
Control of nonholonomic wheeled mobile robots via i-PID controller

Yingchong Ma, Gang Zheng, Wilfrid Perruquetti and Zhaopeng Qiu

Abstract— An intelligent PID controller (i-PID controller)
is applied to control the nonholonomic mobile robot with
measurement disturbance. Because of the particularity of the
nonholonomic systems, this paper propose to use a switching
parameter α in the i-PID controller. We show in simulations
that the proposed method is able to control the nonholonomic
mobile robots with measurement disturbance, and it can also
stabilize the robot at a static point.

I. INTRODUCTION

The problem of wheeled mobile robot control has been

widely studied and attracted the interest of many researches

because of its wide application in industries and theoretical

challenges [1], [2]. Generally the robot control problem can

be divided into two main problems: the trajectory tracking

problem and stabilization problem. The control problem of

trajectory tracking can also be categorized into two types:

linear control and nonlinear control. [3] proposed a linear

controller which is robust to the perturbation in robot velocity

control. Separated feedback loops control for robot position

and velocity was used in [4]. The kinematic model of the

robot was linearized in [5], and in which a proportional linear

control was applied. The famous PID controller was applied

in [6], in which a simple linearized mobile robot model is

used.

The linear control indeed has great advantages because

of its simplicity in linear control theory, while however

when comparing with nonlinear control its robustness are

very limited. In linear control the initial states are often

required to stay close to the reference to ensure the stability,

instead nonlinear control is able to guarantee the stability

without this kind of problems. Moveover, it is known that the

feedback stabilization at a given posture cannot be obtained

by smooth time-invariant control [7], this implies that the

problem is truly nonlinear, and linear control is ineffective

here. For nonlinear nonholonomic robot systems, there are

usually open loop controls where the inputs are calculated

from the reference trajectory [8], flatness based control

[9] is a kind of open-loop control, whose robustness can

be strengthened [10], which is widely applied in optimal

control problems. However, it is well known that the open-

loop control is not robust to modeling errors so that it

cannot guarantee the mobile robot to move along the desired

trajectory. Nonlinear feedback control for mobile robots is
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used in [11] to solve the trajectory tracking problem, and

the dynamic feedback linearization is also used in [12].

[13] proposed a nonlinear control law based on partial state

feedback linearization and Lyapunov’s direct method, but

the disturbance and uncertainty were not considered in the

control design.

Recently, an intelligent PID controller (i-PID controller)

introduced in [14] exhibits the robustness to the unmodeled

dynamics and disturbance in the system [15], and it has been

widely studied and applied to many electrical and mechanical

processes [16], [17]. This paper aims at applying the so-

called i-PID controller to the nonholonomic robots in order

to control the robot with measurement disturbance. However,

due to the particularity of the nonholonomic system, this

controller can not be simply applied, for this a switching

parameter is selected and a robust controller is proposed to

control the robot with measurement disturbance.

The paper is structured as follows. Section II presents the

problem statement. Section III explains the determination of

the controller. Simulation results are detailed in Section IV.

II. PROBLEM STATEMENT

This paper considers the unicycle-type mobile robot whose

kinematic model under the nonholonomic constraint of pure

rolling and no slipping can be described as follows:

{

ẋ = ν cos θ
ẏ = ν sin θ

θ̇ = ω
(1)

where ν and ω are linear and angular velocity respectively, x
and y represent the location of the robot, θ is the orientation

of the robot with respect to x-axis(see Fig. 1).
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Fig. 1. Unicycle-type mobile robot

It can be shown that x and y are flat outputs for the studied

system [9]. Indeed, θ, υ and ω can all be expressed by x, y
and their first and second-order derivatives as follows:







θ = arctan ẏ
ẋ

υ =
√

ẋ2 + ẏ2

ω = ÿẋ−ẍẏ
ẋ2+ẏ2

(2)
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Suppose that we can only measure the position (x, y) of

the robot, which implies that the relative degree of those

measurements is equal to 1, since the first part of system (1)

is of the following form:
[

ẋ
ẏ

]

=

[

cos θ 0
sin θ 0

] [

v
ω

]

It is clearly that the second control input ω is not involved

in the above equation, since the decoupling matrix is singular.

Due to this fact, one classic solution is to add an integrator

to the first input in order to overcome the singularity of the

decoupling matrix [18]. For this, let us consider the following

extended system:










ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
v̇ = ξ

with u = [ξ, ω] being the new input. One can check that,

with the extended system, the relative degree for both output

is equal to 2. Then one obtains:
[

ẍ
ÿ

]

= G(x, y, ẋ, ẏ)u (3)

where

G =

[

cos θ −ν sin θ
sin θ ν cos θ

]

=

[

cos(arctan ẏ

ẋ
) −

√

ẋ2 + ẏ2 sin(arctan ẏ

ẋ
)

sin(arctan ẏ

ẋ
)

√

ẋ2 + ẏ2 cos(arctan ẏ

ẋ
)

] (4)

which is invertible if v =
√

ẋ2 + ẏ2 6= 0 .

