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Abstract— In this paper we describe a Simultaneous Loca-
lization and Mapping (SLAM) approach specifically designed
to address the communication and computational issues that
affect multi-robot systems. Our method utilizes condensed
measurements to exchange map information between the robots.
These measurements can effectively compress relevant portions
of a map in a few data. This results in a substantial reduction
of both the data to be transmitted and processed, that renders
the system more robust and efficient. As documented by our
simulated and real world experiments, these advantages come
with a very little decrease in accuracy compared to ideal (but
not realistic) methods that share the full data among all the
robots.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an

essential skill for mobile robots that have to execute complex

tasks in articulated environments. This problem has been

actively investigated by the community for over 20 years,

and effective solutions for single-robot systems are nowadays

available. In contrast, very few works address the problem

of building a map with multiple robots. Within single-robot

SLAM, a prominent family of techniques are the so called

graph-based algorithms [1], [2], [3], [4], [5]. Solving a graph-

based SLAM problem involves to construct a graph whose

nodes represent robot poses or landmarks and in which an

edge between two nodes encodes a sensor measurement

that constrains the connected poses. Once such a graph is

constructed by a front-end algorithm, the crucial problem

is to find a configuration of the nodes that is maximally

consistent with the measurements. This involves solving a

large error minimization problem which is often done by

means of modern least-squares optimization approaches, also

called back-ends in the SLAM context.

In principle, using multiple robots to acquire the map is

more robust, since the failure of a single system does not

necessarily compromise the whole result. Furthermore, the

parallel acquisition of data by multiple robots might result

in less time needed for building the map. Despite these

attractive properties, multi-robot systems for SLAM presents

substantial challenges of both theoretical and practical na-

ture. Ideally, existing algorithms for single-robot graph-based

SLAM could be extended to handle the multi-robot case
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(a) Map robot 1 (b) Map robot 2

(c) Map robot 1 + condensed graph
from robot 2

(d) Final global map

Fig. 1: This figure illustrates a motivating example of our approach.
Two robots cooperate to construct a map of a building containing
a loop of 250m. a), b) Each robot is in charge of mapping one part
of the large loop. Due to the lack of enough observations robot
1 commits a big error and fails in the estimation of its part of
the loop (a), red square). However, it meets and localizes robot
2 at two points of its trajectory (a), blue squares) who sends a
compressed version of its map that contains measurements relating
these two locations. c) When robot 1 adds these measurements
(blue edges) to its map, it improves its estimation. d) Since the
maps become interconnected, we are able to reconstruct the global
map by merging the individual maps and optimizing them together.

just by constructing and optimizing the graph based on all

measurements gathered by the robots. Unfortunately, such

an approach presents several challenges. First, determining

constraints between pairs of robots’ graphs requires a re-

localization scheme without any initial guess. This might

dramatically increase the chances of adding wrong edges to

the graph, and would compromise the entire process. Second,

assuming to have an ideal error-free front-end, the graph

obtained by each robot would rapidly increase its size. In

the worst case, each robot would add a set of edges to

the graph with a quadratic dependency on the number of

robots. Consequently it would limit the on-line performance

of any state-of-the-art optimizer whose complexity roughly

increases with the number of edges.

Furthermore, the above scenario assumes the robot can

perfectly communicate with each other, which is typically

not the case. Wireless communications in large environments

are usually brittle and depend on the positions of the nodes.

Furthermore they present bandwidth limitations, that would

prevent the robots to share large amounts of data.

In this paper we propose an approach for multi-robot

SLAM (MR-SLAM) that addresses the issues raised above.

Our method is designed to operate with very limited commu-
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nication facilities and allows to dynamically add and remove

robots from the system.

Each robot in the team computes its own map, but it

refines it by integrating a set of virtual or condensed mea-

surements coming from the other robots. These condensed

measurements can be seen as a reduced version of the

graph constructed by the other robots, that contains only

the information relevant to the receiver in order to refine

its own map. This allows to substantially reduce the size of

the optimization problem that each member of the team has

to solve, thus increasing the efficiency. To localize a robot

in any other robot’s graph with high presence of outliers, we

propose a robust RANSAC-based approach that substantially

decreases the chances of wrong data associations and loop

closings. Our system has been tested both on real robots

and on simulated environments, and it will become available

as an open source ROS package. Figure 1 illustrates a

motivating example of our approach.

