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Abstract— This paper proposes an approach to real-time
dense localisation and mapping that aims at unifying two dif-
ferent representations commonly used to define dense models.
On one hand, much research has looked at 3D dense model
representations using voxel grids in 3D. On the other hand,
image-based key-frame representations for dense environment
mapping have been developed. Both techniques have their
relative advantages and disadvantages which will be analysed
in this paper. In particular each representation’s space-size
requirements, their effective resolution, the computation effi-
ciency, their accuracy and robustness will be compared. This
paper then proposes a new model which unifies various concepts
and exhibits the main advantages of each approach within a
common framework. One of the main results of the proposed
approach is its ability to perform large scale reconstruction
accurately at the scale of mapping a building.

I. INTRODUCTION

The problem of dense real-time localisation and mapping

within complex environments is a challenging problem for

a wide range of applications ranging from robotics to aug-

mented reality. The present work is undertaken as part of

a French DGA Rapid project named Fraudo which requires

dense localisation and mapping in real-time so as to allow

path planning for a mobile robot to traverse uneven ground

and surfaces autonomously. In this context it is important

to perceive the 3D surfaces of the environment in real-

time and for this dense techniques are the best approach.

Amongst state-of-the-art dense SLAM approaches 3D pose

tracking is usually performed in a similar manner, however,

the underlying 3D representation of the dense model differs.

The goal of this paper is therefore to develop an efficient,

accurate and robust dense visual model for localisation and

mapping that unifies various aspects of existing approaches.

More precisely, this article aims to investigate the problem

of real-time dense localisation and mapping from an RGB-

D camera. In the last five years many different approaches

have emerged to tackle this challenging problem. Mostly,

research in real-time tracking and mapping has focused

on feature-based techniques [1], [2], [3], [4]. Dense fusion

techniques have previously been studied in the context of

photometric rendering and off-line structure from motion [5].

Several techniques take the approach of minimising an error

based on a voxelized 3D model [6] (model-based). More

recent approaches minimise both photometric and geometric

errors directly using key-frames (image-based) in the sensor

space [7], [8]. The aim of this paper is to compare voxel and

key-frame approaches to highlight the main differences and

advantages. An improved approach will then be presented

which exhibits better properties.

Although the main focus of the paper will not be on the

3D pose estimation technique, it will be advocated that direct
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pose estimation from photometric and depth images performs

better [8] and subsequently this type of pose estimation will

be considered common to all approaches (even if in many

articles feature-based or purely geometric approaches are

used). Instead this paper will focus on the underlying 3D

model representation that is used to stock both geometry

and photometric information of a large scale scene. Large

scale scene reconstruction is relatively little studied in the

literature due to the added complexity of managing large

amounts of sensor information consistently. Nevertheless,

several approaches have been proposed including [7], which

is based on a trajectory of key-frames, [9] which proposes

a graph of spherical RDB-D key-frames and, more recently,

[10] and [11] who propose to extend volumetric approaches

to large scale by using a moving volume.

A. Volumetric 3D Modelling

Classically, volumetric reconstructions were first proposed

in the computer graphics literature [12], [13]. The aim is

to extend the nice regular properties of 2D image grids

to 3D voxel space. These approaches therefore provide a

good formalism that allows for the easy development of

mathematical filters and tools for manipulating voxels. Volu-

metric approaches typically use a Signed Distance Function

(SDF) [6] to store a distance to a surface in a discretised

voxel grid, representing the world geometry.

One advantage of this representation is its ease and ef-

ficiency in defining and applying mathematical operators.

Another advantage is that it implicitly models self occlusions

from different parts of the scene. Finally, it allows to reduce

noise in structure measurements in a global 3D reference

frame. Computationally, most modern graphics are cards also

designed to be compatible.

