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Abstract— One of the biggest challenges in intelligent robotics
is to build robots that can understand and use language. Such
robots will be a part of our everyday life; at the same time,
they can be of great help to investigate the complex mechanism
of language acquisition by infants in constructive approach.
To this end, we think that the practical long-term on-line
concept/word learning algorithm for robots and the interactive
learning framework are the key issues to be addressed. In this
paper we develop a practical on-line learning algorithm that
solves three remaining problems in our previous study. We
also propose an interactive learning framework, in which the
proposed on-line learning algorithm is embedded. The main
contribution of this paper is to develop such a practical learning
framework, and we test it on a real robot platform to show its
potential toward the ultimate goal.

I. INTRODUCTION

Conceptual development and language acquisition have

been widely studied in the area of cognitive and developmen-

tal physiology [1]. Concepts can be thought of categories that

are clustered according to perceptual similarities. Humans

acquire concepts through the clustering process of everyday

experiences. Words are labels that represent corresponding

concepts. The meanings of words are grounded in acquired

categories and the words affect the perceptual clustering

process at the same time. The learning process leads to

not only a problem of unsupervised clustering but also a

process of interaction between the teacher and learner. In

fact, infants acquire concepts and language, which enable

them to understand things and to communicate with others,

through the interaction between them and caregivers. It is

obvious that the interaction with others is very important for

infants in cognitive development [2], and it is impossible for

them to acquire language without basic interaction abilities

such as joint attention. This fact clearly indicates that the

categorization as an unsupervised clustering scheme and the

basic interaction skills are required for truly intelligent robots

that can learn language over the long term.

With regard to the clustering problem, we have devel-

oped a multimodal categorization method called multimodal

Latent Dirichlet Allocation ¢MLDA£ [3], [4], which is

an application of the statistical learning method in natural

language processing to intelligent robotics. The MLDA has
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proven to be able to categorize multimodal information,

i.e. audio, visual and tactile signals, in an unsupervised

manner and to infer unobserved information and suitable

words. In [5] the authors have extended the MLDA to an

on-line version called PFoMLDA (Particle Filter on-line

MLDA), that can solve the problems regarding the batch-

type MLDA. Moreover, in [6], we have proposed the use

of Nested Pitman-Yor Language Model¢NPYLM£ [7] for

generating the lexicon in an unsupervised manner. Theoret-

ically speaking, the PFoMLDA with the NPYLM makes it

possible for the robot to gradually learn concepts and word

meanings; the only requirement for the robot is to have the

phonetic knowledge, i.e. acoustic models, for converting an

input speech waveform into a sequence of phonemes.

In spite of these efforts, we still have some difficulties

on the long-term learning by robots in practice. Indeed, our

informal experiment gave disappointed results, which means

the robot could not categorize perceptual information enough

(around 40% accuracy). It turned out that there were mainly

three problems in the on-line learning algorithm: 1) errors

in the phoneme recognition, 2) high occurrence frequencies

of functional words, and 3) batch learning of the NPYLM.

In [6], we examined the impact of phoneme recognition

errors on the concept learning and found that the on-line

learning algorithm has tolerance to about 20% recognition

error rate. However, over 20% phoneme recognition error

rate drastically decreases the learning performance and this

situation may easily occur in practical learning scenarios.

Therefore, this paper tackles this problem in order to improve

the performance of the learning algorithm. The high occur-

rence frequency of functional words is another problem to

be solved, otherwise the robot always infers such functional

words, e.g. “this”, “it”, “is” and so on, whatever the robot

sees. The third problem concerns not its performance but

the computational cost of the learning algorithm. In [6], the

batch-type NPYLM is executed every time a new utterance

is input to the system, which is an inefficient process. This

paper takes a simple idea to extend the NPYLM to a pseudo

on-line version, which makes the learning algorithm really

efficient. One of the main issues of this paper is to solve the

above problems and construct a practical on-line learning

algorithm, that enables robots to learn concepts and words

for long period of time.

