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Abstract— The navigation of a miniature aerial vehicle
(MAV) in GPS-denied environments requires a robust embed-
ded visual localization method. In this paper, we describe a
simple but efficient stereo visual odometry algorithm, called
eVO, running onboard our quadricopter MAV at video-rate.

The proposed eVO algorithm relies on a keyframe scheme
which allows to decrease the estimation drift and to reduce the
computational cost. We study quantitatively the influence of the
main parameters of the algorithm and tune them for optimal
performance on various datasets.

The eVO algorithm has been submitted to the KITTI odome-
try benchmark [1] where it ranks first at the date of submission,
with an average translational drift of 1.93% and an average
angular drift of less than 0.076 degres/m. Besides, we have
made several experiments with our MAV with egolocalization
given by eVO, for instance for autonomous 3D environment
modeling.

I. INTRODUCTION

For an automatic agent (autonomous vehicle, robot), the

navigation task requires the ability to compute an achievable

trajectory and to control the execution of the path following,

for example by minimizing the distance between the current

estimated agent localization and the goal to reach defined

as a 3D point. For this, an accurate estimate of the current

localization of the agent in a fixed coordinate frame is

essential.

Nowadays, vehicles equipped with high resolution inertial

measurement unit (IMU) and high grade GPS receiver can

achieved high accuracy self localization. However, these

solutions are not suited for small vehicles with very limited

payload, such as MAV. Other solutions may consist in

installing tag landmarks [2] or external vision-based local-

ization systems such as Vicon R©. Although very accurate,

such solutions reduce drastically the range of the agents.

To access unprepared areas and GPS-denied environment

(ie. where GPS measurements are not available or can not

be trusted: indoor, urban canyons, etc.), the most versatile

solution consists to equip the agent with vision sensor(s)

eventually coupled with a low-grade IMU. This requires an

accurate vision-based localization algorithm.

Many sensor configurations and a huge number of solu-

tions have been studied and proposed. In the indoor context,

the problem of 2D navigation based on a laser-rangefinder

is commonly considered as solved. The arrival of low-cost

RGBD cameras combined with GPU has led to a reemer-

gence of dense and direct localization processes based on
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ICP approaches with impressive results [3]. Finally, binocular

and monocular passive approaches have reached a high level

of maturity in the last decade. For example, the two NASA’s

Mars Exploration Rovers (Spirit and Opportunity) have been

using successfully stereo visual odometry since 2003.

From a methodological point of view, we distinguish the

visual odometry (VO) approach, term popularized by Nister

et al. [4] even if seminal works dates from the 80s [5], [6]

and visual Simultaneous Localisation And Mapping (SLAM)

approach, popularized by Davison [7]. The VO techniques

focuses on ego-motion estimation and integrates motion to

get an estimate of the trajectory, while the SLAM approach

builds a landmark map against which the agent localizes

itself.

Our objective is to define a stereo-based self localization

system able to work at video frame-rate (15 to 25Hz) on the

embedded computer of our Ascending Technologies Pelican

depicted in figure 1. In order to do so, we have developed

a simple but efficient stereo algorithm, called eVO, which

retains good properties of both VO and SLAM approaches.

We have conducted a thorough parametric study of the

performance of the algorithm on various datasets, either

acquired by our own stereorig most often on the MAV, or

on stereo datasets related to autonomous navigation of a car

in a urban environment, provided by the KITTI website [1].

These data have trajectories length ranging from 400m to

5km and are made of 300 to 5000 frames. We have observed

an average drift of less than 2% on the translation estimates

and less than 0.01 degres/m of average rotational drift. These

performances allow the proposed eVO algorithm to be ranked

first on the online KITTI odometric benchmark at the date

of submission.

The paper is organized as follows. The section II briefly re-

views existing approaches. The proposed system is described

globally in the section III, while the section IV and V focus

on the implementation of its components. The methodology

of evaluation is discussed in section VI. Discussions about

the adopted keyframe VO scheme and about the lessons

learned from our parametric studies are exposed respectively

in section VII and VIII.