Initially, volumetric approaches were used on a pre-

acquired set of images and full bundle adjustment (BA) of

all camera poses was performed to minimise drift. On the

other hand, incremental approaches such as SLAM have been

heavily studied in the robotics literature and more recently

these approaches have been used to perform incremental real-

time dense mapping [14], [10], [11]. The effects of incre-

mental voxel integration are only beginning to be studied

through these real-time approaches. SLAM approaches aim

for real-time computation but are also subject to a much

larger amount of drift over time. This is often compensated

by loop closure approaches and/or reduced by performing

local sliding window BA [15]. Unfortunately, voxel-based

approaches have not been designed with incremental drift in

mind and performing loop-closure on a volume is a complex

task that would require redefining the underlying structure.

One main aspect of volumetric models is that, in general,

they represent all space with voxels, whether the space is oc-

cupied or not. Take as a simple example the Signed Distance
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Function (SDF), which is used to represent occupied surfaces

within a 1m3 volume. Consider the memory requirements for

a 512× 512× 512× 64bits SDF, where each voxel contains

a 16bit signed distance measurement, a 16bit weight and a

32bit RGBA colour value therefore requiring roughly 1GB

of memory. In the literature these space requirements have

been reduced by using octrees to reduce the resolution of

the grid in empty space. Recently, this approach has been

adapted to real-time dense mapping in [16] and [17].

A disadvantage of this approach is that the knowledge

about the camera positions, used to acquire the map, are

usually completely discarded (i.e. it is independent of the

sensor trajectory) and the volumetric approach is unable to

easily capture the non-linear variation of the image resolu-

tion, which depends on a particular camera path. Whilst a

co-variance can be stored for each voxel, the associated un-

certainty becomes linearised in 3D space and the uncertain-

ties of the sensor measurements are approximated. Finally

volumetric approaches will consume too much memory to

represent high image resolutions (super-resolution [8]) across

all space (as opposed to locally around nodes in a graph).

B. Image-based Key-frame Modelling

Image-based key-frame models have been popular in the

robotics literature, due to their locally accurate represen-

tation, their capability to handle incremental drift and re-

adjust a more compact set of poses using classic loop-closure

constraints in real-time [18]. Early real-time key-frame ap-

proaches based on features [19], [20], [21]. The first real-

time dense visual odometry approach was published in [7]

but key-frames corresponded to real-images and no structure

or photometric information was fused. Recently, a key-frame

approach has been published, which fuses simultaneously

geometry and photometry onto a set of super-resolution key-

frames [8] whereby the closest key-frame in the graph is

often used to perform localisation. Subsequently key-frame

approaches also have great noise reduction properties.

Another advantage of key-frame approaches is their mem-

ory efficiency when the viewing path is the same as the

acquisition trajectory. Contrary to volumetric approaches,

these models encode the raw sensor data (and sensor un-

certainty) along with the trajectory associated with the im-

age acquisition, whereas volumetric approaches discard this

information. One further result of maintaining a reference

trajectory is that it directly encodes the camera resolution

from these vantage points since the resolution of the map

is a function of the path taken to acquire it. The resolution

of volumetric approaches aims to cover all vantage points

equally. In terms of comparing memory efficiency, consider

the extreme boundary case of a single floating point RGB-

D key-frame of dimensions 640× 480× 64bits. It contains

16 bits for each depth, 16 bits for each weight, 32 bits for

each RGBA colour and the parameters for the pose of the

key-frame can be considered negligible. In this case the key-

frame image only requires 2.34 MB to represent a local sub-

set of viewpoints through novel-view synthesis (depending

on the scene structure). Furthermore, this representation can

be accessed in constant time, independently of the number

of key-frames in the graph.

Whilst volumetric approaches benefit from efficient com-

putation due to a regular (non-scattered) grid pattern, key-

frame approaches are also able to perform computation

efficiently by exploiting a 2D grid pattern in the image space.

As will be seen later, one disadvantage of key-frame

approaches is that the current camera image does not always

correspond to the same field of view as the closest key-

frame and subsequently only have a partial overlap. This can

degrade the localisation robustness since only a small area of

the current image is registered. This can be solved by more

sophisticated reference images such as spherical panoramas

with depth [22]. However, this model is not easily applicable

for commonly used sensors with limited field of view.