II. RELATED WORK

Most of the algorithms proposed for multi-robot SLAM

during the last years have been motivated by the suc-

cess achieved by their corresponding single-robot SLAM

counterparts. It is not surprising then that many of the

first distributed implementations [6], [7], [8] were based

on the filtering (EKF/EIF) paradigm and inherited some of

its drawbacks: overconfident estimates due to linearization

errors, quadratic computational cost and difficulty to re-

cover from wrong data association decisions. However, these

works already described the main challenges encountered

in multi-robot systems: bandwidth limitations, asynchronous

communications, coherent information integration and data

association between different robots. In the same filtering

context we can find more recent works like [9] and [10].

In [9] a Rao-Blackwellized Particle Filter is implemented

as estimation kernel that works in simple scenarios with

unknown initial correspondences. Each time a pair of robots

communicate they have to calculate their relative transfor-

mation and interchange all the information gathered since

the last meeting. In [10], a distributed and decentralized

cooperative SLAM algorithm based on the EKF is presented.

In order to not duplicate the information transmitted between

the robots the algorithm relays on a complex set of rules

and theorems that guarantee a coherent and consistent inter-

change of information.

Graph-based optimization algorithms have become the

most successful techniques to solve the SLAM problem. In

[3] we can find the first comprehensive graph-based approach

to distributed SLAM with landmarks. The algorithm uses a

multifrontal QR factorization in which no measurements are

communicated between robots or robots and a server. Instead,

the communication is limited to QR update messages, which

condense the entire measurement history on the individual

robots into small upper trapezoidal matrices. The data asso-

ciation problem is not considered and the measurements

are processed off-line for each robot. In [11] the authors

present a Collaborative Smoothing and Mapping (C-SAM)

algorithm to build a joint map from a team of robots without

initial knowledge of their relative positions. Therefore C-

SAM does not present a proper distributed SLAM solution

but a centralized version of the problem. Only simulated

results are provided in the paper. A recursive solution for

multi-robot pose graph SLAM is presented in [12]. The main

novelties of this approach reside on its incremental nature,

i.e. the solution does not depend on a batch optimization after

all measurements are taken, and on the introduction of anchor

nodes that allow each robot to use its own reference frame

whereas inter-robot measurements and graphs obtained from

other robots can be easily managed in the same framework.

Therefore in each encounter the robots interchange their

graphs which do not need to be transformed to a common

frame since can be tackled using the anchor nodes. The paper

does not take into account any issues of communication

bandwidth constraints between robots.

The closest approach to our proposed method is presented

in [13] and [14]. The authors address in [13] the multi-

robot problem with an extended Smoothing and Mapping

approach called Decentralized Data Fusion (DDF) which is

represented using a factor graph. Each robot optimizes its

own trajectory and its landmark map and then creates a

condensed map formed exclusively by the marginalization

of common landmarks. These condensed maps are mutually

interchanged among neighboring robots to create a simpli-

fied neighborhood graph of landmarks that is optimized by

each robot. To correct the local map with the information

obtained from the optimization of the neighborhood map a

set of hard equality constraints are established between each

neighborhood landmark and its corresponding local version.

In summary, robots get mutually connected by sending graph

nodes of shared features that must be hard-linked with their

corresponding local representations. In [14] the work is

extended with a novel multi-robot data association method

for robust decentralized mapping. The data association is

based on a triangulation algorithm that provides matching

between maps.

Our multi-robot SLAM system is based on the concept

of condensed measurements [15]. During map construction,

robots meet and exchange data in different parts of the

environment. The messages are governed by a protocol

explained in detail later in the paper and results in each

robot augmenting its pose graph with a measurement about

the relative position of the encountered partner. After the first

encounter, each time a pair of robots meet they additionally

interchange a set of condensed measurements, which is

just a factor graph of the shared variables obtained from

an approximation of their respective global graphs at the

equilibrium. The advantages of this approach are three-

fold: 1- Each robot only carries its own graph that gets

minimally augmented whenever an encounter with other

robot of the team takes place; 2- The mutual influence

between the team of robots is easily tackled by using

the condensed measurements since only new virtual factors

(edges in the graph) between the shared nodes must be taken

into account in the optimization process; Neither special
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constraints nor different graph representations are required.

