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Abstract— Humanoid robots should be able to visually recog-
nize objects and estimate their 6D pose in real environmental
conditions with their limited sensor capabilities. In order to
achieve these visual skills, it is necessary to establish an optimal
visual transducer connecting the scene layout with the internal
representations of objects and places. This visual transducer
should capture the noiseless visual manifold of the scene with
high-dynamic-range in an efficient manner. Our endeavor is
to develop such a visual transducer using the widespread LDR
cameras in humanoid robots. In our previous work, the noiseless
acquisition of continuous images [1] and the improved radio-
metric calibration [2] already enabled the humanoid robots to
attain the desired visual manifold in terms of quality. However,
since the radiance range of the scene can be very wide, the
required amount of exposures to capture the visual manifold
(robustly without radiance inconsistencies) turns impractically
large in terms of scope, granularity and acquisition time. In
this article, a method for estimating the minimal amount of
exposures and their particular integration times is presented.
This method integrates our previous work in order to synthesize
HDR images with the minimal amount of exposures while
ensuring the high quality of the resulting image. Conclusively,
the minimal exposure set provides performance improvements
without quality trade-off. Experimental evaluation is presented
with the humanoid robots ARMAR-IIIa,b [3].

I. INTRODUCTION

Until now, HDR cameras are not widespread. Especially
in applications with several tight constraints, for instance,
high frame rate, light weight, reduced space, low power
consumption and compliance with saccadic movements (see
[4]). These are few of the restrictions in the eyes of most
humanoid robots, for instance, ARMAR-IIIa,b [3] or the
iCub robot [5] (see their detailed composition in [6], [7]).
Due to these restrictions, an appropriate mechanism is intro-
duced to capture HDR images by optimally employing the
low-dynamic-range (LDR) cameras of humanoid robots, see
figure 1.

Conceptually, the process of attaining HDR images is
rather simple. During the HDR image synthesis, the short-
exposed images sample the high radiance regions of the
scene. Inversely, the long-exposed images sample the low
radiance regions. The integration of this information in a
sound manner is done by the inverse radiometric response
function [8] of the whole optical system.

The proposed mechanism for attaining HDR images con-
sists of the following elements. First, the nonlinear trans-
formation mapping from the scene radiance to the discrete
intensity values of the image is attained (the radiometric
calibration). Second, the robust exposure control of the
camera and the analysis of the available exposure distribution
of the cameras are performed. The coordinated integration
of these elements captures the intra-scene radiance range by
fusing the minimal collection of differently exposed images.

Our strategy to efficiently synthesize high quality HDR
images is to analyze the radiometric calibration and gran-
ularity of the integration times of the camera(s) in order
to provide the means for optimal exposure selection. This
reduces the total amount of images to be captured while
ensuring the quality of the synthesized HDR image.

II. RELATED WORK

During the last decades, various important contributions
were made on high-dynamic-range scene capturing using
digital cameras. In particular, the work of [9] was an
important contribution to this field. It set the foundation
for response function estimation solely based on images.
The key idea of the approach was the modeling of the
camera response function without using controlled light
sources or other complex luminance devices. In [9] the
authors presented exposure bracketing as controlling ele-
ment during calibration. Despite the influential ideas of that
work, the dependency on particular image content forbids
its systematic application in general scenarios. Later on,
the camera radiometric calibration was obtained without
assumptions about image content. In [10], the method is
based on digital cameras with precise integration timing.
The key idea of that approach is to analyze the progression
of the intensity values as a monotonic function depending
on the integration time. This fundamental idea is found in
almost all subsequent calibration methods (see [11], [8],
[12]). Recently, novel methods have appeared (for instance
[13]) which only use a single image to attain the radiometric
calibration. Nevertheless, they assume certain image content
(as in [9]) such as colored edges or fixed patterns. Thus,
their application in humanoid robots remains limited. The
approach of the method from P. Debevec et al. in [10]
established a fundamental research reference in the field.
Because this method has no image content dependency, it
is possible to use any camera supporting the DCAM/IIDC
specification [14] with precise integration timing. Despite
being suitable for humanoid robots and due to the calibration
artifacts, the Debevec method cannot be directly applied for
structural feature extraction (see details in [2]). In order to
simultaneously explain the negative issues and clearly sepa-
rate the work in [10] from the improvements realized in our
previous work (in section III, partially in [2]), a sequential
presentation of the Debevec method is given followed by the
proposed novel improvements presented for the first time in
this article1. The proposed method presented in section IV