C. An approach to Unifying

In this paper, a new approach will be proposed that aims to

combine the advantages of volumetric and key-frame based

approaches. From the outset, it is clear that key-frame ap-

proaches encode additional information about the acquisition

phase. In particular, the acquisition trajectory is known and

raw sensor data at set resolutions are stored. This raw data

can easily be transformed into a volumetric representation to

exhibit the properties of volumetric approaches. Nevertheless

if we discard the acquisition data from the model then it

will be lost completely. As such, the proposed model will

maintain an underlying key-frame representation that can

easily be transformed into a volumetric 3D model if required.

The aim of the new approach will therefore be to develop

a multi-key-frame approach that can easily handle self occlu-

sions and that can fuse multiple sources of data as volumetric

approaches do. A simple approach to solve this problem is

to simultaneously use multiple key-frames extracted from the

graph, however, this would require warping the current image

several times, increasing the computational cost. To avoid

the redundant warping of the current image onto several

overlapping reference frames, a new forward composition ap-

proach is proposed by developing a computationally efficient

warp and blending function. This function will take multiple

reference images and combine them efficiently in real-time

to create a single predicted frame. As will be demonstrated,

this allows more efficient registration with respect to only

one synthesised reference key-frame.

Returning to the small example on space requirements,

volumetric approaches account for the set of all 3D points

implicitly in the structure (up to a given resolution). When

compared to the same resolution as a single key-frame, the

voxel model requires adding a 3rd dimension to the image

size. For example, a key-frame image of size 5122 becomes

a volume of dimension 5123 to represent the same resolution

for that view. Of course, a single key-frame does not cover

arbitrary viewpoints as a volumetric model does and it is

necessary to determine how many key-frames are needed.

Unfortunately this is highly dependant on the scene structure.

In the ideal case for key-frame models, the camera ob-

serves either a convex scene or a concave object. In that

case the equivalent number of images to the voxel grid

corresponds to the 6 images of a cube observing the scene or

the object at the same resolution as the voxel grid (assuming

an orthographic camera projection model). The key-frame
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Fig. 1. Unified image and model-based system. For both volumetric and
key-frame based representations, tracking and mapping can be decomposed
in four major blocks: warping, prediction, estimation and model update

model requires 5122 × 6 images plus 6 poses to represent

the scene, while, volumetric approaches require 5123 voxels

minus any compression achieved with octrees. It is clear that

if complex non-concave objects or non-convex scenes need

to be mapped, key-frame based approaches will require an

increasing number of reference views to account for the self

occlusions of the scene. However, in the proposed approach,

key-frames are to be chosen carefully to encapsulate the

concave and convex elements of the scene, allowing a

compact and efficient representation to be found.

II. DENSE REAL-TIME TRACKING AND MAPPING

A. Introduction

Consider a calibrated RGB-D sensor with a colour bright-

ness function I : Ω× R
+ → R

+; (p) 7→ I(p, t) and a depth

function D : Ω × R
+ → R

+; (p, t) 7→ D(p, t), where

Ω = [1, n] × [1,m] ⊂ R
2, P = (p1,p2, . . . ,pnm)⊤ ∈

R
mn×2 ⊂ Ω are pixel locations within the image acquired at

time t, and n×m is the dimension of the sensor’s images. It

is convenient to consider the set of measurements in vector

form such that I(P, t) ∈ R
+nm×1 and D(P, t) ∈ R

+nm×1.

Note that t and P may be omitted for clarity.

V = (v1,v2, . . . ,vnm)⊤ ∈ R
mn×3 is defined as the

matrix of 3D vertices related to the surface according to the

following point-depth back-projection:

vi = K−1piD(pi), (1)

where K ∈ R
3×3 is the intrinsic camera matrix and pi are

homogeneous pixels coordinates. V will be taken to be a 3D

vertex function V : Ω× R
+ → R

3; (p, t) 7→ V(p, t).
The set S = {I,V,N,C} is defined to be a 3D textured

surface. The uncertainties C ∈ R
nm are computed for each

vertex according to the depth sensor model of [23]. The

normals N ∈ R
3×nm are computed for each vertex using

a local cross product on the image grid. Again, the surface

normals and the uncertainties will be considered as functions

such that N : Ω × R
+ → R

3; (p, t) 7→ V(p, t) and

C : Ω× R
+ → R; (p, t) 7→ C(p, t).