II. RELATED WORK

Visually aided localization is an active research field

and a huge amount of literature exists. In this section, we

discuss recent advances in the stereo VO and stereo visual-

SLAM areas. For a more detailed review, we advise the

reading of the recent two-parts tutorial of Scaramuzza and

Fraundorfer [8], [9].
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Fig. 1. Our AscTec Pelican MAV on its landing pad. The stereo-baseline
is 28 centimeters long.

The VO scheme based on 2D-3D or 3D-3D matching

is known since 30 years. Several improvements have been

proposed during the last decade. In [4], Nister introduces the

concept of reference frame in VO, a concept called keyframe

in the monocular SLAM of [10]. In [11], an innovative

pose estimation algorithm is proposed, by segmenting distant

3D points (used for rotation estimation) and closer ones

(used for translation). Some authors take advantage of the

quadrifocal [12] or trifocal [13] relationships to estimate

the camera movement.

VO estimations are often combined with a multi-view

optimization process. In [14], the motion estimated by VO is

used as the prior to a stereo EKF-SLAM. In [15], a sliding

window bundle adjustment is initialized by the VO outputs.

At a higher level, an EKF filter fuses visual estimation and

inertial measurements. The Relative Bundle Adjustment by

Sibley and Mei [16] is a graph-based SLAM approach. Each

node of the graph corresponds to an camera pose while

an edge is the relative motion between two poses. In [17],

the same authors present results obtained on a 2 kilometers

trajectory.

Previous solutions have been first demonstrated on ter-

restrial robots, but stereovision systems are now available

on MAV too. In this context, the problem is to deal with

the limited payload and computational resources onboard.

In [18], the authors describe an EKF filter fusing VO

measurements and inertial ones. The data are acquired from

their MAV but are processed offline on a ground station.

In [19], the stereorig is combined with a scanning range

finder. Stereo provides relative motions between successive

views which are then fused with lidar data in an EKF-SLAM

filter. The data processing is realized off-board, on the ground

station.

More recently, the PixHawk team in [20] have demon-

strated the ability of their quadrotor platform to explore

autonomously an unknown environment. A visual odome-

try algorithm runs onboard. Off-board, the ground-station

processed the send stereo-pair in order to model the envi-

ronment. The MAV trajectory is refined here by a SLAM

algorithm based on the g2o framework [21].

We have adopted a similar approach. However the sub-

ject of [20] is not odometry but mapping for autonomous

exploration. In contrast we focus here on the stereo visual

odometer, so as to optimize its performance and to provide

evaluations of its accuracy.

III. SYSTEM OVERVIEW

The proposed system is called eVO for ”embedded Visual

Odometer”. Contrary to the ”dead-reckoning visual odome-

ter” (DRVO) [22], [23] based on the combination of frame-

to-frame motion, eVO uses a persistent map containing 3D

landmarks localized in a global frame, as in SLAM approach.

We focus here on the way adopted to manage the map.

Initially empty, the map is built on the fly by adding

or deleting 3D landmarks when it is necessary. Inspired

by the solutions proposed in [10], [24], eVO adopts a

keyframe-based scheme. It consists in distinguishing auto-

matically some frames, the keyframes, used to update the

landmark map which serves for ego-localization. In contrast,

”standard” frames are only used to track the landmarks in

the video and to localize the camera with respect to the

current landmark map. These scheme is very computationally

efficient as the processing of a ”standard” frame needs much

less operations than a keyframe (see figure 2), reducing

drastically the processing time (table I).

Our approach differs from the SLAM approaches of [10],

[24] in the lack of the stage of multi-view refinement of the

map (by a bundle adjustment for instance). In others words,

the 3D localization of a landmark, set during its initializa-

tion, can not be updated; it is set once and for all. This

choice may seem crude but (i) in our stereo configuration,

the 3D localization is instantaneous and the structure-from-

motion approach is less crucial than in monocular case; (ii)

we are constrained in terms of computational power and

the multi-view refinement is quite expensive. This aspect

brings eVO closer to dead-reckoning approach. While DRVO

combines frame-to-frame motion integrating measurement

noise at each frame, we integrate a localization error only

at each keyframe. The advantage: the drift in the trajectory

estimation grows more slowly.

In summary, eVO is an hybrid object, halfway between

a visual SLAM solution (persistent map) and a DRVO

(integration of error measurement without multi-view refine-

ment process). The structure of our algorithm is depicted

in the block-diagram of the figure 2. More details on each

components will be given in the next section.