The latter half of this paper is devoted to the interactive

learning framework of the learning process. As we mentioned

earlier, the interaction between the learner and teacher is

a very important factor for the word learning. In order to

study the relationship between language development and the
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environment, Roy and his colleagues launched the Human

Speechome Project [8]. They revealed that the caregivers

change the form of their utterances in order to accom-

modate the linguistic knowledge of the child [8]. On the

other hand, in [9], authors have proposed socially-guided

learning. They analyzed human teacher’s behavior, and found

that their behavior affected the learning performance of a

robot, and vice versa, in the context of affordance learn-

ing. These intriguing findings motivate us to pursue the

dynamics of communication between human teachers and the

concepts/words learning robot. To this end, we develop an

interactive learning framework considering the basic skills

of children. The proposed interactive learning framework,

which integrates the foregoing on-line learning algorithm and

interaction modules, is implemented on a real robot platform

in this paper. We conduct some interactive on-line learning

experiments using a few hundred objects in order to examine

the possibility of lifelong learning by robots.

The ultimate goal of this study is to realize real robot

intelligence and take constructive approach to elucidate the

linguistic development of children. The contribution of this

paper is to construct the robot system and to test its perfor-

mance toward the lifelong learning.

Language acquisition by robots has been proposed in

[10], [11]. In these pioneer works, they shed light on the

computational model of language acquisition and showed

that robots potentially be able to acquire language; however,

they did not discuss long-term on-line learning. Moreover,

inference among modalities have not been taken into con-

sideration in these studies. Of course, lifelong learning by

robots is drawing attention recently, e.g. [16], rather than a

new idea here; there is few attempt to make robots learn

concepts/words for long-term to the best of our knowledge.

Concerning categorization, image-based [12], [13],

auditory-based [14], and haptic-based [15] categorizations

have proposed in the literature, while this paper addresses

multimodal categorization. We think that “multimodality” is

one of the most important features since inference among

multimodal information including words is the base of true

understanding.

II. CONCEPTS AND WORDS LEARNING

A. Overview of the system and perceptual information

Figure 1 depicts an overview of the on-line learning sys-

tem. The learning problem here is to estimate the parameters

of the graphical model in the figure. The robot tries to find

good parameters using perceptual information obtained by

the robot itself and linguistic information given by human

teachers. The robot platform used in this paper is shown

in Fig. 2 (a). The robot consists of a 6-DOF robot arm

as the base, Barrette hand, a CCD camera with kinect, a

microphone, and a tactile sensor array. As shown in Fig. 2

(b), the robot autonomously acquires images of the target

object form different viewpoints. A microphone mounted on

the hand is used to capture the sound produced when the

robot shakes the object (Fig. 2 (c)). The tactile array sensor

is responsible for acquiring haptic information during the
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Fig. 1. Overview of the on-line learning system
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Fig. 2. Robot platform used in this study: (a) robot platform, acquisition
of (b) visual information, (c) auditory information, (d) tactile information,
and (e) examples of the tactile signals

grasping action (Fig. 2 (d)). When the robot pays attention

to a certain object, a human teacher can describe the object

including its name to the robot. The robot is supposed to have

acoustic models (phoneme models) so that the input speech

is transformed into a phoneme sequence. Since the robot

has no lexicon, the NPYLM, which will be described later,

is utilized to segment each phoneme sequence into words

autonomously.

The basic idea behind the signal representation is to

use the Bag of Features (BoF) model, since the BoF is

successfully applied to many category recognition tasks. For

visual information, 128-dimensional DSIFT (Dense Scale

Invariant Feature Transform) descriptors are extracted from

each image, followed by the vector quantization with a 500-

dimensional code book. The MFCC (Mel Frequency Cepstral

Coefficients) is used to represent the auditory signals. The

MFCC vectors are vector quantized using a 50-dimensional

predefined code book. The tactile information is also vector

quantized resulting in a 15-dimensional histogram [5], [6].

The human utterances are segmented into words and repre-

sented by the Bag of Words (BoW).

