comparing BPA with ICP. (Left) The average of the
minimum position errors in each alignment trial. (Right) The
average of the minimum orientation errors in each alignment trial.

VIII. RELATED WORK

Since the release of the Kinect in 2010, much progress

has been made on 3-D object detection in cluttered RGB-

12Both ICP and BPA used the same point correspondences; the only
difference was that BPA incorporated point feature orientations, while ICP
used only their positions.

13In other words, we repeated the alignment step of round 2 twenty times,
regardless of whether the total score improved.

D scenes. The two most succesful systems to date are

Aldoma et. al [1] and Tang et. al [11]. Aldoma’s system is

purely geometric, and uses SHOT features [12] for model-

scene correspondences. It relies heavily on pose clustering of

feature correspondences to suggest model placements14. The

main contribution of Aldoma’s system is that they jointly

optimize multiple model placements for consistency, which

inspired our own multiple object detection system.

Tang’s detection system uses both geometry and image

features, and placed first in the ICRA 2011 Solutions in Per-

ception instance recognition challenge. Their system relies

heavily on being able to segment objects in the scene from

one another, and most of the effort is spent on combining

geometry and image features for classification of scene

segments. It is unclear how well the system would perform

if such segmentations are not easy to obtain, as is the case

in our new Clutter data set.

The Bingham distribution was first used for 3-D cluttered

object detection in Glover et. al [6]. However, that system

was incomplete in that it lacked any alignment step, and

differs greatly from this work because it did not use feature

correspondences.

IX. CONCLUSION AND FUTURE WORK

We have presented a system for 3-D cluttered object

detection which uses a new alignment method called Bing-

ham Procrustean Alignment (BPA) to improve detections in

highly cluttered scenes, along with a new RGB-D data set

which contains much more clutter and pose variability than

existing data sets. Our system relies heavily on geometry,

and will clearly benefit from image and color models, such

as in Tang et. al [11]. Our Clutter data set, while challenging,

contains zero ambiguity, in that a human could easily detect

all of the objects in their correct poses, given enough time

to study the models. An important direction of future work

is to handle ambiguous scenes, where the parts of objects

14This is essentially a sparse version of the Hough transform [3], which
is limited by the number of visible features on an object, and is why their
recall rates tend to be lower than in our system for objects that are heavily
occluded.
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that are visible are insufficient to perform unique alignments,

and instead one ought to return distributions over possible

model poses. In early experiments we have performed on

this problem, the Bingham distribution has been a useful

tool for representing orientation ambiguity. To follow up

on our preliminary results, we are also in the process of

performing a more extensive comparison of BPA to different

ICP variants. If BPA is indeed better than ICP, then it is likely

to have an impact in a variety of applications beyond object

detection—such as SLAM, tracking, and modeling.

APPENDIX

The Bingham Distribution. The Bingham distribution is

commonly used to represent uncertainty on 3-D rotations

(in unit quaternion form) [2], [5], [6]. For quaternions, its

density function (PDF) is given by

p(q; Λ, V ) =
1

F
exp

{

3
∑

i=1

λi(vi
Tq)2

}

(9)

where F is a normalizing constant so that the distribution

integrates to one over the surface of the unit hypersphere

S
3, the λ’s are non-positive (≤ 0) concentration parameters,

and the vi’s are orthogonal direction vectors.

Product of Bingham PDFs. The product of two Bingham

PDFs is given by adding their exponents:

f(q;Λ1, V1)f(q; Λ2, V2)

=
1

F1F2

exp

{

qT (
3

∑

i=1

λ1iv1iv1i
T + λ2iv2iv2i

T )q

}

=
1

F1F2

exp
{

qT (C1 + C2)q
}

(10)

After computing the sum C = C1 + C2 in the exponent of

equation 10, we compute the eigenvectors and eigenvalues

of C, and then subtract off the lowest magnitude eigenvalue

from each spectral component, so that only the eigenvectors

corresponding to the largest 3 eigenvalues (in magnitude)

are kept, and λi ≤ 0 ∀i (as in equation 9). We use the

open-source Bingham Statistics Library15 to look up the

normalization constant.

Estimating the Uncertainty on Feature Orientations.

When we extract surface features from depth images, we

estimate their 3-D orientations from their normals and prin-

cipal curvature directions by computing the rotation matrix

R = [n p p′], where n is the normal vector, p is the

principal curvature vector, and p′ is the cross product of n

and p. We take the quaternion associated with this rotation

matrix to be the feature’s estimated orientation.

These orientation estimates may be incredibly noisy, not

only due to typical sensing noise, but because on a flat

surface patch the principal curvature direction is undefined

and will be chosen completely at random. Therefore it is

extremely useful to have an estimate of the uncertainty on

each feature orientation that allows for the uncertainty on the

15http://code.google.com/p/bingham

normal direction to differ from the uncertainty on the prin-

cipal curvature direction. Luckily, the Bingham distribution

is well suited for this task.

To form such a Bingham distribution, we take the quater-

nion associated with R to be the mode of the distribution,

which is orthogonal to all the vi vectors. Then, we set v3

to be the quaternion associated with R′ = [n − p − p′],
which has the same normal as the mode, but reversed

principal curvature direction. In quaternion form, reversing

the principal curvature is equivalent to the mapping:

(q1, q2, q3, q4) → (−q2, q1, q4,−q3) .

We then take v1 and v2 to be unit vectors orthogonal to the

mode and v3 (and each other). Given these vi’s, the con-

centration parameters λ1 and λ2 penalize deviations in the

normal vector, while λ3 penalizes deviations in the principal

curvature direction. Therefore, we set λ1 = λ2 = κ (we

use κ = −100 in all our experiments in this paper), and we

use the heuristic λ3 = max{10(1− c1/c2), κ}, where c1/c2
is the ratio of the principal curvature eigenvalues16. When

the surface is completely flat, c1 = c2 and λ3 = 0, so the

resulting Bingham distribution will be completely uniform in

the principal curvature direction. When the surface is highly

curved, c1 ≫ c2, so λ3 will equal κ, and deviations in

the principal curvature will be penalized just as much as

deviations in the normal.
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