A typical localisation/reconstruction pipeline is shown in

Figure 1. For both volumetric and key-frame based ap-

proaches, the incremental reconstruction pipeline contains

the following blocks: frame prediction, warping, estimation

and model update. Here frame-to-frame pose estimation is

made between a predicted view and the live frame so that

this step is the same for both approaches. The only blocks

that differ are the view prediction and model update.

B. Pose estimation

Now consider the predicted reference surface S
∗ =

{I∗,V∗,N∗,C∗} to be a view prediction of the current

surface S = {I,V,N,C}. The goal is to find the unknown

motion parameters x ∈ R
6 between S

∗ and S defined as:

x =

∫ 1

0

(ω,υ)dt ∈ se(3), (2)

which is the integral of a constant velocity twist which

produces a pose T, where T = (R, t) ∈ SE(3). R ∈ SO(3)
is a rotation matrix and t ∈ R(3) a translation vector. The

pose and the twist are related via the exponential map as

T = e[x]∧ with the operator [.]∧ as:

[x]∧ =

[
[ω]× υ

0 0

]
, (3)

where [.]× represents the skew symmetric matrix operator.

An improved version of the bi-objective direct iterative

closest point (ICP) approach of [24] is employed, which

simultaneously minimises a photometric error along with a

geometric error between the surfaces S
∗ and S such that

e(x) =




I
(
w(T̂T(x),V∗)

)
− I∗(P∗)

R̂R(x)N∗⊤

(
V⊤ −ΠT̂T(x)V∗⊤

)⊤


 , (4)

where the first row of equation (4) is the photometric term

and the second row is a point-to-plane ICP error with

projective data association. The function w(·) is the inverse

warping function described in Section III-B.

This non-linear error is iteratively minimised using a

Gauss-Newton approach such that:

x = −(JTWJ)−1JTWe, (5)

where JT =
[
Jesm N∗⊤Jicp

]
.

J contains the stacked Jacobian matrices of the errors of

equation (4). Jesm is the Jacobian matrix of the photomet-

ric term computed using the efficient second order (ESM)

approach [25] and Jicp is the standard ICP Jacobian matrix.

W is a diagonal weighting matrix of dimensions 2nm×
2nm obtained by M-estimation [26], with Huber’s influence

function. Since the photometric error is influenced by the

geometric error, the matrix W is computed such that:

W =

[
WesmWicp 0

0 Wicp.

]
(6)

This weighting scheme efficiently handles geometric occlu-

sions, such as dynamic moving objects. Note that the pho-

tometric errors (and subsequently the weights) are coupled

with the geometry while the geometric error is independent

of the photometry (only for projective light RGB-D sensors).

The pose estimate T̂ is finally updated using a homoge-

neous update until convergence as T̂← T̂T(x).

III. SYNTHESISING A NOVEL VIEW FROM THE MODEL

The main difference between volumetric and key-frame

approaches appears whenever it is necessary to interact and

use the 3D model data. Even within each of these approaches

several errors may be minimised, primarily depending on a
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forward or inverse warping function. These warping func-

tions will be elaborated here and a new warping function

will be proposed for combining several key-frames together

efficiently, evidently solving the problem of partial overlap

and occlusion (between current and key-frame images).

A. Geometric warping

The geometric warping function P
w⊤

= w (T,K,V),
transforms the vertices V with the pose T and projects the

transformed vertices on the image plane by Pw⊤ = MV
⊤

,

where the perspective projection matrix M is defined such

that M = KΠT. Π = [1,0] ∈ R
3×4 projects the 4 × 4

pose matrix onto the 3× 4 space and Pw⊤ is normalised by

dividing by its third co-ordinate to obtain P
w⊤

.