B. Online multimodal categorization

The object concepts are represented by the MLDA as

illustrated in Fig. 1. In the figure, wv , wa, wh, and ww

represent visual, auditory, haptic, and word information and

are assumed to be drawn from each multinomial distribution

parameterized by βv , βa, βh, and βw, respectively. πv ,

πa, πh, and πw denote hyper parameters of Dirichlet prior

distributions for β∗. z represents the category and is assumed
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Algorithm 1 PFoMLDA (for a single object)

1: Initialize λ and α
2: for all m,wm, k do
3: Nmwmk ← (1− λ)Nmwmk

4: end for
5: The following process is repeated until convergence
6: for all m, i (of new input data) do
7: for k ← 1 to K do

8: P [k]← P [k − 1] + (N−mi

k
+ α)

N
−mi

mwmk
+π

m

N
−mi

mk
+Wmπm

9: end for
10: u← random value [0, 1]
11: for k ← 1 to K do
12: if u < P [k]/P [K] then
13: zmi = k, break
14: end if
15: end for
16: end for
17: Select the model based on P (ww|wv

obs,w
a

obs,w
h

obs)

to be drawn from a multinomial distribution parameterized

by θ, which depends on the Dirichlet prior distribution

parameterized by α. The MLDA enables the robot not only

to recognize categories of unseen objects but also to infer

unobserved properties of the object and words that are

suitable for describing it. Inversely, understanding of the

word meanings is also possible through inference using the

MLDA model. We believe that this mechanism forms a base

of true understanding of things and words by robots.

Originally the batch Gibbs sampling is used for the

training of the MLDA. The batch algorithm relies on the

assumption that the system keeps all multimodal data. Hence,

a large amount of memory can be consumed as the number of

teaching objects increases. Furthermore, this may take a long

time and be impractical, especially in an interactive learning

scenario where a human teacher is involved.

To solve this problem, the authors have proposed an on-

line MLDA that sequentially updates parameters using new

input data [5]. After the update of parameters, the input

multimodal data can be discarded in the on-line MLDA.

Basic idea behind the on-line MLDA is to use the forgetting

factor λ (0 < λ < 1) for updating the model with current

parameters as initial values. In [6], we further improved the

on-line MLDA using the particle filter called PFoMLDA

(Particle Filter on-line MLDA). The PFoMLDA selects the

forgetting factor λ and hyper parameters autonomously using

the particle filter that keeps tracking good models based on

the word prediction accuracy. The outline of the algorithm

is given in Algorithm 1, where Nmwmk, Nmk, Nk, and Wm

are, respectively, the frequency of assigning wm to a category

k for a modality m of the object, the frequency of assigning

a modality m of the object to a category k, the number of

times of assigning all modalities of the object to a category

k, and the dimensionality of the modality m. The superscript

with the minus sign denotes exception of the data. For more

details, please refer to [6].

C. Pseudo on-line NPYLM and integration with PFoMLDA

We assume that the robot has no lexicon in advance. An

Algorithm 2 Pseudo on-line NPYLM (for a single input)

1: a new phoneme sequence s is input:
2: w(s) ∼ p(w|s,Θ)
3: Add s to S

4: Add w(s) to Θ
5: if |S| > L then
6: Remove the oldest sentence from S

7: end if
8: Blocked Gibbs sampler:
9: for j ← 1 to J do

10: for all s in S do
11: Remove w(s) from Θ
12: w(s) ∼ p(w|s,Θ)
13: Add w(s) to Θ
14: end for
15: end for
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Fig. 3. Comparison of word segmentation performance

unsupervised word segmentation method called NPYLM [7]

is utilized to segment input phoneme sequences into words.

This enables the robot to acquire lexicon autonomously from

scratch [6]. However the problem arises regarding the batch-

type learning algorithm. As we described earlier, the batch-

type algorithm has some drawbacks. The most important

problem here is the computation time. In fact, the batch-type

algorithm took about one hour to segment 1000 utterances

in our experiment, which means that the robot cannot use

taught words for a long while. Therefore it is not a good

idea to use the original NPYLM in our interactive learning

scenario.

Here, we propose an on-line NPYLM (oNPYLM), which

is a pseudo on-line version of the NPYLM. The idea is

simple that the algorithm keeps L latest utterances and the

same blocked Gibbs sampler is applied to those data with

the previously converged results as the initial values. The

outline of the algorithm is shown in Algorithm 2, where s,

S, w(s), Θ, J , and L represent, respectively, a new input

utterance, a set of held utterances, the word segmentation

of s, the parameters of the model, the number of iterations,

and the number of utterances to be held. In our algorithm,

J = 10 and L = 100 are used.