If there is no disturbance in the measurement, a classic

PID controller, which needs the exact value of G−1, can be

used to achieve non-vanishing Cartesian trajectories tracking

(the linear velocity of the robot is assumed to be always non-

zero), since G is singular when v = 0. It has been shown

([19]) that this method cannot be used to stabilize the robot

to a static point due to the same reason.

In addition, noises and disturbance are inevitable in real

situations, thus the exact computation of G−1 in (4) cannot

be obtained. Consider the output under disturbance as Y =
[x, y]T + D, where D = [d1, d2]

T is the disturbance in the

measurement, Thus the estimated values of θ, v and ω are

disturbed:
{

θd = arctan ẏ+ḋ2

ẋ+ḋ1

υd =
√

(ẋ + ḋ1)2 + (ẏ + ḋ2)2
(5)

thus we have
Ÿ = G(Y, Ẏ )u + D̈ (6)

with

G(Y, Ẏ ) =

[

cos(θd) −υd sin(θd)
sin(θd) υd cos(θd)

]

(7)

where θd and υd are defined in (5).

It is clear that the system (6) can not be controlled with

the classical PID controller, since G(Y, Ẏ ) defined in (7) can

not be accurately estimated due to the unknown disturbance.

Moreover, G(Y, Ẏ ) becomes singular when υd = 0. In order

to overcome the two drawbacks when applying the simple

PID controller, this paper uses the recently proposed i-PID

controller to control the robot with measurement disturbance.

III. DETERMINATION OF THE CONTROLLER

Since the controller proposed in this paper is based on

the i-PID controller, let us firstly present the basic idea of

this controller, and then detail how to apply this controller

into the control of the unicycle model with measurement

disturbance.

A. i-PID controller

Generally speaking, the method of i-PID controller locally

approximates the system model by a simple local model with

unknown term, and the unknown term can be estimated by

the measurements of the input and output of the system,

then a so-called i-PID controller can be deduced to realize

the control goal.

In this paper the system model (6) is approximated by

the following local model over a small time interval T =
[tk, tk+1] with k ∈ Z+:

Ÿ (t) = F (t) + α(Y, Ẏ )u(t) (8)

where u and Y are known input and output signals with

disturbance, α(Y, Ẏ ) is a non singular 2 × 2 dimensional

matrix which should be well chosen in order to achieve

the control goal. F ∈ R
2 represents all unknown terms

including the disturbances, which can be estimated by using

the information of Y , u and α.

For the above locally approximated continuous model

over time interval T , one can estimate F by discretizing it.

Precisely, denote Ts the sampling period, so at each sampling

time k = t/Ts, one has

Ÿk = Fk + α(Y, Ẏ )uk

then it yields Fk = Ÿk − α(Y, Ẏ )uk, where Yk and uk

are measurable signals at time k, and Ÿk is the 2nd order

differentiation of the output Y at sampling time k. If it is

assumed that Ts is small enough such that Fk−1 → Fk, then

the so-called i-PID controller can be designed as follows:

uk = α
−1(Y, Ẏ )(−Fk−1 + ek) (9)

where ek = Ÿref,k − K2(Ẏk − Ẏref,k) − K1(Yk − Yref,k)
with Yref being the references of the output to be tracked,

and K1 and K2 being the freely chosen coefficients such

that the polynomial s2 + K2s + K1 is Hurwitz.

As one can see in the controller (9), there are two

parameters to be determined, α(Y, Ẏ ) and Fk, which will

be discussed in the following.

B. Discussion on α(Y, Ẏ )

The determination of α(Y, Ẏ ) is the most important issue

when applying such a controller. A good parameter α(Y, Ẏ )
should well approximate G(Y, Ẏ ) defined in (7), and be

always invertible, and change as fewer times as possible as

time goes on, and it is best that α(Y, Ẏ ) is time-invariant.
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In [20] and [21], similar controllers are presented, which

use an unknown term to represent unknown parameters and

disturbance in the system. However, in [20] the similar

G(Y, Ẏ ) in the system is a time-invariant scalar. In [21] the

determination of α(Y, Ẏ ) is discussed, but the similar param-

eter G(Y, Ẏ ) in the system is assumed to be always invertible

and time-invariant. Thus in their controller, α(Y, Ẏ ) can be

set as a fixed number or a fixed invertible matrix.

We aim to find out an invertible time-invariant α to well

approximate G(Y, Ẏ ) in the controller. However, let us take

a look at G(Y, Ẏ ) in our system (6). Firstly it is a matrix

whose entries vary as time goes on, and the sign of all entries

in G(Y, Ẏ ) is changing, which makes it impossible to use a

time-invariant α to approximate G(Y, Ẏ ).