B. Inverse warping / texture projection

Inverse warping is the equivalent of texture projection in

computer graphics. It basically consists in projecting the

current image/texture onto the world geometry. It is often

referred as inverse warping since the transformation from

the source intensities to the destination space is performed

by projecting the destination vertices (reference image) to

the source space (current image) and then interpolating the

intensity values on a regular grid as:

I∗(P∗) = I(w(T,K,V∗)). (7)

As it can be seen in equation (7), the current intensity

warping only depends on the reference vertices V∗. This

allows to perform computationally efficient grid interpolation

of the surface and obtain a correspondence between the

reference and the current intensities. One major drawback

of this approach is that occlusions are not handled, since

several vertices may project onto the same pixel, leading to

inconsistencies in the warped image. This is, however, the

fastest way to transfer image intensities between frames and

its Jacobian can be pre-computed.

C. Forward warping / rasterisation

Standard rasterisation is one of the easiest ways to render

novel views whilst handling occlusions via z-buffering. The

pipeline is this time straightforward (source to destination),

since the world geometry (triangles) is directly projected

and interpolated at the screen pixels (destination) yet the

colours are interpolated in the reference texture. The main

difference is that this requires a scattered interpolation which

is computationally more expensive. The intensity warping

can be defined such that

I∗(P∗) = I
(
Γ
(
P∗,E, w(V,T

−1
,K∗)

))
(8)

where E ∈ N
J×3 contains J × 3 indices of each triangle

(computed in the image as described in Section V-A.1), and

Γ is the rasterisation function that interpolates the scattered

vertices projected at the destination pixel locations P∗.

Rasterisation is directly implemented in hardware on GPUs

and allows to efficiently perform scattered interpolation on a

very large amount of triangles. With abuse of notation, the

function

S
∗ = S

(
Γ
(
P∗,E, w(V,T

−1
,K∗)

))
(9)

will be a synthesis of the surface S at position T, where S
∗

is the new predicted surface which contains new intensities,

vertices, normals and uncertainties.

D. Warping comparisons

Forward warping (rasterisation) benefits from many hard-

ware accelerated features that cannot be done efficiently with

inverse warping (texture projection). In particular, mipmap-

ping, anisotropic filtering (which prevents aliasing) and oc-

clusions (via z-buffering). Even if the scattered interpolation

can be highly optimised (see Section. V-A.1), the computa-

tional cost is less efficient than inverse warping, mainly due

to triangulation and scattered interpolation of the surface.

On the other hand, inverse warping is only valid for small

viewpoint changes where occlusions and perceptual aliasing

can be neglected. In order to take advantage of hardware

rasterisation, it is proposed here to use forward warping for

view prediction and model update steps, which only have to

be performed once per frame. Dense iterative registration,

which requires multiple warps per frame, can use a fast

inverse warping between the predicted frame and the live

frame which are assumed to be close.

E. Multi-key-frame fusion

Supposing that an initial estimation of the current camera

pose T̂ is available (i.e. the last estimated pose), the surface

prediction is performed by first extracting close key-frames

from the graph. A simple criteria is used to select the

M closest key-frames to the current frame based on the

distance along the graph. This avoids choosing key-frames

which are close geometrically but have not been connected

visually during the acquisition (i.e. on the other side of a

wall). Further connections could be made by performing loop

closure and bundle adjustment on the entire key-frame graph.

Each key-frame is then rasterised and blended into a

virtual frame at the predicted camera viewpoint such that

S
∗ =

M∑

i=1

f
(
S

(
Γ
(
P∗,E, w(Vi, T̂

−1Ti,K
∗)
)))

, (10)

where f(S(·)) is a blending function, that correctly fuses the

synthesised images. In order to detect occlusions between the

rendered surfaces before blending a Mahalanobis distance is

computed between the candidate vertices to test their mutual

dependency. Let us consider the sets {v∗
a, c

∗
a} and {v∗

b , c
∗

b}
to be two vertices and uncertainties candidates for a new

vertex v∗. The distance is defined by

dM = e⊤3 (v
∗

a − v∗

b )
⊤(c∗a + c∗b)

−1e⊤3 (v
∗

a − v∗

b ). (11)

The blended vertex v∗ is obtained using a Chi-square test

such that:

v∗ =





(v∗

a
c
∗

a

−1+v
∗

b
c
∗

b

−1)

(c∗

a
−1+c

∗

b

−1)
if dM < 3.841

v∗
a elseif e⊤3 v

∗
a < e⊤3 v

∗

b

v∗

b else

(12)

where 3.841 corresponds to 5% of error tolerance.