Figure 3 shows comparison of the segmentation perfor-

mance between the batch-type NPYLM and the proposed

oNPYLM. The solid line represents performance of the

oNPYLM, while the dotted and broken lines describe per-

formances of the NPYLM with J = 1000 and J = 10000,

respectively. The oNPYLM gave the same accuracy with the

NPYLM (J = 1000). This result is reasonable since the

total number of sampling per each utterance is the same.

Although the NPYLM (J = 10000) gave the best result
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among others, the performance of the oNPYLM can be

comparable if J = 100 is used. J = 10 is chosen in our

algorithm because it consumes about 1 second to segment

100 phoneme sequences.

The integration of PFoMLDA and oNPYLM is straight-

forward; however, it should be noted that the size of the

lexicon increases as the learning progresses. To deal with

this, size of the BoW is set to as large as possible and

an unoccupied index is assigned to a new word when it is

added to the lexicon by the oNPYLM. Finally, the robot can

use the histogram of words (BoW) as a part of multimodal

information to do categorization.

D. Inference of unobservable information

The category of an unseen object can be inferred using the

learned model. For a given model and observations regarding

the novel object wm
obs, the most probable category ẑ can be

determined as z that maximizes P (z|wm
obs):

ẑ = argmax
z

∫
p(z|θ)p(θ|wm

obs)dθ, m ∈ {v, a, h}. (1)

To recollect suitable words w
w for the unseen object,

P (ww|wm
obs) is computed for given w

m
obs as

p(ww|wm
obs) =

∫ ∑
z

p(ww|z)p(z|θ)p(θ|wm
obs)dθ. (2)

It should be noted that p(z|θ) and p(θ|wm
obs) in Eqs. (1) and

(2) can be updated by recalculating θ for fixed βm using

Gibbs sampling.

The problem to be solved here is that the naive imple-

mentation of Eq. (2) yields many functional words, such as

“this”, “is”, “the”, and so forth. This is because the functional

words are included almost all of utterances. To overcome

this problem we introduce the TF-IDF (Termed Frequency

- Inverse Document Frequency) weighting scheme. Termed

frequency TFwwk and inverse document frequency IDFwwk

for a category k and a word ww is calculated as

TFwwk =
Nwwk∑
ww Nwwk

, (3)

IDFwwk = log
K

|{k : k ∋ ww}|
, (4)

where Nwwk, K, and {k : k ∋ ww}, respectively, represent

the occurrence frequency of ww in the category k, the

number of all categories, and the number of categories

containing the word ww. The TF-IDF weight is the product

of TFwwk × IDFwwk that becomes lowest when the word

occurs in virtually all categories. We use this TF-IDF weight

for weighting the probability p(ww|wm
obs) in Eq. (2) in

order to predict category specific suitable words with higher

probabilities.

E. Handling of phoneme recognition errors

As described in [6], phoneme recognition errors seriously

affect the categorization result especially when the error rate

reaches over 20%. To overcome this problem we use the edit

distance instead of binary decision for the matching process
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Fig. 4. Model of phoneme recognition errors

Algorithm 3 Histogram construction using edit distance

1: User’s utterances s are segmented into words w

2: Initialize histogram h
3: for all w̄ in w do
4: if not w̄ in the lexicon then
5: Add w̄ to the lexicon
6: end if
7: for all w in the lexicon do
8: d = EditDistance(w̄, w)
9: l = max(len(w̄), len(w))

10: weight = l−d

l

11: if weight > D then
12: h[w]+ = weight
13: end if
14: end for
15: end for

between two phoneme sequences. The idea is illustrated in

Fig. 4. This figure depicts that the words located within a

small amount of edit distance are generated from a common

(true) phoneme sequence, and these words form a cluster.

The edit distance between two different clusters is larger than

the within class edit distance. The actual voting process to

generate BoW is as follows; when a new phoneme sequence

is obtained, then every word within a certain distance are

voted according to the edit distance as

voting weight =
(word length− edit distance)

(word length)
. (5)

Algorithm 3 shows the details of the voting algorithm. In

the proposed learning algorithm, all BoWs are generated

in this way. When the robot infer suitable words for the

current input data, the same idea is applicable. This idea

is an empirical handling of phoneme errors and there is

no theoretical validity. However, this solution is plausibly

reasonable and works good in our particular case as shown

in the later experiments.

