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Abstract— In this paper, we discuss how networked robot
architectures can facilitate the development, deployment, man-
agement and adaptation of distributed robotic applications. Our
aim is to modularize applications by factoring out environment-
, task-, domain-, and robot-specific knowledge components and
representing them explicitly in a formal knowledge base that
is shared between the robots and service applications. Robot
control decisions can then be formulated in terms of inference
tasks that are evaluated based on this knowledge during task
execution. The explicit and modular knowledge representation
allows human operators with different areas of expertise to
adapt the respective parts of the knowledge independently. We
implemented this concept by integrating knowledge representa-
tion methods of the ROBOEARTH project with the distributed
task execution capabilities of the Ubiquitous Network Robot
Platform.

I. INTRODUCTION

With “Cloud Computing” becoming more and more pop-

ular, there has been increasing interest in applying simi-

lar concepts to robotics: Performing complex computations

or storing large-scale knowledge bases can often be done

more efficiently on dedicated server hardware, requiring

less computing power, less memory and therefore also less

battery capacity on the robot itself. Applications of these

concepts to robotics are commonly referred to as “cloud

robotics” [1]. There have been several efforts to move parts

of the robot control program into the cloud, each focusing

on different aspects like storing and sharing knowledge,

off-loading complex computations, coordinating distributed

robot teams, or remotely operating partly autonomous robots.

Kamei et al. [2] introduce the Ubiquitous Networked

Robot Platform (UNR-PF) as a framework for distributed

task coordination and control. The UNR-PF abstracts away

from the robot’s concrete hardware and offers a generic

interface that can be used by application developers to

create hardware-independent robotic services. A developer

can request components that fulfill a given specification,

and the UNR-PF will then assign suitable devices that can

be controlled remotely. The UNR-PF supports a hierarchy

of local and global platforms that allow to remotely start,

supervise and coordinate tasks that are jointly performed

by a set of components on different physical robots. Taken

together, the hardware abstraction and the networked control
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Fig. 1. The modular structure of the proposed system allows different
groups of operators to focus on their area of expertise: Robot program-
mers implement the basic functionality, application developers combine
these modules to provide useful services, while shop operators provide
environment-specific information needed to execute the applications.

architecture facilitate the creation of re-usable distributed

applications that can run on very different robot platforms.

While such applications are hardware-independent and

reusable, they do not easily adapt to novel situations. Since

the control programs are compiled code, all control decisions,

the complete task structure and all interactions with objects

and the environment need to be included into the program.

As a result, all required information needs to be known

and all decisions need to be taken at compilation time. It

will be difficult to foresee all circumstances the robot will

face during operation, so the control program has to actively

tackle this open-world challenge and be designed in a way

that additional knowledge can be acquired and used for

accomplishing the robot’s tasks.

In this paper, we investigate how a knowledge-enabled and

cloud-based approach can help to make the robot control

program more flexible and adaptable (Figure 1). We use

ROBOEARTH, a cloud-based knowledge base designed for

the exchange of knowledge between robots, to encode the

task structure, environment information, object descriptions

and general common-sense knowledge as a formal knowl-

edge base. Using this knowledge base, the system can

flexibly infer control decisions based on the most up-to-

date information the robot has at that time. For example, the

decision where to search for objects in an environment is

formulated as query to the knowledge base that is evaluated

based on the information available at the time the information

is needed. Instead of programming in detail what to do in

which situation, the application developer specifies which in-

formation is required in terms of a query, and the knowledge

base will then use all the knowledge and inference methods
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that are available to compute answers to it.

Other than a compiled program, knowledge is composable

and can be represented in a modular fashion. This facilitates

the independent update of different parts of the knowledge

base (like task specifications and environment maps) by

experts in the respective fields (Figure 1). Since the central

knowledge base is in the Cloud, these experts can remotely

edit its content and deploy the updates to a large number

of robots in different locations. In an open world, robots

will eventually face the problem of missing information that

would be required to accomplish a task. Using the cloud-

based system, they can ask human operators to provide the

missing pieces of information.