The intensities of the virtual image I∗ are also obtained by

blending the reference key-frames. The weighting function

proposed in [8] is used if the dependence test of (12)
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succeeds, otherwise the final intensity is assigned to the

closest vertex. This function weights the relative resolution

between the predicted image and the closest key-frames

giving larger weights to images with closer viewpoints.

IV. MODEL UPDATE

This step consists in updating the model using the sensor

pose estimation and the current image data. For volumetric

approaches such as [14], this is achieved by integrating the

new measurements (depths and intensities) into the TSDF

through a weighted running average. For moving TSDF

variants [11], [10], the volume can also be shifted if the

camera pose exceeds some movement threshold.

For key-frame approaches such as [4], new measurements

can be integrated into nearby frames by warping the current

data using the estimated pose, and a new key-frame is gener-

ated if the camera pose exceeds some movement threshold.

In the proposed approach, the current surface is rasterised

onto the M key-frames that were used for the pose es-

timation. The integration proposed in [8] is employed to

correctly fuse the depth-maps and intensities, allowing to

reduce the noise contained in the raw depth images. A

simple criterion for managing new key-frame generation

is used in addition to a classic threshold on the camera

motion. This criterion consists in monitoring the amount of

occluded pixels between the current frame and the next frame

prediction (which is computed according to the current pose

estimate) using the test of equation (12). A new key-frame is

therefore added and connected to the M closest frames in the

graph when the amount of occluded pixels in the image is

greater than a defined threshold. This allows to dynamically

scale the number of key-frames with the scene complexity.

V. EXPERIMENTS

A. Real-time implementation

The proposed approach was implemented and optimised

for modern GPUs using the OpenCL library with OpenGL

interoperability. This allows to use the OpenGL hardware

pipeline for surface rasterisation with GLSL shaders and the

more flexible OpenCL kernels for iterative registration with

inverse warping. Extensive use of texture memory has been

made to ensure fast random memory access with hardware

bilinear interpolation. The iterative registration technique

of Section II-B is performed with a coarse to fine multi-

resolution approach as detailed in [7]. Since the RGB-D

sensor usually provides noisy depth measurements, a bilateral

filter is applied to remove noise whilst preserving discontinu-

ities. The filtered depth-map is only used for pose estimation,

while the raw depth-map is used for depth integration to

preserve details in the integration process. The test platform

used for experiments is a standard desktop PC running

Ubuntu 12.10 with an Intel Core i7 2700k and a 2GB nVidia

GeForce GTX670. Table I shows the average computing

time of each step of the algorithm along with its standard

deviation. The first step (initialisation) consists in loading the

current RGB-D frame in GPU memory, performing bilateral

filtering and computing the Gaussian pyramids of the images.

The second step is the iterative pose estimation described in

Section II-B. The third step is the model update of Section IV

TABLE I

ALGORITHM COMPUTING TIME

Average time (ms) Standard dev. (ms)
Initialisation 12.90 2.49
Pose estimation 11.78 2.06
Map update/fusion 2.83 1.55
View Prediction 3.14 1.38
Total 30.63 3.08

which consists in updating the key-frames. The last step is

the next view prediction performed using the warping of

Section III-C and the fusion of Section III-E.

1) Efficient triangulation on the GPU: Since the vertices

of a key-frame are stored onto a pixel grid, one of the

fastest way to rasterise a new surface is to use triangle strips.

Triangle strips are a kind of primitive that specifies a series

of connected triangles, sharing vertices, allowing for more

efficient memory usage. However, such a surface does not

take into account depth discontinuities, as well as missing

values in the reference depth-map, which will create artefacts

in the synthesis. One approach to handle this is to perform

a simple 2D triangulation on the CPU using valid depth

measurements and send the obtained indices to the GPU

before drawing. This has some limitations:

• Since the depth-map is directly integrated in GPU

memory, it must be sent to the CPU before triangulating;

• The amount of triangle indices that have to be uploaded

to the GPU after triangulation is generally enormous (up

to 1843200 indices for a 640× 480 surface).