IV. DETAILED DESCRIPTION OF EVO

Here we are giving a detailed description of eVO compo-

nents. Note that OpenCV is used for the most part of the

low level image processing (features detector and tracking,

template matching).
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Fig. 2. Architecture of eVO algorithm. The letters surrounded by a circle refer to the subsections in the part IV.

A. Feature detection

Our visual stereo odometer is based on sparse features

tracked through the video sequence. The tracking is initial-

ized by a features detector module which is designed to

maintain a pre-defined amount of features to track N f (be-

tween 250 and 350 for VGA images). When a new keyframe

is detected, most of the features have been successfully

tracked and the module initializes as many features as it is

necessary to reach the appropriate number of features (N f ).

The extraction process takes into account successively two

geometrical constraints: (i) a minimal separation distance

between two candidates feature; (ii) a maximal dispersion

over the image plane. The former constraint is generally

included in the feature extractors. For the latter one, we

adopt the classical ”bucketing” strategy: the image support

is subdivided in Nr non-overlapping regions (8× 6 regions

for VGA images) and the
N f

Nr
more relevant features inside

each region are kept. To deal with homogeneous regions,

a relaxation technique is used to increment the amount of

maximum features by region.

Two kinds of feature detector have been evaluated: the

Harris detector (Shi-Tomasi [25]) and the FAST detec-

tor [26]. The impact of the feature type is studied in

section VIII.

B. Temporal matching

As in [27], the features are tracked through the video

sequence acquired by the left camera using KLT [25]. Note

that the tracking is done between successive views contrary

to what the keyframe approach might suggest.

In order to prune pre-emptively wrong temporal match-

ings, the fundamental matrix is robustly estimated thanks

to Least Median of Squares scheme (LMedS) [28]. As this

estimation can be unstable in case of small relative motion,

this step is automatically disabled when the features motion

is less than a threshold.

We have also evaluated an active search process, where

we use a prediction of the motion to guide the search for

temporal matches. Without inertial data, as for instance in the

KITTI datasets, we use a simplistic motion prediction model

supposing constant linear and angular speeds. The motion

estimated between the two previous frames is then used

for motion prediction. If inertial data are available (as for

instance in our MAV), we only compensate a global rotation

of the image. Both methods helps to reduce the search area

for temporal matching.

C. Stereo matching and Triangulation

The features detected in a keyframe are localized in by 3D

triangulation in the global frame, using the current camera

pose estimate, after the stage of stereo-matching.

Inspired by dense stereovision algorithms, stereo matching

is done by exhaustive search along the epipolar lines. In

practice, we test a range of disparities corresponding to 3D

points located at least 70 centimeters from the stereorig

and the Zero-mean Normalized Cross-Correlation (ZNCC)

is used as the image similarity criterion. A similar approach

is proposed in [15].

In order to reduce the processing time, we adopt a coarse-

to-fine multi-scale approach with a two-levels image pyra-

mid. At the lowest resolution, the image is reduced by a

factor 4 in each direction and the size of the ZNCC window

is set to 3× 3 pixels. The matching decided at this level is

propagated to the full resolution level. Here a local research

is done in a region of radius 6 pixels with a 9× 9 ZNCC

window. In our configuration, this approach permits to reduce

the number of tested hypotheses from 220 to 68.

In a final step, a threshold is used to prune ambiguous

associations.

D. Camera pose estimation

From the temporal matchings provided by KLT, associa-

tions are established between 3D landmarks stored in the map

and current image features. Given these 2D-3D matchings,

the camera pose (position and attitude) is in a robust manner

within a RANSAC procedure [29]. As is customary, the

process takes place in two stages.