In our experiments, we applied the developed methods to

robots that interact with customers in a convenience store

(Figure 6) to answer questions about product locations or

ingredients and to recommend alternatives if a product is not

available. This scenario illustrates how actual robot systems

can benefit from the aspects described above. Efficiently

managing a large number of such robots in different loca-

tions requires generic robot-independent applications (e.g.

for product recommendation) that, however, need to be

parameterized with the spatial arrangement of products in

the market and knowledge about the product types and their

properties (e.g. their prices and ingredients). Parts of the

required knowledge can be shared among robots of the same

type (motions and hardware interaction), that operate at one

location (environment map) or in stores of the same brand

(product catalog and properties), respectively.

The main contributions of this paper are (1) the

knowledge-enabled and cloud-based distributed robot control

framework, (2) techniques for integrating human operators

with different expertise as knowledge sources, and (3) the

application of the methods to robots interacting with cus-

tomers in a convenience store. In the following sections, we

start with an overview of related work on cloud robotics,

and then present the architecture of our system and its main

components. We then describe our experimental setup and

the capabilities exhibited by the knowledge-enabled system

and finish with a discussion of our approach.

II. RELATED WORK

Multiple systems have been proposed that address different

aspects of the Cloud Robotics vision: Some of them focus

on remote sensor data processing [3] or on implementing

computationally expensive algorithms in the cloud [4]. The

“PR2 Remote Lab” investigates robot teleoperation and

remote control via the Internet using a Web browser [5].

The Ubiquitous Network Robot Platform (UNR-PF) deals

with distributed task execution and supervision [6] on mul-

tiple robots and sensorized devices at different locations.

The ROBOEARTH project develops a web-based knowledge

base through which robots can share information they have

obtained [7]. Other attempts try to make existing web-

and cloud-based resources available to robots. While robot-

specific applications will first need to be established and

filled with content, many applications originally developed

Fig. 2. Structure of the proposed system. Other than common task-specific
robot applications, the generic execution engine can be parameterized with
knowledge-based task descriptions. Control decisions are defined in terms
of queries to the knowledge base that are answered based on the robot’s
background knowledge and belief state. A human operator can be contacted
to provide missing information.

for humans do already provide information that can be

useful for robots [8]. Examples are cloud-based object

recognition systems like Google Goggles [9], on-line image

and object model repositories like the 3D Warehouse [10],

and product information from shopping websites as well

as task instructions and cooking recipes [11]. A recent

survey by Goldberg gives a good overview of cloud robotics

approaches [12]. So far, all of these systems have focused

on single aspects like distributed task execution, cloud-based

information exchange, and shared-autonomy tele-operation.

In this paper, we show how their combination can enable

novel functionality.

III. SYSTEM OVERVIEW

The system presented in this paper combines the dis-

tributed task execution methods of the UNR-PF with the

knowledge-sharing techniques of ROBOEARTH. Figure 2

gives an overview of its main components. The UNR-PF

is used as communication middle-ware and abstraction layer

between the hardware components and robot applications.

A special execution engine can interpret task specification

shared via ROBOEARTH and execute them on the platform,

acting as a generic robot application that can be parameter-

ized with different task descriptions. The execution interacts

with the system’s knowledge base to resolve abstract speci-

fications in the task descriptions to concrete parameters that

are needed for executing the actions. A graphical interface

for a human operator facilitates the inspection, modification

and creation of knowledge.

A. The Ubiquitous Network Robot Platform (UNR-PF)

The UNR-PF acts as an interface layer between hardware-

and software components on the one side and robotic service

applications on the other side. The components implement

well-defined interfaces (e.g. for a PersonIdentification or a

Reaction) and offer this functionality to the platform via the

component API. Applications compose useful functionality

out of these basic building blocks. Since all dependencies
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are defined in terms of the abstract interfaces, robot appli-

cations are agnostic of how the functionality is provided or

which components provide it. The MovingPlatform interface,

for example, could be implemented using a wheeled or a

legged platform, both providing the functionality of moving

the robot. Before executing a command, an application

requests components that have the required properties from

the platform and, if suitable ones are available, interacts

with them via the service API. The UNR-PF draws upon

different standardized platforms and representations: The

component interface of the UNR-PF is based on the RoIS

standard [13]. Spatial information is encoded following the

Robotic Localization Service (RLS) standard [14] and the

CityGML language [15]. The UNR-PF is publicly available

as open-source software1.