3- The communication bandwidth is efficiently used since

a summarized (condensed) representation of the required

constraints is transmitted between robots. In addition, we

propose a technique to robustly find alignments between

local maps. This technique is used to find loop closures or

alignments between local maps from different robots.

III. SINGLE ROBOT LEAST SQUARES SLAM AND

CONDENSED MEASUREMENTS

In a pose-graph based approach, the problem of SLAM is

reduced to determine the positions of a robot along its tra-

jectory x = (x1, ...,xn)
T . This problem can be represented

by a graph. Each node of the graph represents a position xi

of the robot, together with a measurement (image or laser

scan) acquired at that position. An edge between two nodes

encodes a measurement about the relative transformation of

the two connected nodes. These measurements can be com-

puted directly from the odometry or indirectly by computing

relative transformations from the observations e.g. by using a

visual place recognition system or scan matching. Assuming

that the measurements are affected by Gaussian noise, a

measurement between xi and xj is characterized by its mean

zij and its information matrix Ωij .

In other words, in a pose-graph SLAM approach, we

assume that our robot is equipped with a simple sensor capa-

ble of measuring the transformation between robot locations

in the trajectory when they are either temporally or spatially

close.

Given a pair of nodes xi,xj and a measurement zij
connecting both nodes, it is possible to compute the error

committed in the estimation:

eij(xi,xj) = zij − ẑij (1)

where ẑij = h(xi,xj) is the expected measurement given

the current configuration of nodes xi,xj . In our case

h(xi,xj) computes the position and the orientation of xj

in the frame of xi.

Let C = {〈i, j〉} be the set of pairs of nodes for which a

measurement z exists. The goal of a maximum likelihood

approach is to find the configuration of nodes x∗ which

minimizes the overall error:

F (x) =
∑

〈i,j〉∈C

eTijΩijeij (2)

x∗ = argmin
x

F (x) (3)

where Ωij is the information matrix of measurement zij .

Thus, the SLAM problem is formulated as a nonlinear least

squares problem which can be solved by using standard op-

timization methods like the Gauss-Newton or the Levenberg-

Marquardt algorithms.

To solve this problem, modern optimization approaches

like g2o [1] or SAM [16] require a time that depends

on the number of edges, and their success in finding the

correct solution is affected by the initial guess available to

the system. In the single robot case, this initial guess is

Fig. 2: In this figure, we illustrate the use of condensed measure-
ments to share information between two robots. The graph of Robot
A is illustrated in red and the graph of Robot B is illustrated in blue.
Red edges show the measurements between nodes of the Robot A’s
graph and the Robot B’s graph. Instead of sending to Robot A all its
graph, Robot B sends a condensed version, consisting of a central
node (gauge, xg), and a set of condensed factors connecting the
gauge with each of the nodes (xi, i = 1...n) seen from Robot A.
Notice that xg can also be selected from the nodes already seen by
Robot A.

typically good, since the robot can rely on an estimate that

is constructed incrementally, and that at each point in time

contains all the information acquired so far. Conversely, in

the multi-robot case it might happen that when two robots

meet and want to share their map, the individual estimates

are affected by a large error. Furthermore, to carry out the

optimization by using one of these approaches, the two robot

would have to share their entire graph, which is potentially

large.

To lessen this problem, in this paper we use an alternative

approach based on condensed measurements [15]. When two

robots A and B meet, they share a reduced graph so that each

robot receives from the other only the information needed to

refine its own estimate. In this section, let us assume that

robot A knows which nodes of the other robot B’s graph he

observed. In order to optimize its own graph, by taking into

account the information from B, robot A should know how

these shared nodes are related in the space. This information

is clearly contained in the graph of B, but it is too large to

be sent over the network. Instead of sending the full graph,

B sends a “condensed” version that has substantially less

nodes, but that captures the information necessary to A to

perform this optimization. To this end, we regard the graph

of B as a local map. In Figure 2 we illustrate the process.