III. INTERACTIVE LEARNING FRAMEWORK

As we mentioned earlier, the interactive learning frame-

work is necessary for the word learning robots. This section

proposes an interactive learning framework based on the

PFoMLDA with the oNPYLM proposed in the previous

section.

A. Overall architecture of the interactive learning

The overall architecture of the proposed learning frame-

work is illustrated in Fig. 5, which consists of the on-
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Fig. 5. Proposed architecture of interactive on-line learning framework
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Fig. 6. Block diagram of learning action

line learning algorithm, multimodal information acquisition,

and interactions with human teachers. The multithreading is

involved in the proposed architecture. The left part of Fig.

5 denotes “main action thread”, which manages actions of

the robot. In this main thread the robot looks for a human

partner at first. If the robot finds a person, then the internal

state transits to the interaction part (Fig. 5 (b)). When the

robot does not find any person, the robot starts finding a

novel object. At this time the current model, that the robot

has, is used for inferring the category of the object. This

process corresponds to novelty detection. If a novel object

is found, the learning process (Fig. 5 (a)), which will be

described later, is activated. The learning process ends up

with updating the model and then the state transits to the

human detection mode.

On the other hand, the right part of Fig. 5 represents

“inference-based action thread”. This thread is responsible

for inferring unobservable information using current input

signals and the learned model at any time the request is

arrived from the main thread. This thread has in total three

parts: (1) action selection according to the probability of the

inferred result, (2) inference of probable words form the

input multimodal information, and (3) inference of visual

information form the user’s utterance and searching for the

corresponding object.

B. Learning action

The block diagram of the learning action is shown in Fig.

6. The learning action begins with novel object detection,

followed by the action sequence of multimodal information

acquisition. During the execution of the series of actions,

user’s utterances, if detected, are phoneme recognized and

processed by the oNPYLM to transform the phoneme se-

quence into BoW representation. All of these multimodal

eye direction
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gazing at

gazing at

joint attention object detection
   request

"inference"

   request

"inference"

an object

the robot

phoneme
recognition

object
grasping learning action

oNPYLM
word segmentation

face tracking

sensed
pressure

wait for
speech/pressure

Fig. 7. Block diagram of interactive action by the robot

signals are processed and fed to the PFoMLDA to update the

model. It should be noted that the oNPYLM is also updated.

Moreover, the learning action includes inference of probable

words from the partially input multimodal information, and

utterance of these inferred words by sending a message

“request inference” to the inference-based action thread. This

is aimed at showing current robot’s ability to the human

teacher. This kind of interaction also helps for the teacher to

avoid losing will to communicate with the learning robot.

C. Interactive action

The block diagram of the interactive action is given in

Fig. 7. This module starts with face detection, tracking, and

estimation of the gaze direction, which mimics infant’s eye

direction detection (EDD) [2]. When the robot detects user

is gazing at the robot, it waits for speech or haptic input

for a certain period of time. This is an action selection

strategy to react to the user’s actions such as talk to the

robot, handing something, etc. If the robot detects the speech

during this time, the utterance is phoneme recognized and

segmented into words using the oNPYLM. Then, the robot

infers visual information from the words and looks for the

object that matches to the inferred visual information with

enough probability. Finally, the robot grasps the object and

hands it over to the human teacher. On the one hand, if the

robot is aware of something in its hand, the robot grasps it

and the learning action (Fig. 6) is activated.

Joint attention is also implemented on the robot. Joint

attention is the shared focus of the teacher and the robot

on an object. It is well known fact that joint attention

plays an important role in language acquisition by infants.

This motivates us to implement it on the robot. The robot

can detect the gaze point using an image frame and depth

information, and watch at the point to find something import

to learn. If an object is found, the ”inference-based action

thread” is activated by signaling ”request inference” so that

the robot learns it if it is novel. If nothing can be found at

that point, the state transits back to the face tracking mode.