B. The ROBOEARTH knowledge base

ROBOEARTH aims at building a “World Wide Web for

Robots”, a web-based Wikipedia-like platform for sharing

knowledge about actions, objects, and environments between

robots (Figure 3). All pieces of information stored in the

knowledge base are annotated with their requirements in

terms of robot capabilities which are checked when down-

loading them. Using these requirement specifications, a robot

can determine whether it will be able to use this information

as it is or if additional information is needed. The client-side

reasoning system is built using the KNOWROB knowledge

processing system [16] which is used for storing knowledge,

drawing inferences, and offering a query interface to the

execution engine.

Fig. 3. Overview of the ROBOEARTH system for exchanging information
about robot actions, object models and environment maps between robots.
The KNOWROB knowledge base is an important part of the system.

The knowledge stored in the ROBOEARTH system is

described in a formal language [17] that is implemented as an

extension of the Web Ontology Language (OWL, [18]). The

ROBOEARTH ontology defines the concepts and properties

that are available for representing knowledge. It is derived

from the KNOWROB ontology [19] which, by itself, is partly

derived from the OpenCyc ontology [20] that became a

quasi-standard in robot knowledge representation. By re-

using these existing ontologies, we ensure compatibility

with parallel developments in this research area and can

incorporate results of other projects more easily.

1http://www.irc.atr.jp/std/UNR-Platform.html

C. Knowledge-enabled task execution

Task descriptions in the ROBOEARTH language are not

directly executable but, similar to cooking recipes, describe

which actions need to be performed in which order and with

which arguments. In order to execute them on the robot, they

need to be interpreted by an execution engine that translates

them into calls to the respective robot components and that

supervises how the task is performed. Action recipes are

composed of action classes, for example LocalizingAPerson,

which are linked to the corresponding components in the

UNR-PF. Before execution, the recipes are loaded and the

system checks if all required components are available, then

generates a state machine from the task description in the

recipe, and starts the execution by calling the respective

UNR-PF components as specified in the recipe. During this

project, we have represented all components that have so

far been implemented in the UNR-PF in the ROBOEARTH

language as an extension of the action ontology. The UNR-

PF is more focused on human-robot interaction, which had

not been modeled in sufficient detail in ROBOEARTH, so the

ontology has been extended with these kinds of actions.

Each action is transformed into one state in the state

machine that first requests and binds all required components

using the UNR-PF, then calls the respective commands,

and finally returns their results. Depending on the results,

the execution transitions to the next regular state or to a

specified error state. Perceptual components, e.g. for person

localization or identification, are interfaced using “perception

actions” that wait for events generated by the components.

The recipe can specify when these actions are to return, for

example once the first event message has been received, or

the first n messages, or after a specified condition evaluates

to true (e.g. once a specific person has been recognized).

These conditions are described using OWL restrictions that

are evaluated on the robot’s knowledge base to check whether

the condition is fulfilled.

To account for the heterogeneous nature of actions and

their respective requirements in terms of information inter-

change with other actions, we developed a flexible infor-

mation passing scheme using the local knowledge base. All

information gained by executing an action is represented in

the local knowledge base using the ROBOEARTH language,

including the results of sensing actions, the outcome of

manipulation actions, and information about which actions

have been performed with which parameters. This approach

closely links the knowledge-based task instructions to the

robot’s belief state and allows robotss to reason about and to

integrate different sources of information like the instruc-

tions, the object ontology, and the semantic environment

map. It also facilitates the exchange of information via the

ROBOEARTH platform since all information in the system is

already explicitly represented in this language.

D. Interactive knowledge editor interface

We combine the execution engine with a graphical user

interface that allows human operators to extend and correct

the robot’s knowledge base, to add new objects to a map
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Fig. 4. Top: Semantic map visualization and editor. Bottom: Editor for
defining the task structure and interactive execution interface.

or new actions to a task, and to start and supervise the

task execution on a remote robot. The UNR-PF thereby

serves as distributed platform for the run-time coordination

between the operator, the task-level controller, and the differ-

ent (robot) components that perform the task. ROBOEARTH

complements this by providing the robot and the human

operator with a shared knowledge base about the task to

be executed and the environment the robot(s) operate(s) in.