Once we have a minimal error configuration for the graph

of Robot B, we can compute the condensed factors. To this

end we need to select an arbitrary node xg in the graph.

We then need to compute a measurement between xg and

each other node xi which is seen by Robot A. This means

that we need to compute a “measurement” between xi and

xg , that incorporates the knowledge in the original graph of

Robot B that xg has about the position of xi. This is done

by projecting the marginal covariance of xi, with respect to

xg through the measurement function h(xg,xi) = xi ⊖ xg .

For more details we refer the reader to [15].

IV. MULTI-ROBOT SLAM USING CONDENSED

GRAPHS

In this section we will describe in detail our multi robot

SLAM system. Our approach operates on raw sensor mea-
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surements acquired by mobile robots equipped with a laser

scanner. Inter-robot communication is based on a wireless

ad-hoc network that dynamically adapts depending on the

mutual locations of the robots. Section IV-A presents the

details of our communication model.

Each robot executes a standard laser-based SLAM

pipeline: the state of the system is stored in a pose-graph

which is constantly optimized by the g2o optimizer. When

the robot moves for a certain distance, a new node is added to

the graph, and the odometry measurement is used to label the

edge between the new and the previous robot positions. The

laser scan acquired at the new position is matched against a

set of candidate scans stored in the nodes of the graph. The

candidate nodes are selected if the current robot position falls

in their uncertainty ellipses. This gives a set of candidate loop

closing edges between non temporally subsequent nodes, that

are inserted in the graph upon validation by a RANSAC

based procedure described in Section IV-C.

To extend this single-robot SLAM algorithm to the multi-

robot case, we need to augment the graph-construction

method described above to handle information coming from

other robots. The multi-robot front-end will be in charge of:

• robustly localizing other robots into the current robot’s

map, based on their raw sensor measurements.

• integrating the condensed measurements of the other

robots in the current graph. This is achieved simply by

including the set of condensed edges.

In the remainder of this section we describe in detail our

communication model and how we address the problems

outlined above, by taking into account the limitations of the

communication infrastructure.

A. Communication Model

We assume that no infrastructure is present. Thus the

communication between robots is point-to-point. Robots can

communicate only when they are within a certain distance,

and the communication graph changes dynamically based on

the current configuration of our multi-robot system.

This models conservatively the behaviour of wireless ad-

hoc networks. Wireless communication has a limited range

and bandwidth which will vary depending on the proto-

col (WiFi, Bluetooth, ...), the IEEE standard used (e.g.

802.11b/g/n...) and also the structure of the environment. Not

relying in infrastructure has substantial practical advantages.

The communication model proposed works in a robot-

independent way, where the messages are transmitted asyn-

chronously and contain the most up-to-date information

available. The probability that a message sent is correctly

delivered decreases with its size. To maximize the probability

that the messages are correctly delivered, in our algorithm

we kept the size of the single messages as small as possible,

possibly fitting within an Ethernet frame (1400 bytes). Each

robot periodically sends a ping and, based on the ping

messages received by the other robots, it determines its

neighbors. When two robots are within communication range

they send two kind of messages: to transmit their local maps

and to manage the graphs.

The local map is transmitted through a message containing

the following information:

• The last measurement (laser scan) acquired, and the

current id of the node containing the laser scan in the

graph.

• The up-to-date estimated locations of the last N nodes.

With this information each robot is able to reconstruct the

local maps of the team mates in range. Notice that a robot

sends only the most recent laser scan, which is the bulky

part of the message. To determine a local map consisting of

N scans we need to buffer the last N messages from each

sender, and render the scans according to the most recent list

of estimates of the nodes. The latter is transmitted each time

a new node is added to the graph. This allows to update the

local maps with minimal communication overhead, even if

the graph changes its configuration. The local maps of other

robots are used to localize them in the current robot’s map.

This is done by using a robust RANSAC-based outlier rejec-

tion scheme in combination with a correlative scan matching

algorithm, which is described in detail in Section IV-C.

To manage the graph, a robot sends the following types

of messages:

• A list of nodes of the other robot’s local map it has

matched against its own local map.