In a first time, the RANSAC procedure returns an initial

solution and a set of inliers. The pose is estimated with the 3-

Point algorithm [29], [30]. In practice, we have implemented

our own RANSAC framework with an online adaptation of

the number of iterations as proposed by Peter Kovesi [31] and

a bucketing strategy to assure a minimal separation distance

2109



Features SHI-TOMASI [25] FAST [26]

Frame type Keyframe Standard Keyframe Standard

Average (ms) 74.24 12.36 56.08 12.42
Std (ms) 4.62 3.55 5.63 3.61
Min (ms) 62.27 5.75 40.78 5.56
Max (ms) 99.93 32.78 72.75 31.45

TABLE I

PROCESSING TIME OF EVO FOR ONE 672×480 STEREO PAIR ON A

CORE2DUO 1.86GHZ. MEASURES OBTAINED BY AVERAGING ON 10

MONTE-CARLO RUNS.

between the image features selected in the triplet given to

P3P algorithm. The P3P method produces generally multiple

solutions. To deal with this drawback, all the solutions are

considered as many as random sampling in the RANSAC

voting process.

In a second time, the pose is refined by non linear least-

squares optimization using the inliers detected by RANSAC.

This part relies on the SBA code [32]

E. New keyframe generation

As proposed in [10], a new keyframe is initialized as

soon as the ratio between the number of successfully tracked

features and the number of 3D points visible on the last

keyframe drop under a threshold, denoted by τ , set by default

to τ = 0.8. We discuss the algorithm sensitivity to parameter

τ in section VII.

V. IMPLEMENTATION ON A MAV AND

PROCESSING TIME

The eVO version embedded on the MAV works on ROS

(Robot Operating System, www.ros.org) and exploits the

multi-threading capacity offered by the two processing units

of the Intel Core2Duo R©. Despite the linear form of the

block-diagram in figure 2, some tasks can be executed in

parallel. For instance, in the case of a keyframe, the rectified

left image can be processed simultaneously to track features

and to find new feature candidates. The price to pay is a

rearrangement of the processing flow and a synchronization

process in order to select the correct number of new features.

In practice, this coarse parallelization allows to reduce the

processing time by approximately 8ms.

We present in Table I the processing times measured on the

embedded computer (Ascending Technologies Mastermind

Intel Core 2 Duo 1.86 Ghz working on Ubuntu 12.04

32bits). Table I first illustrates the huge difference between

keyframes and standard frames processing time, due to the

fact that for the latter ones, the 3D landmarks generation is

bypassed. Regarding the different features detectors, the gain

is significant, with 5 to 6 factor in favor of FAST.

Using FAST, we then obtain a mean computation rate

better than 20Hz. The influence of the features detector on

the localization performance will be discussed later on.

The figure 3 shows how the computational time is dis-

tributed over the different components of the processing

chain. For a standard frame, tracking features consumes most

0 10 20 30 40 50 60 70

Keyframe

Standard

Processing time (ms)

 

 
Track features

Compute pose

Add features

Stereo matching

Triangulate

Others

Fig. 3. Relative computing time of eVO components. Measures made by
averaging over 10 monte-carlo runs using FAST features detector [26].

of the processing time (75%). For a keyframe, the computing

time is equally distributed between the various tasks.

VI. GENERAL EVALUATION

A. Datasets and performance measures

Our system has been evaluated on multiple and varied

data. Some were acquired using our own stereorig, either

hand-held or carried by the MAV. No ground-truth state

is available for these data but we have followed closed

trajectories in order to use the drift between the first and

last frames as a performance indicator. An example of such

experiment is presented in figure 4.

We have also used the KITTI’s odometry dataset [1]

composed of 22 video sequences acquired by a car equipped

with several sensors (Velodyne R© lidar, high resolution IMU

and GPS-RTK, stereorig). The collection of video covers

a large range of environment (highway, suburban or town

center) and trajectory profiles (loops, road sections) from

one hundred meters to a few kilometers. The first half of the

collection is supplied with ground-truth in order to adjust the

parameters of algorithms. The second half of the collection

is used to benchmark algorithms in a blind manner.

The KITTI Team provides also some performance metrics

together with a tool to compute them on the estimated

trajectories. These metrics are: a translational drift expressed

in percentage of the total traveled distance and a rotational

drift expressed in terms of degree by traveled meter. Scores

are are averaged on all possible sub-sequences of variable

lengths, from 5m to 400m.

As our system includes random sampling scheme

(RANSAC) we have done Monte-Carlo simulations and mea-

sured statistical indicators (average performance, standard

deviation, median, min-max values).