In order to approximate G(Y, Ẏ ) with α(Y, Ẏ ), α(Y, Ẏ )
needs to vary with G(Y, Ẏ ). One can of course set that

α(Y, Ẏ ) =

[

cos θ̂ −v̂ sin θ̂

sin θ̂ v̂ cos θ̂

]

where θ̂ = arctan
˙̂y
˙̂x

is the estimation of θ with noises, ˙̂x

and ˙̂y are the estimation of ẋ and ẏ with noises, and v̂ is the

estimation of v defined in (2). In this way, this method is in

fact equivalent to the controller linked to exact linearization

by feedback with the estimate of θ and v. However, one

can notice that α(Y, Ẏ ) will be singular when v̂ = 0. In

order to make α(Y, Ẏ ) being invertible and well approximate

G(Y, Ẏ ), another intuitive choice is to remove v̂ in the above

matrix and one obtains:

α(Y, Ẏ ) =

[

cos θ̂ − sin θ̂

sin θ̂ cos θ̂

]

The above selected α(Y, Ẏ ) is suitable for the controller,

since it is always invertible and it can be well approximate

G(Y, Ẏ ). However, since this choice of θ̂ is always time-

varying when robot moves, which will increase the compu-

tation of the controller. In order to make the selected α(Y, Ẏ )
changing as fewer times as possible when robot moves, this

paper proposes to choose it as follows:

α(Y, Ẏ ) =

[

sig(cos θ̂) −sig(sin θ̂)

sig(sin θ̂) sig(cos θ̂)

]

where sig(σ) is the sign function which extracts the sign of

the real number σ, and it is assumed that sig(0) = 1. For

this proposed α(Y, Ẏ ), let us define the following switching

signal i(θ̂) : R → I with I = {1, 2, 3, 4}:

i(θ̂) =



















1 if θ̂ ∈ (2kπ, 2kπ + π
2
)

2 if θ̂ ∈ (2kπ + π
2
, 2kπ + π)

3 if θ̂ ∈ (2kπ + π, 2kπ + 3π
2

)

4 if θ̂ ∈ (2kπ + 3π
2

, 2(k + 1)π)

(10)

where k ∈ Z. The corresponding constant matrices can then

be defined as follows:

α1 =

[

1 −1
1 1

]

α2 =

[

−1 −1
1 −1

]

α3 =

[

−1 1
−1 −1

]

α4 =

[

1 1
−1 1

]

Therefore, the proposed matrix α
i(θ̂) satisfies:

α(Y, Ẏ ) = α
i(θ̂),∀θ̂ ∈ R

Summarily, the selected α
i(θ̂) has several advantages.

Firstly it has only 4 values when θ̂ changes in [2kπ, 2(k +
1)π], which is able to make α(Y, Ẏ ) changed as fewer times

as possible. Secondly it is always invertible, so that the

controller can stabilize the robot at a static point with the

robot velocity equals to zero.

C. Numerical differentiation

It can be seen that the choice of α(Y, Ẏ ) involves the

estimation values θ̂, ˙̂x and ˙̂y, then the efficient estimation

of these values becomes significant. This paper uses the

algebraic technique proposed by Fliess et al in [22] for the

estimation. Mathematical foundation of this approach can be

referred to [23], [24] and the references therein.

Generally speaking, this algebraic approach has several

advantages: it provides explicit formulae, which can be

directly implemented; it is of non-asymptotic nature, the

desired estimation can be obtained instantaneously, which is

a significant advantage for real-time applications; it does not

require any assumption concerning the statistical distribution

of the unstructured noise.

Consider a signal h(t) =
∞
∑

k=0

h(k)(0) tk

k! which is assumed

to be analytic around t = 0 and its truncated Taylor

expansion hN (t) =
N
∑

k=0

h(k)(0) tk

k! , where t > 0. Its Laplace

transform is of the form:

HN (s) =

N
∑

k=0

h(k)(0)

sk+1
(11)

Introducing the algebraic derivation d
ds

, and multiply both

sides of equation (11) by dρ

dsρ sN , ρ = 0, 1, ..., N , one has a

triangular system of linear equations and from which the

derivatives can be obtained:

dρsNHN

dsρ
=

dρ

dsρ
(

N
∑

k=0

h
(k)(0)sN−k−1) (12)

which is independent of all the unknown initial conditions,

and the coefficients h(0), ..., h(k)(0) are linearly identifiable

[25], then the h(k)(0) can be obtained by taking the inverse

laplace transform of (12) over a time window T .

In practice, the above algebraic technique is implemented

with discrete measured data, thus it is necessary that the

sampling time Ts should be small enough [24],[26].