• A condensed graph extracted by its own graph and

containing the edges among the nodes that have been

matched by some other robot.

These messages are sent whenever a new node is added to

the graph, based on the number of mates in range.

B. Multi Robot SLAM

In this section, we illustrate how these messages are used

to implement our multi-robot SLAM approach. To simplify

the description, we refer to Figure 3 and without loss of

generality we assume having only two robots: A (red) and

B (blue).

Initially (see Figure 3a), each robot constructs its own map

with a single-robot SLAM algorithm. When a communica-

tion is available A starts receiving the current local map of

B, by storing its most recent readings. A matching procedure

is executed to align the two local maps, and results in a set

of candidate edges connecting the map of A and the map

of B (see Figure 3b). When reasonably confident about the

correctness of these edges, robot A sends to B this list (see

Figure 3c). B then computes a condensed graph containing

only the nodes of its map that appear in the candidate edges

found by A (see Figure 3d), and sends it to A. Finally A,

includes these measurements in its own graph to get a more

consistent map (see Figure 3e).

This algorithm can be implemented within a robot A in

a straightforward way by maintaining the following data

structures:

• the graph GA obtained by single-robot SLAM

• for each other robot B:

– the most recent local map MB consisting of the

last N nodes, that is used for cross-localization.
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Fig. 3: Illustration of our Multi-Robot SLAM algorithm in a two
robots scenario. Robot A is depicted in red and Robot B in blue.
Triangles represent the nodes of the graph. a) Each robot runs a
graph-based SLAM algorithm and constructs its own map. When
they are within a communication range, they share their current
local maps; b) A localizes B and determines a set of candidate
edges connecting the two maps; c) A informs to B which of its
nodes it has matched; d) B computes condensed measurements that
connect the nodes in its own map that appear in the edges found
by A; d) A includes these edges in its own graph.

– the list EB
A of candidate edges between the map of

A and the map of B that have been found by A.

– the list of EA
B edges received from B, that connect

the map of A and the map of B and that have been

found by B.

– the condensed graph GB
A sent by B.

Robot A updates the local maps of each other robot MB

and the list of edges EA
B whenever a new message is received.

Each time the single-robot SLAM algorithm running on A

adds a new node to the graph, the estimate of the last N

nodes and the last laser scan are sent to allow the other

robots to construct the local map of A. Subsequently, A runs

a map-alignment algorithm between its local map and each

MB , and updates the list of candidate edges by using the

procedure described in the next section.

Finally, by knowing EA
B Robot A computes which nodes

of its own map are relevant for Robot B, and sends the

corresponding condensed measurements. In computing the

condensed measurements Robot A considers only the portion

of the graph acquired with its own sensors, thus avoiding

multiple integration of information.

C. Robust Map Alignment

In this section, we describe our approach to robustly align

two local maps MA and MB onto each other. A local map

consists of a portion of the graph. We recall that each node

consists of a robot pose and a laser scan acquired at that

pose. Figure 4 illustrates the problem.

Our goal is to find a set of edges between the nodes of

the two local maps such that they are maximally consistent,

(a) Local map MA. (b) Local map MB .

(c) Alignment of the two local maps.

Fig. 4: Example of map alignment between two local maps after
finding a set of edges jointly consistent.

given the scans. To this end we match each scan sBi of

MB with each scan sAj of MA, by using a correlative scan

matcher. Note that each matching can result in zero or more

solutions. Each of these solutions is then converted in an

edge between sBi and sAj , and added to a pool of candidate

edges.

Given this pool of edges, we run a RANSAC based

procedure to determine which of them are inliers. The idea

is the following: to determine a translation between the two

local maps it is sufficient to translate them so that one

candidate edge ei is satisfied (its error is 0). Applying this

translation affects the error of all other candidate edges, and

their error will be small if they are consistent with ei, while it

will be large otherwise. Based on these errors we determine

inliers and the outliers and we decide whether to accept a

match or not. Figure 5 illustrates the procedure.