The proposed framework makes the robot to learn ob-

ject concepts and words through interaction with a human

teacher. We believe that the most important thing is that

the use of the latest concept model triggers interaction

between the robot and the teacher, which elicits indispensable

information to update the model. This kind of loop must be

a prerequisite for observing the dynamics of human teacher’s

behavior.
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Fig. 9. Scenery of the experiment: (a) the robot and workspace, and (b) a
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IV. EXPERIMENTS

Two experiments are conducted: 1) novice users teach the

robot small subset of objects to observe their interactions

with the robot, and 2) the learning robot is tested for a week

as a preliminary step toward long-term learning. Please note

that all experiments were carried out in Japanese.

A. Experimental setup

The robot shown in Fig. 2 is used in this experiment. Fig-

ures 8 and 9 show 125 objects with 24 categories and scenery

of the experiment, respectively. We define the concordance

rate (accuracy) to evaluate the categorization performance as

Concordance =
1

Q

∑Q

j=1

δ(c1(j), c2(j)), (6)

where Q, c1(j), and c2(j), respectively, represent number of

objects, the category index of the j-th object by the robot’s

categorization, and that of ground truth. δ(a, b) denotes the

delta function that takes 1 if a = b and 0 otherwise. It should

be noted that category indexes are exchanged so that Eq. (6)

is maximized.

B. Observation of interactive learning

Four test subjects are divided into two groups: half of

the subjects (non-interaction condition) teach the robot 20

objects without interaction and the other half (interaction

condition) freely teach the same 20 objects with the proposed

interactive framework. Twenty objects with five categories

are chosen from Fig. 8 . In the non-interaction condition,

subjects teach the robot 20 objects in order mechanically,
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Fig. 10. Results of the interactive learning experiment: (a) MLU , (b) TTR,
and (c) categorization performance of the robot

while in the interaction condition there is no restriction on the

order and teaching the same object many times is allowed.

The teaching process is finished after the subject taught 20

times to the robot. Therefore, in the interaction condition the

subject cannot teach all of 20 objects if the same object is

taught multiple times.

All utterances by the human subjects were transcribed

and analyzed; the mean length of utterances (MLU) and the

type-token ratio (TTR) were calculated. Figure 10 shows the

results in each individual case (two out of four are give for

visibility, since two subjects in the same condition showed a

similar tendency). There is a big absolute difference between

two groups in MLU as shown in Fig. 10 (a). Since the MLU

measures complexity of sentences, it can be seen that the

teacher in the interaction group started with simple and made

it complex gradually. The most likely cause of this change

in complexity is due to the change in ability of the robot.

In fact, we found a significant correlation between the MLU

and the categorization accuracy in Fig. 10 (c) only in the

interaction condition (r = .50, p < .05). Interestingly, the

robot’s utterance of suitable words sometimes led to the deep

dent in the MLU curve (marked circle in Fig. 10 (a)). For

example, in the period of 9th learning, the robot said exactly

correct name of the object. Before that period the teacher

reduced the number of words gradually until single-word

utterance. After the period, in which the robot said something

correct, the teacher increased complexity of sentences. The

big jump in TTR at the 9th learning (marked circle in Fig.

10 (b)) was caused by the same reason presumably. This

behavior suggests short temporal dynamics between human

teachers and the robot. Although the time scale is not the

same, this kind of fine tuning was observed in child-directed

speech [8].

C. Preliminary result on long-term learning

An on-line learning experiment was carried out using the

proposed interactive learning framework. All objects shown

in Fig. 8 were used multiple times and the experiment took

about a week (3 to 5 hours a day). The human teacher freely

selected which object to teach and the learning process was

activated 200 times in total.