The two main components of the user interface are visual-

izations and editors for semantic environment maps [21] and

for robot task specifications [17]. Both editors can either

load specifications from the robot’s local knowledge base

or import them from ROBOEARTH. The map editor can

visualize and edit environment maps that describe the spatial

arrangement of objects around the robot (Figure 4 top). In

these maps, each object is described as an instance of an

object class at a specified 6D-pose in space. This instance

inherits all properties specified for its object class, and can be

further annotated with additional properties. Using the editor,

objects can be added to, deleted from and moved around in

the map. The task editor can be used to create, visualize

and edit task descriptions by adding or removing actions,

changing their properties, and specifying transitions between

actions. The user can specify in detail how the task shall

react in nominal and error cases using conditions for action

transitions (indicated by the differently colored arrows in

Figure 4 (bottom)). Green arrows indicate a transition in case

of successful execution, dark red ones are in case of an error,

light and dark blue transitions are chosen depending on the

outcome of a decision node, etc. During task execution, the

action editor doubles as supervision interface: The currently

executed action is highlighted, action parameters can be

inspected, and the task execution can be started and aborted.

E. Integration of human operators as knowledge sources

A robot can call a human operator during task execution

and ask for information that it found to be missing. The

communication is performed using the UNR-PF by adding

the human operator interface as a component that can be

commanded to acquire information. If the robot application

(which is supervising the task execution) notices a problem,

it executes the command for asking the operator for help.

The human can then download the relevant information from

the ROBOEARTH knowledge base, investigate the problem,

update the information, upload it to ROBOEARTH again, and

notify the application that the information is available.

The ability to ask for help raises the questions when to

ask and what to ask for. We consider two main cases in

which interaction with an operator seems necessary: when

a query for information unexpectedly gave no results (e.g.

when a question asked by a customer cannot be answered)

or when an action failed or produced inappropriate behavior.

The former case can be handled in the context of an ongoing

task by transitioning to an “interaction state” that sends a

support query to the operator, blocks until an answer has

been received, and returns to the same action to try again.

This interaction scheme is indicated in the right part of

Figure 5. The latter is a more exceptional case that often

requires modifications of the task definition itself. It may be

detected by errors thrown by the UNR-PF, by checking if

the outcome of an action is as expected (e.g. a customer that

does not move away even if the robot considers a dialog to be

complete), or if customers or the shopkeeper complain about

the robot’s behavior. In these cases, the task specification

needs to be updated and the task needs to be restarted.

IV. EXPERIMENTS

We implemented the experimental scenario of robots in-

teracting with customers in a convenience store. With respect

to this scenario, we build upon prior work on establishing

a ubiquitous-sensing infrastructure in a convenience store

and using this infrastructure for guiding customers [22]

and for recommending products [23]. The mock-up store is

equipped with a ubiquitous sensing infrastructure, including

laser scanners for tracking customers and RFID tag readers

for detecting if objects have been picked up [24], as well

as several interactive robots (Figure 6). With this scenario,

we explore how semantic representations can yield greater

flexibility in customer interaction, and how the proposed

distributed infrastructure helps to create, deploy and maintain

robot applications. A video showing the editor interfaces for

semantic maps and action recipes as well as the execution

of the task on the robot can be found online2 as well as the

2http://vimeo.com/70096817
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Fig. 5. Example task specification for recommending a product. The
call-out boxes indicate where the proposed system contributes to the task
execution.

OWL files with the class definitions for UNR actions and

the action recipe for this experiment3.

Figure 5 shows the definition of a recommendation task

in the knowledge base and explains in which parts the

contributions of this work come into play. The robot first

greets the customer and asks if help is required. It then

decides whether the customer asked for the location of a

product (light blue arrow) and, if so, tries to compute its

location based on the semantic environment map and explain

how to get there. If no answer can be found, the question is

forwarded to a human operator that updates the knowledge

base with the required information. The accompanying video

explains in more detail how knowledge can be edited and

how the remote task execution and supervision interface can

be used to control the robots.