B. Result on the KITTI Odomety Benchmark

The figure 5 presents the estimated trajectories obtained

after 25 Monte-Carlo runs on the sequence 08 of the KITTI

odometry dataset. This trajectory in suburban environment

is 2 kilometers long and comprises many moving objects

(vehicles, pedestrians and cyclists). In average, the estimated

trajectory in the horizontal plane (XZ) is well estimated with

a drift of only 4 meters. As usual in odometry, large angular

errors occur at each important turn change. The estimation

2110
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Fig. 4. Trajectory estimated by eVO from the sequence 20120727.3 acquired during an outdoor flight of the MAV. (a) 4 frames of the video sequence
(the 1st, 509th, 913th and last image). (b) Estimated trajectory. The red and black arrows indicate the attitude of our MAV (red : the front of the MAV,
black : its right). (c) Estimated attitude. The measurements provided by the embedded AHRS are not precise enough to serve as ground truth. (d) Estimated
height profile (the Y axis points downward). Note that the starting point is approximately 80cm above the landing pad, hence the total drift is lower than
50 centimeters.

along the third dimension shows a bias at the beginning

which is probably due to an error in the ground truth, and a

significant variance at the end. We could constrain the eVO

estimator to keep a constant height above the ground, but we

choose not to do so, as we intend to use the same algorithm

for MAV data.

At the date of submission, eVO ranks first on the Kitti

Odometry benchmark with an average translation drift of

1.93% and a angular error of 0.0076◦/m, as shown in the

Table II. The submitted version of eVO was configured as

follows:

• Feature detector: Shi-Tomasi

• Feature tracked: 480 features

• Image bucketing: 20 by 8 regions

• Active search: enabled

• Ransac threshold: 1.0

• landmark ratio for keyframe decision: τ = 0.8

VII. EVALUATION OF THE KEYFRAME SCHEME

We discuss here the advantages provided by the key-

frame scheme in the ego-localization performance, beyond

the computational efficiency discussed previously. First, we

compare our algorithm with a classical dead-reckoning visual

odometer (DRVO) build with the same software components;

then, the influence of two relevant parameters is evaluated.

All the results obtained on MAV sequences are summarized

in Tables III, IV, while results on KITTI dataset are shown

in Table V.

A. eVO vs. DRVO

The main difference between eVO and DRVO concerns

the integration of the estimated motion. eVO integrates the

motion through the addition of new landmarks in the onboard

map at each new keyframe, while DRVO integrates motion

itself without referring to a map. Note however that, con-

trarily to SLAM, eVO doesn’t update the localization of the

landmarks previously recorded in the map when acquiring a

new stereo pair.

As expected, the keyframe scheme permits to reduce the

localization drift, even for settings which favor the generation

of new keyframes. This is the case when choosing τ = 1.0,

which means generating a new keyframe as soon as one

landmark is lost by the tracking process: the performance of

this setting are presented in the second lines of the Tables.

The gain is particularly important with MAV data as shown

by comparing the total localization error presented in the two

first rows of tables III and IV. On the KITTI dataset, the

benefit is less significant with a 10%-reduction of the drift,

see Table V.

B. Parameters controlling the key-frame selection

Keyframe generation is related to the ability to track suc-

cessfully landmarks. It depends evidently on the sequence’s

framerate, on the trajectory (speed, number of turns) and

on the distance to the scene (normalized by the baseline). It

depends also on algorithmic parameters such as the threshold

on the ratio of landmarks tracked since the last keyframe (τ)
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Fig. 5. Result of eVO on the sequence ”08” of the KITTI odometry dataset. (a) Three images of the sequence. (b) Trajectories on the XZ plane (red:
ground truth, blue: estimated). In red the ground truth. In blue, 25 trajectories obtained after as many monte-carlo runs. (c) Average angular errors (in
radians). (d) Trajectories in the 3rd dimension.