To avoid performing this slow GPU/CPU memory transfer

each time a reference view needs to be triangulated (i.e. mul-

tiple times at frame-rate), it is proposed here to perform the

“triangulation” on the fly using geometry shaders. Geometry

shaders are an optional part of the graphics rendering pipeline

which is applied after primitive assembly. They allow to

simultaneously access all the vertices of a primitive and can

be used to discard or generate new primitives (only a few).

In this case, the entire set of reference vertices are drawn

as points and sent to the vertex shader stage, which just sends

the vertices positions to the geometry shader. The input of

the geometry shader is then a vertex and the output is a

triangle strip with a maximum of 4 vertices (2 triangles).

The 3 neighbouring values of the current vertex are read

via texture fetch and the triangle strip is emitted only if the

following constraints are respected:

• All 4 depth values must be in a valid range (i.e. > 0).

• All triangle strip edge lengths must be smaller than a

threshold to avoid depth discontinuities on the surface.

The standard rasterisation pipeline is then applied with

texture interpolation in screen space. Note that the rendered

vertices and uncertainties are simultaneously interpolated and

stored into RGBA floating point textures, using multiple

render targets (MRT). Table II compares the computation

time required for triangulating and rendering a 640 × 480
surface, containing 606404 triangles, using a naive CPU

triangulation and the proposed approach. It can be seen that

the full GPU triangulation is almost 14x faster than the naive

CPU approach. Another advantage of triangulating on the

fly is the memory footprint, since no temporary buffer of

memory is used to store the triangles elements.

3681



TABLE II

COMPARISON OF THE COMPUTATIONAL TIME BETWEEN A NAIVE CPU

TRIANGULATION AND THE PROPOSED GPU TRIANGULATION

CPU+GPU (ms) Proposed (ms)
Depth-map read-back 0.80 none
2D Triangulation 10.50 none
Elements update 3.56 none
Rasterisation 0.77 1.13
Total 15.64 1.13

Fig. 2. Bird eye view of a reconstructed office rendered in real-time using
the proposed multi-key-frame fusion approach.

2) Reduction: To solve the linear system from equa-

tion (5), it is necessary to compute H = JTJ and g = JT e.

This is a large reduction problem since J is of dimensions

2nm × 6 and e is of dimensions 2nm × 1. Hence, H is of

dimensions 6 × 6 and g is of dimensions 6 × 1. First note

that the matrix H is symmetric, thus only 21+6 = 27 sums

have to be computed for H and g. The final reduction can

be interpreted as summing the 2nm rows of a 2nm × 27
matrix into a 1×27 vector that can be read back to the CPU

before computing the pose update of equation (5). Practically,

in order to save GPU cycles, only a partial reduction is

performed on GPU using local memory, until a size of k×27,

with k << 2nm. The final sum is then performed on the

CPU and the system is inverted using Cholesky factorisation.

To further improve speed, SIMD instructions are used to

perform 4 single precision instructions per cycle, reducing

the problem from a 2nm× 27 to a 2nm× 7 reduction.

In the optimised implementation, the 2mn × 27 matrix

is not explicitly constructed and stored in global memory.

Instead the summation is performed in parallel as new error

and Jacobian values are computed for each pixel. This allows

to perform one iteration of the registration in only one kernel

call without read/write operations via intermediate buffers.

B. Results

1) Quantitative results: The proposed approach has been

evaluated on the RGB-D benchmark of [27]. Four selected

sequences are reported on tables III, IV and V, which re-

spectively represent the Absolute Trajectory Error (ATE), the

Relative frame-to-frame Error (RPE) and the relative Root

Mean Square Error per second (RMSE) corresponding to the

drift per second. Three approaches have been compared: the

Kintinuous volumetric approach of [11] with the ICP+RGB-

D error metric, an image-based approach using only the

Closest Key-frame in the Graph (CKF), and the proposed

approach using a maximum of 5 View Predictions (VP).

TABLE III

RELATIVE ROOT MEAN SQUARE ERROR OF DRIFT IN METERS/SECOND (RMSE).