A. Knowledge-based customer dialog

The robot can use its semantic and spatial knowledge

about products in the environment to answer questions posed

by customers. Questions can either be asked using a speech

recognition system or (for development purposes) using a

chat-based interface; both are implemented as SpeechRecog-

nition component on the UNR-PF. Variations of the follow-

ing questions can currently be understood:

• Where can I find A [that (does|does not) contain B]?

This question type combines spatial information about

the locations of products in the environment (from the

semantic map) with semantic information about their

ingredients (from the product ontology).

• How much is A? This question type reads the price

property of a product class from the ontology. If the

query asks for the price of a generic class (e.g. “How

much is green tea?”), it reads the prices of all subclasses

and returns the price range.

• Is A x ? This question type asks for product properties

x, for example if A is edible, drinkable, perishable or

vegetarian.

B. Spatial knowledge for guiding customers

A semantic map [21] contains instances of products and

the locations where they can be found in the environment.

3http://knowrob.org/ontologies

When asked for the location of a product, the robot reads

the location from the semantic map, computes the position

relative to itself and points towards the objects in addition to

the spoken answer. The map can be coupled with sensors in

the environment, for example RFID tag readers, that update

the information in the map and provide the robot with an up-

to-date view of which products are still available. A graphical

editor enables operators without robotics expertise to update

the environment model if the shop layout has changed.

C. Semantic representations for product recommendation

Using semantic information like an ontology of products

and their properties [8], a robot can flexibly answer ques-

tions about these products. The hierarchical structure of the

ontology provides the robot with information which products

belong to a category like Food or Stationery. Based on

the represented product properties, it can answer questions

about ingredients the customer may be allergic against. By

computing which products are close in the ontology, it can

find semantically similar alternatives if a product is not

available any more [25].

D. Human operator as fall-back knowledge source

While the robots operate autonomously most of the time,

there may be situations in which they cannot answer a

customer’s question. In this case, they can forward the

question to a human operator that can update the robot’s

knowledge, for example by adding or removing products in

the map or by changing their properties. The human and the

robot share the same environment model that is distributed

via the ROBOEARTH platform; when the human updates the

map in ROBOEARTH, it is directly available to the robot

as well. The required interaction with the human is included

into the task specification as a special action that is triggered

if a question cannot be answered.

E. Remote adaptation and deployment of task specifications

In some cases, the task specification itself needs to be

updated, for instance to change the robot’s recommendation

behavior or to fix flaws in the task definition. This adaptation

can be done in a centralized fashion since the tasks the

robots perform are themselves described in the knowledge

base and shared via ROBOEARTH. The operator can adapt the

specifications remotely using a graphical editor interface and

upload the updated version to the ROBOEARTH knowledge

base, thereby making it available to all robots in the system.

V. DISCUSSION AND CONCLUSIONS

In this paper, we discussed how a system for knowledge-

enabled distributed task execution can be built on top of

existing, common platforms in order to increase modularity,

flexibility, and adaptability of robot applications. By conse-

quently separating generic functionality from environment-,

domain- or task-specific knowledge, we intend to achieve a

high degree of reusability as well as improved adaptability to

novel situations. Different kinds of knowledge are explicitly

represented and can be edited independently by the respective
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Fig. 6. Recommendation robots in the convenience store experiment setup.

domain experts. Control decisions are formulated as infer-

ence tasks that are evaluated on the robot’s knowledge during

execution.

Our approach involves abstraction along multiple dimen-

sions: Abstraction from the robot hardware and the execution

context is achieved by the components, services, and remote

execution capabilities of the UNR-PF. Abstraction from the

environment is obtained by encapsulating all environment-

related knowledge in a semantic map that combines spatial

and semantic information about objects. Abstraction from

the executed tasks is done by a generic execution engine

that can perform arbitrary tasks defined as combinations

of basic functionality building blocks. Abstraction from

the application domain can be achieved by parameterizing

generic functionality with an abstract domain ontology. We

expect this abstraction to increase re-usability of components

in different tasks and environments since individual parts of

the knowledge base can be exchanged independently. The

same task description for serving a drink, for example, should

work in different hospital rooms, kitchens or offices as long

as an appropriate environment model is available.
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