The bottleneck of this schema is the scan matching routine,

since the RANSAC requires typically very few iterations to

provide a consistent solution. Accordingly, we need to limit

the number of times we perform scan-matching. By consi-

dering that the local maps can be assumed to be consistent,

and that one of the two local maps is acquired incrementally

one scan at a time, we can implement the above procedure

in an efficient way. Each time we receive a new scan sBi , we

match it against the local map constructed by the union of

all sAj . The scan matcher results in a set of transformations

between sBi and the map MA. These transformations are

converted in edges between sBi and the closest node in MA,

after applying the transformation. The resulting edges are

inserted in a pool. The RANSAC validation is done at every

step, and the candidate edges that are marked as outliers for

a certain number of times are removed from the pool.

V. EXPERIMENTS

The multi-robot SLAM approach proposed in this pa-

per has been validated through simulations and real world

experiments. Our system is implemented in C++ as a ROS

package, and the simulations have been conducted with the

Stage simulator.
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Fig. 5: Top: In red, nodes belonging to a local map, in blue,
current estimation of the received nodes and in yellow, the same
nodes with respect to the candidate closure edges. Dashed red lines
represent the error in the estimation for each edge. Middle: Green,
position of the nodes after applying the transformation (blue dashed
line) that makes the error of the first node equal to zero. With this
configuration, the error in the second and fourth nodes is small (they
could be selected as inliers if the error is lower than a threshold)
whereas the error in the third node is large (outlier). Bottom:
Configuration of the nodes if the transformation to make the error
of the third node equal to zero is applied. Since it is a wrong
closure, the error in the rest of nodes is large, they are selected as
outliers and this configuration of nodes is rejected. Notice that this
procedure can be used whether the local maps are from different
robots or from the same robot trying to compute loop closing edges.

A. Real World

We conducted a real world experiment by using three

Pioneer 3-AT robots, equipped with SICK laser rangefinders.

The robots were simultaneously controlled by three persons

that steered them manually in the environment shown in

Figure 6. The robots communicated through an ad-hoc

network by sending UDP packets and each of them was

running the algorithm described in this paper. We previously

synchronized the clocks of all robots with NTP. To be

able to reproduce the experiment, we recorded a dataset

containing the own measurements each robot logged its own

measurements (odometry and laser), and the ping received

by other robots. This allow us to reproduce off-line the

connectivity of the communication network, and repeat the

experiment off-board.

The results of this experiment are shown in Figure 6. The

individual maps obtained by each robot together with the

condensed graphs received from other robots are depicted in

Figures 6a, 6b and 6c. During their navigation, each robot

was able to meet and localize some other robot into its

own map. The meeting points are depicted with squares in

the individual views. These intra-robot localizations make

that all maps become interconnected which allows us to

reconstruct the global map shown in Figure 6d. In addition to

the experiment described here, we executed additional tests

with Erratic robots equipped with an Hokuyo UTM laser

rangefinder with two robots. The result after merging the

individual maps is shown in Figure 7.

(a) Map robot 1 (b) Map robot 2 (c) Map robot 3

(d) Global map

Fig. 6: Experiment at the Ada Byron building of the University
of Zaragoza. a), b), c) show the individual maps obtained by each
robot, depicted in red, green and blue respectively. The condensed
graphs received from other robots are depicted in the colour of the
sender robot. d) shows the global map after all individual maps are
merged and jointly optimized.

Fig. 7: Experiment at the DIS building of La Sapienza University
of Rome. The misalignment observed in the bottom right corner
originates from the fact that the robots never meet in that region,
thus they are unable to determine constraints between that part of
their trajectories. This can be recovered when the two robots meet
in that region, or in a post-processing phase.

B. Simulation results

We quantitatively evaluated the performance of our system

through simulation experiments. In particular, we measure

how the proposed multi-robot system performs in terms

of optimization time, bytes transmitted by each robot and

accuracy with respect an ideal implementation in which the

robots share their whole graph instead of the condensed

version. Additionally, we want to analyze how these aspects

scale with the number of robots and therefore we tested our

approach with 2, 4 and 8 robots. The simulation environment

is shown in Figure 8a. We designed trajectories such that

each robot met at least once with another robot. As an

example, the trajectories and final map obtained in the 8

robots simulation are shown in Figure 8b.
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(a)

(b)

Fig. 8: a) Simulation environment. b) Trajectories and final map
in a 8 robots experiment.