Rank Method Translation Rotation Runtime Environment

1 eVO 1.93 % 0.0076 [deg/m] 0.05 s 2 cores @ 2.0 Ghz (C/C++)
2 D6DVO 2.10 % 0.0083 [deg/m] 0.03 s 1 core @ 2.5 Ghz (C/C++)
3 MFI 2.14 % 0.0105 [deg/m] 0.1 s 4 cores @ 3.0 Ghz (C/C++)
4 GT VO3pt 2.21 % 0.0117 [deg/m] 1.26 s 1 core @ 2.5 Ghz (C/C++)
5 VISO2-S 2.27 % 0.0152 [deg/m] 0.05 s 1 core @ 2.5 Ghz (C/C++)
6 BoofCV-SQ3 2.27 % 0.0111 [deg/m] 0.14 s 1 core @ 2.5 Ghz (Java)
7 TGVO 2.44 % 0.0105 [deg/m] 0.06 s 1 core @ 2.5 Ghz (C/C++)
8 SVO 2.45 % 0.0109 [deg/m] 0.05 s 2 cores @ 2.5 Ghz (C/C++)
9 VO3pt 2.93 % 0.0116 [deg/m] 0.56 s 1 core @ 2.0 Ghz (C/C++)

10 VO3ptLBA 3.17 % 0.0180 [deg/m] 0.57 s 1 core @ 2.0 Ghz (C/C++)
11 MSD VO 3.50 % 0.0166 [deg/m] 0.07 s 1 core @ 2.8 Ghz (C/C++)
12 MLM-SFM 4.07 % 0.0104 [deg/m] 0.03 s 5 cores @ 2.5 Ghz (C/C++)
13 VOFS 4.21 % 0.0158 [deg/m] 0.51 s 1 core @ 2.0 Ghz (C/C++)
14 VOFSLBA 4.35 % 0.0189 [deg/m] 0.52 s 1 core @ 2.0 Ghz (C/C++)
15 VISO2-M 13.79 % 0.0372 [deg/m] 0.1 s 1 core @ 2.5 Ghz (C/C++)

TABLE II

KITTI ODOMETRY BENCHMARK CHART AT 2013-03-19.

or the detection of erroneous temporal associations thanks

to the robust estimation of fundamental matrix (a module

denoted Fcheck in the following).

We first study how the drift varies with respect to the

ratio τ while the Fcheck module is activated. On the MAV

sequences (Tables III and IV) the lower the parameter τ ,

the lower the average localization error but the higher the

dispersion of the results. On the Kitti dataset (Table V) we

observe that the choice τ = 0.6 leads to larger errors. In our

opinion, this is due to a lower framerate and a higher vehicle

speed, which means that odometry uses tracked features

which are farther from the camera and are badly localized.

Finally, we choose τ = 0.8 as a good trade-off.

The Fcheck procedure has also a significant influence on

the number of keyframes. If this validation step is bypassed,

the number of keyframes is reduced by half in all processed

sequences (for the same ratio τ). On the majority of our tests,

this comes with an error growth, particularly on the KITTI

dataset where the translational drift grows from 1.46 to 1.63.

In practice, we choose to enable Fcheck by default.

VIII. PARAMETRIC STUDY

eVO is controlled by about 10 parameters. Among those

we already talked about the Ransac threshold, the number

of features to track, the feature type, the ”active search” and

”Fcheck” procedures or the parameter τ .

We focus here on the comparison between two features

detector (FAST and Shi-Tomasi) and on the the ”active

search” procedure. The first comparison is interesting be-

cause the two detectors have very different characteristics :

FAST is known to be more computationally efficient but less

repeatable than Shi-Tomasi. The second comparison seems

to us important because the procedure permits significant

performance gain on some difficult sequences.
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Method Error X (m) Error Y (m) Error Z(m) Keyframe
number

DRVO −2.4±0.04 −0.5±0.05 2.0±0.04 2039

EVO
τ = 1.0

−1.28±0.08 −0.17±0.11 1.20±0.08 1958

EVO
τ = 0.8

−0.95±0.18 −0.30±0.11 1.01±0.14 738

EVO
τ = 0.6

−0.73±0.21 −0.06±0.25 0.83±0.18 364

TABLE III

LOCALIZATION ERROR AT THE END OF THE CLOSED TRAJECTORY AND

NUMBER OF KEYFRAMES FOR DIFFERENT ALGORITHMS OR ALGORITHM

SETTINGS. PROCESSED VIDEO SEQUENCE : 20110727.2, A 150 METERS

LONG STEREO SEQUENCE WITH 2039 IMAGES. THE STEREORIG WAS

HAND-HELD.