1) How many words did the robot actually acquire?: We

first counted number of utterances by the human teacher and
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Fig. 12. Visualization of categorization results: after learned (a) 1st object,
(b) 10th object, (c) 120th object, and (d) 200th object

number of acquired words by the robot so far. The number of

utterances by the teacher was 1055 and the robot acquired

924 words in total. This lexicon with 924 words contains

632 meaningless words that were generated incidentally by

phoneme recognition and segmentation errors. There are 58

meaningful words: 4 functional words, 10 adjectives, 40

nouns, and 4 verbs. The rest of 234 words are duplications

of the 58 meaningful words with a small difference caused

by the phoneme recognition errors. This result shows that

only 6.3% of the whole words in the acquired lexicon (8.4

% if the duplicated words are ignored) is meaningful. This

ratio seems to be quite low and indicates that special care is

required in the learning phase. Our proposed voting scheme

works because the 234 duplicated words are used implicitly

for voting (generating Bow representation) considering the

edit distance so that the frequency counts of meaningful

words increase. In fact, the total weighted counts of meaning-

less words are about 10 % in all BoWs, which significantly

improves the categorization performance.

2) Categorization performance: Performance of catego-

rization was evaluated at each learning stage using Eq. (6).

Figure 11 (a) shows the result. The categorization results

are visualized in Fig. 12. From Fig. 11 (a), we can see

the performance improved as the number of teaching objects

increased. After 120th objects, a slow oscillation in perfor-

mance is observed. This is caused by some indiscernible

categories (marked with a circle in Fig. 12 (d)). For instance,

shampoos and detergents are refill packs with similar appear-

ance and softness. The bath salts, biscuits, and teabags are

in the packaging boxes with similar textures and hardness

as well. These categories were fluctuated over times, wheres

others, such as plastic bottles, stuffed animals and so on,

held relatively firm categories. The maximum accuracy of

categorization was 69.0%.

3) Word inference performance: To evaluate inference

performance of the models, unseen objects (each object

belongs to one of 24 categories) were given to the robot and

words were inferred using visual information. Each uttered

word by the robot was judged whether it was suitable or not

for describing the object. The accuracy of words inference

over time is shown in Fig. 11 (b). The U-shaped curve in

the graph can be explained as follows: In the early stages of

the learning, the lexicon size was small and many functional

words were included in the inferred words since the TF-IDF

weighting scheme does not work in the early stages. This

situation made the words inference relatively easy that led

to a high inference accuracy. As the learning progress, size of

the lexicon increased and the accuracy went down. Finally,

further learning improved the inference accuracy.

Figure 13 illustrates comparison of inferred words for an

unseen mug by the proposed method, the method without

considering the edit distance (phoneme errors), and the

method without using the TF-IDF. The red bar in the graph

represents probability of the correct word (some phoneme

errors are tolerated). The green and blue bars denote, re-

spectively, probabilities of the incorrect words and those

of the functional words. The yellow bar represents prob-

ability of the meaningless (error-related) word. From Fig.

13 (c), TF-IDF weighting scheme successfully decrease the

probability of functional words. Functional words are not

necessarily incorrect inferences; however it is obvious that

category names and/or adjectives are preferable. Although

the correct word was inferred without considering phoneme

errors, inferring many similar words is the problem as can be

seen in Fig. 13 (b). The proposed method solves this problem

by considering the edit distance between phoneme sequences

including errors (Fig. 13 (a)).

In Fig. 14 some examples of words inference are shown.

Although some phoneme errors are included, correct words

are selected in (a)-(f). It should be emphasized that all words

were acquired from scratch using acoustic models and all

inferences were carried out for unseen objects, which were

not included in the training process.

On the other hand, Fig. 14 (g), (h), and (i) show false

inference results. The errors in (g) and (h) are due to

incorrect segmentation of the phoneme sequences. In (g) the

correct phoneme sequence /garagara/ was divided into two.

In (i), false category recognition caused the incorrect words

inference. In fact, the box of the bath salt looks quite similar

to other boxes such as biscuit, juice carton, etc.

V. CONCLUSION AND FUTURE WORK

This paper discussed long-term learning of concepts and

words by robots. We developed a practical on-line learning

algorithm, and it was integrated within the proposed interac-

tive learning framework. Preliminary experiments validated

the proposed interactive framework. Although promising

results were obtained, we need to examine further how much

would the robot learn. Currently, the robot keeps learning

and we are working on the analysis of the experimental

data which grows everyday. Moreover, we have to increase

the number of test subjects as the teacher to observe the

dynamics between human teachers and robots.
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Fig. 14. Examples of inferred words: in (a)–(f) the correct word is inferred with the highest probability, while (g)-(i) incorrect word is inferred as the top
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