Figure 9 shows the results for the optimization times and

communication overload obtained in the simulations. Clearly,

the more robots are used for mapping the less time is needed

to cover the entire environment and the smaller will be

the map of each robot. Figures 9a, 9b and 9c show the

optimization times for both approaches. It can be seen how,

in the condensed approach (green), the optimization times

increase linearly as the map grows. Receiving a condensed

graph implies adding a few edges to their graphs and this

does not affect substantially the computation. In the ideal

implementation (red), times grow also linearly with the

number of edges. However, this number has a substantial

increment when the robots meet and receive the whole graph

from the others. This happens, for example at time 350 in

the two robots simulation.

The communication overload is shown in Figures 9d, 9e

and 9f. As explained in section IV-A, two kind of messages

are sent, one containing the local map and another one to

send the condensed graph. Transmitting the local map has a

constant size if the number of nodes to send is fixed. In our

implementation, we transmit both the updated estimates and

ids of the last 5 nodes plus the last laser scan obtaining a

message of constant size of 1580 bytes. Since this value is

the same for both condensed and ideal approaches, this type

of message is not taken into account in the results. However,

as it can be seen in the figures, the size of the messages

to send the graph in the ideal approach differs substantially

from the messages in the condensed approach, where the size

of the messages stays below 1000 bytes in most of cases. The

size of the message that a robot has to send in the condensed

approach will grow with the number of nodes of its own map

another robot has matched.

By using the ground truth of the simulation, we compared

the accuracy of our multi-robot SLAM approach with the

ideal implementation. We created a ground-truth graph by

extracting a set of virtual edges between neighboring nodes,

by using the approach described in [17]. Table I shows

the overall mean Chi2 error per edge for each one of the

simulations. The number of edges of each individual map

varies with the simulation, and from one robot to another.

For this reason we use the mean error per edge as a measure

of accuracy for both approaches. As it can be seen in Table

I the mean errors are very similar and therefore, we can

conclude that the accuracy is not sacrificed when sharing the

condensed graphs instead of the whole version. This result

is confirmed by the visual inspection of the maps.

Accuracy
Condensed Graphs Ideal

2 robots 1.404 1.442
4 robots 1.572 1.548
8 robots 1.884 1.899

TABLE I: Comparison of the accuracy obtained by our condensed
measurement multi-robot SLAM approach and the ideal implemen-
tation. The numbers are the χ2 error of the edges in the ground-truth
graph, evaluated with nodes placed as reported by the algorithm.

C. Post Processing

The procedures described above are the core of our multi-

robot SLAM. Compared with a centralized approach that has

access to all information of all robots, our system leads to

a higher error in positions where the robots do not meet.

This arises from the fact that robots only share local maps

around their current position, thus they cannot relocalize.

This is visible in the right hand side of Figure 7. Solving

this problem would require transmitting substantial more

information, since the robots would have to share all the

measurements. Despite this limitation, our schema produces

solutions that are sufficient for the robots to navigate. In

a subsequent processing stage, a global accurate map can

be obtained by merging the solutions of all robots and

optimizing them including the condensed measurements.

This aligns the map in a global frame. This map can be

further improved by adding a set of constraints by matching

scans between neighboring nodes. Due to the good initial

guess obtained by the map alignment, this step is relatively

straightforward, leading to results illustrated in Figure 10.

VI. CONCLUSIONS

In this paper we proposed an approach for multi-robot

SLAM that specifically addresses the limitations in network

and computation affecting multi-robot systems. We have

shown that our method allows to obtain consistent estimates

by adding a relatively limited complexity to the traditional

single-robot SLAM methods. This results in an overall

increase of robustness and computational efficiency with

respect to naive MR-SLAM implementations.
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Fig. 9: Timings for the optimization of the graph and bytes transmitted by each robot. The results are shown in green for the condensed
graph approach and in red for the ideal implementation.

Fig. 10: Results of the three real world experiments performed
for this paper, using a straightforward centralized processing of the
joint estimates obtained by our MR-SLAM method.
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