Method Error X (m) Error Y (m) Error Z(m) Keyframe
number

DRVO −6.8±0.4 2.05±0.2 4.7±0.4 1675

EVO
τ = 1.0

−0.80±0.2 0.23±0.24 0.45±0.12 1522

EVO
τ = 0.8

−0.61±0.34 0.23±0.35 0.4±0.17 448

EVO
τ = 0.6

−0.33±0.60 0.35±0.47 0.21±0.3 214

TABLE IV

LOCALIZATION ERROR AT THE END OF THE CLOSED TRAJECTORY AND

NUMBER OF KEYFRAMES FOR DIFFERENT ALGORITHMS OR ALGORITHM

SETTINGS. PROCESSED VIDEO SEQUENCE : 20120724.3, A 70 METERS

LONG STEREO SEQUENCE WITH 1675 IMAGES. ACQUIRED WITH THE

MAV.

For our different experiments, we have set the Ransac

threshold between 1.0 and 1.5 without major effects on the

results.

Each test consists in multiple Monte-Carlo runs on 9

different video sequences (a total approximately 18000 stereo

frames) for different settings of the parameters.

A. Feature detector

In the section V, we have shown the benefit of FAST

detector in terms of processing time, we address here its

performance in terms of trajectory estimation. The table VI

shows the KITTI angular and translational drifts for the

Method Translational
Error (%)

Angular Error (%) Keyframe
ratio

DRVO 1.56±0.007 0.0166±8e−5 100%

EVO
τ = 1.0

1.45±0.015 0.0145±1e−4 99.8%

EVO
τ = 0.8

1.46±0.014 0.0144±2e−4 79.6%

EVO
τ = 0.6

1.53±0.017 0.0151±2e−4 37.8%

TABLE V

ANGULAR AND TRANSLATION DRIFT INDICATORS MEASURED ON KITTI

ODOMETRY DATASET FOR DIFFERENT ALGORITHMS OR ALGORITHM

SETTINGS.

FAST Translational (%) Angular drift (deg/m)

mean 1.46188 0.014459

std 0.0145939 0.000194284

median 1.4594 0.0145

SHI-TOMASI Translational (%) Angular drift (deg/m)

mean 1.48145 0.0145641

std 0.0129765 0.000191239

median 1.4818 0.0146

TABLE VI

ANGULAR AND TRANSLATION DRIFT INDICATORS MEASURED ON KITTI

ODOMETRY DATASET FOR TWO DIFFERENT FEATURE DETECTORS.

THESES STATISTICS ARE MEASURED ON 50 MONTE-CARLO RUNS WHILE

OTHER PARAMETERS WERE IDENTICAL.
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Fig. 6. Translation error in function of path length with and without active
search mode. Results obtained on the sequence 01 (highway). The errors
are reduced by a factor 2.5.

feature Shi-Tomasi and FAST detectors. The results are

almost identical, hence FAST appears as the best choice.

We suppose that the effect of the lower repeatability

performance of FAST is partly erased by the KLT-based

features tracking.

B. Active search

In the KITTI dataset, the active search described in Sec-

tion IV-B provide a huge improvement in the global accuracy.

On the 11 training sequences, the mean translational drift is

reduced from 2.45% to 1.69%, and the mean angular error

from 0.0175◦.m−1 to 0.0164◦.m−1. The improved temporal

tracking of the features is confirmed by a 15% reduction of

the number of keyframes. If we look more closely at the

results, we note that the gain is mainly due to a dramatic

reduction of the error on a complex video sequence (Sequnce

01 of KITTI) acquired on a highway as shown in figure 6.

In experiment with the MAV, the effect of active search

(ie. rotation compensation) is less significant, except for

processing time (due to reduced searching areas).

IX. CONCLUSION AND FUTURE WORKS

In this paper we have presented eVO, a carefully engi-

neered stereo-based visual odometer, designed to run at video
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rate on the embedded computer of a MAV. This objective is

achieved by combining a keyframe-based scheme and outlier

detection mechanisms.