It is worthy noting that this algebraic technique is robust

with respect to noise involved into the controls and outputs,

since noises are viewed here as quick fluctuations around 0.

They are therefore attenuated by low-pass filters, like iterated

integrals with respect to time.

D. Algebraic estimation of F

Now there is only one parameter F left in the i-PID

controller to be determined. The calculation of F also uses

the algebraic technique described above.
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Let us consider the local approximated model:

Ÿ = F + αu (13)

where F can be considered as constant between two sam-

pling time. Then by taking the Laplace transformation of

both sides of equation (13), one obtains

s
2Y(s) − sY(0) − Y ′(0) =

F

s
+ αU(s) (14)

In order to eliminate the unknown terms Y(0) and Y ′(0)
which are linked to unknown initial conditions, we take the

2nd order derivative of both sides with respect to s:

s
2Y ′′(s) + 4sY ′(s) + 2Y(s) =

2F

s3
+ αU

′′(s) (15)

By dividing both sides of equation (15) with s3, one has:

Y ′′(s)

s
+

4Y(s)′

s2
+

2Y(s)

s3
=

2F

s6
+

αU ′′(s)

s3
(16)

Take the inverse Laplace transformation of both sides of

equation (16), one obtains:
∫ T

0
(−τ)2Y dτ +

∫ T

0
4(T − τ)(−τ)Y dτ +

∫ T

0
(T − τ)2Y dτ

=
2FT 5

5!
+ α

∫ T

0

(T − τ)2

2!
(−τ)2udτ

(17)

where [0, T ] is a short time window, and the window is

sliding in order to get the estimate at each time instant.

Let τ = δT ∈ [0, T ], where δ ∈ [0, 1], after simplification

equation (17) becomes:

T
3

∫ 1

0

(6δ
2−6δ+1)Y dδ =

FT 5

60
+

T 5α

2

∫ 1

0

(1−δ)2δ2
udδ (18)

Hence, at sampling step k, the numerical estimate value

of Fk can be expressed as:

Fk =
60

T 2

∫ 1

0

(6δ
2 − 6δ + 1)Y dδ − 30α

∫ 1

0

(1 − δ)2δ2
udδ (19)

IV. SIMULATION RESULTS

In the simulation, the parameters are set: K2 = 20, K1 =
100, time window T = 3s, sampling time Ts = 0.01. The

reference trajectory is set as:
{

xr = sin 2t
yr = sin t

2

Fig. 4 to Fig. 8 show the simulation result of the designed

control applied on the nonholonomic wheeled mobile robot

with white Gaussian noise of SNR = 30dB (signal-to-noise

ratio) in the measurement (noises are shown in Fig. 2 and

Fig. 3). Fig. 4 and Fig. 5 show the tracking result, i(θ̂) is

shown in Fig. 6, and the control inputs are shown in Fig.

7 and Fig. 8. As we can see that the robot is able to track

the trajectory with measurement noises, and the controller

designed is effective and robust to the noises.

Fig. 9 to Fig. 13 illustrate the simulation of stabilize the

robot at point (4, 1), a white Gaussian noise of SNR =
30dB is added to the measurement as well. Tracking result

is shown in Fig. 9 and Fig. 10, control inputs are shown in

Fig. 12 and Fig. 13. As we can see that the controller is able
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Fig. 2. Noise imposed in X SNR = 30dB
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Fig. 3. Noise imposed in Y SNR = 30dB
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Fig. 4. Tracking of position X with white Gaussian noise SNR = 30dB
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Fig. 5. Tracking of position Y with white Gaussian noise SNR = 30dB
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Fig. 7. Linear velocity control with white Gaussian noise SNR = 30dB

to stabilize the robot at a static point with the velocity equals

to 0.

Two more real-time 3D simulations are made in the

attached video by using ROS (Robot Operating System),

one is reference tracking simulation and the other is the

stabilization of the robot at a static point with the robot

velocity equals to zero. Besides, a real implementation is

going on.
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Fig. 8. Angular velocity control with white Gaussian noise SNR = 30dB
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Fig. 9. Tracking of Position X of stabilization
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Fig. 10. Tracking of Position Y of stabilization
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Fig. 11. i(θ̂) of tabilization
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Fig. 12. Linear velocity control of stabilization
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Fig. 13. Angular velocity control of stabilization

V. CONCLUSION

This paper presents the i-PID controller applied to the

nonholonomic wheeled mobile robot. After the study of the

system, the parameter α in the controller is selected as

a switching function according to the information of the

system. The presented i-PID controller is robust to the mea-

surement disturbance of the robot, and it can even stabilize

the robot at a static point with the robot velocity equals to

zero with the proposed parameter α. The effectiveness and

robustness of the designed controller were shown thereafter

via several different simulations.
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