Sequence VP (m/s) CKF (m/s) Kintu. (m/s)
fr1/desk 0.0259 0.0721 0.0393
fr2/desk 0.0147 0.0161 0.0208
fr1/room 0.0351 0.0502 0.0622
fr2/large no loop 0.0695 0.1529 0.1795

TABLE IV

ABSOLUTE TRAJECTORY ERROR IN METERS (ATE).

Sequence
VP (proposed) CKF Kintu.
Median Max Median Max Median Max

fr1/desk 0.018 0.066 0.044 0.131 0.069 0.234
fr2/desk 0.093 0.116 0.099 0.130 0.119 0.362
fr1/room 0.144 0.339 0.201 0.430 0.158 0.421
fr2/large no loop 0.187 0.317 0.228 0.437 0.256 0.878

For the ATE and RPE, the median translation errors and the

maximum translation errors are reported. It can be seen that

for each error metric, both image-based approaches (VP and

CKF) outperform the volumetric approach in all sequences.

The proposed approach using frame prediction also performs

better than the closest key-frame approach: reducing the

amount of occlusions between the reference and the current

view allows a better minimisation of the error in sensor space

and reduces the maximum pose error and drift.

2) Qualitative results: The dense tracking and mapping

algorithm has been successfully tested on a number of real

scenes in real-time, ranging from small workspaces to large

scale buildings. Figure 3 TOP shows a 3D reconstruction

representing an entire floor of a building, reconstructed in

real-time from a 100 meters trajectory using a hand-held

RGB-D camera (Asus Xtion). The trajectory begins in the

left alcove and the camera is moved across corridors and

rooms, until the last alcove on the right. The environment

contains many texture-less and geometrically unconstrained

areas (corridors). Thanks to the bi-objective error minimisa-

tion, which combines a photometric minimisation and a ge-

ometric minimisation, the proposed approach is always able

to robustly estimate an accurate pose. Figure 3 BOTTOM

shows a side view of the final point cloud of Figure 3 TOP

and demonstrates the very low drift of the approach since the

entire reconstruction remains flat (floor). The final map, is

only represented by 67 key-frames resulting in a point cloud

of 20, 369, 566 3D points.

Figure 2 shows a synthesised global view of an office

rendered using the proposed multi-key-frame 3D fusion

approach using all the images of the graph. The rendered

image is near photo-realistic which demonstrates the accu-

racy of the reconstruction pipeline. More detailed results

can be found in the accompanying video (also available at:

http://youtu.be/9p5IAkgh U4).

TABLE V

RELATIVE FRAME-TO-FRAME POSE ERROR IN METERS (RPE).

Sequence
VP (proposed) CKF Kintu.

Median Max Median Max Median Max
fr1/desk 0.0055 0.0390 0.0059 0.1899 0.0056 0.0655
fr2/desk 0.0015 0.0098 0.0018 0.0171 0.0025 0.0108
fr1/room 0.0041 0.0275 0.0046 0.1693 0.0045 0.0892
fr2/large no loop 0.0075 0.1620 0.0093 0.3324 0.0087 0.1101
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Fig. 3. Dense reconstruction of an entire floor obtained in real-time from a 100 meters trajectory containing 67 key-frames. The the graph of key-frames
is superimposed on the images. TOP: a bird eye view of the reconstruction. BOTTOM: Side view of the reconstruction

VI. CONCLUSION

In conclusion this paper has investigated two different rep-

resentations commonly used for dense real-time localisation

and mapping. The advantages and disadvantages of each

approach have been demonstrated and a model has been

proposed to unify these approaches. The proposed model

is based on an efficient hybrid intensity and point-to-plane

ICP formulation. Multiple reference images stored in a graph

have been used to provide efficient occlusion handling to

a multi-key-frame approach. In that respect a fast surface

triangulation/rasterisation method has been developed on the

GPU and it has been shown to use relatively low memory

and be able to map large scale buildings densely in real-time.

Future works will aim at detecting large loop closures

using appearance-based techniques and correcting drift using

pose-graph optimisation.
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