The performance have been evaluated on a large collection

of data, presenting different use-cases: low altitude flight of

a MAV at low speed or large-scale trajectory of a car moving

at different speed in various environments. In the KITTI

odometry contest, eVO has been compared to a dozen of

concurrent algorithms and leads this comparison chart at the

date of submission.

We plan to improve eVO by fusing it with inertial mea-

surements with the goal of reduce the angular drift: prelimi-

nary results show that significant gain can be expected. Some

works are in progress in this direction.

Finally, let us mention that eVO is a part of an

online 3D environment mapping system by a MAV

combining on-board trajectory estimation and off-board

mapping system. The depthmaps are computed from

stereo pair in an optical-flow approach thanks to an

improved version of the FOLKI-GPU algorithm [33].

An example of our mapping system can be watched on

http://www.youtube.com/watch?v=LuVqO3Op3 M.

REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Providence, RI
(USA), June 2012, pp. 3354 – 3361.

[2] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2011, pp. 3400–3407.

[3] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“Kinectfusion: real-time 3d reconstruction and interaction using a
moving depth camera,” in Proceedings of the 24th annual ACM

symposium on User interface software and technology, New York,
NY (USA), 2011, pp. 559–568.

[4] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground
vehicles applications,” Journal of Field Robotics, vol. 23, no. 1, pp.
3–20, 2006.

[5] H. Moravec, “Obstacle avoidance and navigation in the real world
by a seeing robot rover,” Ph.D. dissertation, Standford University,
Standford,CA, 1980.

[6] L. H. Matthies, “Dynamic stereo vision,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA, USA, 1989, aAI9023429.

[7] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam: Real-
time single camera slam,” IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1052–1067, 2007.

[8] D. Scaramuzza and F. Fraundorfer, “Visual odometry: Part i - the first
30 years and fundamentals,” IEEE Robotics and Automation Magazine,
vol. 18, no. 4, pp. 80–92, December 2011.

[9] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii - match-
ing, robustness, and applications,” IEEE Robotics and Automation

Magazine, vol. 19, no. 2, pp. 78–90, June 2012.

[10] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,
“Real time localization and 3d reconstruction,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), vol. 1, 2006,
pp. 363–370.

[11] M. Kaess, K. Ni, and F. Dellaert, “Flow separation for fast and robust
stereo odometry,” in IEEE International Conference on Robotics and

Automation (ICRA), Kobe, Japan, May 2009, pp. 3539–3544.

[12] A. I. Comport, E. Malis, and P. Rives, “Accurate quadrifocal tracking
for robust 3d visual odometry,” in IEEE International Conference on

Robotics and Automation (ICRA). Roma, Italy: IEEE, April 2007,
pp. 40–45.

[13] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on stereo
image sequences with ransac-based outlier rejection scheme,” in IEEE

Intelligent Vehicles Symposium (IV). San Diego, CA (USA): IEEE,
June 2010, pp. 486–492.

[14] P. Alcantarilla, L. Bergasa, and F. Dellaert, “Visual odometry priors
for robust ekf-slam,” in IEEE International Conference on Robotics

and Automation (ICRA), 2010, pp. 3501–3506.
[15] K. Konolige, M. Agrawal, and J. Sola, “Large-scale visual odometry

for rough terrain,” in The 13th International Symposium of Robotics

Research, Hiroshima, Japan, November 2007.
[16] G. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative bundle

adjustment,” in Robotics Science and Systems Conference, 2009.
[17] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “Rslam:

A system for large-scale mapping in constant-time using stereo,”
International Journal of Computer Vision, pp. 1–17, 2010, special
issue of BMVC.

[18] J. Kelly and G. S. Sukhatme, “An experimental study of aerial stereo
visual odometry,” in IFAC Symposium on Intelligent autonomous

vehicles, 2007.
[19] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Stereo

vision and laser odometry for autonomous helicopters in gps-denied
indoor environments,” in Proceedings of the SPIE Unmanned Systems

Technology XI, vol. 7332, Orlando, Florida, 2009.
[20] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-

skanen, and M. Pollefeys, “Vision-based autonomous mapping and
exploration using a quadrotor mav,” in IEEE/RSJ International Con-

ference on Intelligent robots and systems (IROS), Algarve, Portugal,
October 2012, pp. 4557–4564.
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