1The section III is not only a recapitulation from our previous work in
[2] (necessary to clearly present the novel method in section IV) but it also
provides the detailed and revisited algorithm for optimal radiometric camera
calibration.
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can be easily disambiguated from various existing works
on optimal HDR reconstruction (see approaches [15], [16]).
Because the aim of our method is, given a particular camera
and lens, how to determine the minimal and consistent set
of exposures (according to its radiometric calibration and
exposure granularity) to robustly and efficiently cover the
full reachable irradiance of the camera sensor. In contrast,
the optimal reconstruction methods of related approaches
focus on how to recover the absolute sensor irradiance using
suboptimal and arbitrarily exposed images. This remark
is fundamental to understand the structure, novelty and
importance of the contributed method.

III. IMPROVED RADIOMETRIC CALIBRATION

The intensity values provided by a digital camera are
ideally subject to a principle called reciprocity. The sensor
exposure X is the collected energy per surface unit in Jm−2.
It is the product of the sensor irradiance E and the integra-
tion time Δt as X = EΔt. The reciprocity states that the
total collected energy X

′
= X remains constant if the sensor

irradiance is scaled E
′
= αE as long as the integration time

is inversely scaled Δt
′
= 1

α
Δt. The reciprocity principle does

not entirely hold in physical systems (see the Hurter-Driffield
curve in [17]) particularly at the upper and lower bounds of
the sensor irradiance. Once the sensor irradiance has been
integrated, the electronic components of the camera convert
the analog signal to its discrete and quantized version.
This composed process is followed by a nonlinear mapping
(usually gamma compression) for the high contrast image
content to be contained within the dynamic limits of the m-
bit representation. This nonlinear mapping is done in order to
rescale the signals to better fit human perceptual metrics. The
whole process is called the sensor mapping function and it is
denoted as F . The sensor mapping function can be expressed
as Iix = F(ExΔti), where the irradiance at the pixel location
x ∈ Ω := {(0, 0), ..., (w−1, h−1)} ⊂ N2 is denoted as Ex. The
integration time Δti is controllable and the intensity values
Iix ∈ Θ := {0, ..., 2m − 1} ⊂ N are provided by the camera
interface. Since the mapping function F is monotonic, it is
possible to find its inverse function such as ExΔti = F−1(Iix).
In this manner, the ideal estimation of the sensor irradiance
from the pixel x is Ex = F−1(Iix)/Δti. In [10], additional
considerations were taken for modeling g := lnF−1 (g is
used to simplify notation). i) Since the codomain of F is
the finite intensity set Θ, the estimation of the function g

considers the function as a vector g ∈ R2m in a least squares
formulation. ii) The sensor noise is considered during the g

estimation process. This is coherently formulated by kernel
weighting in a least squares error sense. The least squares
formulation proposed by Debevec et al. using ρ images with
different integration times and selecting a subset of pixels
S ⊂ Ω is expressed as

O =

ρ∑
i

∑
x∈S

{
w(Iix)

[
g(Iix)− lnEx − lnΔti

]}2

(1)

+ λ

2m−2∑
u=1

(
w(u)

[
g(u− 1)− 2g(u) + g(u+ 1)

])2

,

Fig. 1. The visual HDR manifold acquisition. a) Complex high-
contrast heterogeneously lighted scene. b) The low-dynamic-range
cameras capture differently exposed images (so-called Wycoff set).
Those image sets are used for temporal fusion to obtain “noiseless”
images Îik by our method in [1]. c) The exposure plan (in section IV)
determines the amount and integration time Δti of each of the
images in these sets to optimally sample the scene using a particular
camera. d) The radiance distribution of the scene soundly captured
by the minimal amount of exposures Emin. e) The radiometric
calibration of the composed optical system. f) The Wycoff set and
the radiometric calibration are used to synthesize [F] the HDR
image. g) The resulting HDR image E.

where the λ-smoothing term ensure the evenness of the esti-
mated function g. The contributions are weighted according
to their intensity with less weighting at the extrema by a
symmetric kernel w : Ω �→ R with maximal central value
w( 1

2
(2m − 1)) = 1. The computation of the overdetermined

system requires ρ(|S|−1) ≥ 2m pixel exposures. The Debevec
radiometric calibration shows critical issues: i) The resulting
g curves present noisy artifacts which cannot be removed by
varying the calibration parameters (λ,S,ρ). ii) There is neither
implicit nor explicit selection criteria for the smoothing
factor λ nor for selection of pixels in the sampling set S.
iii) The resulting noisy curves g produce detrimental effects
near the upper and lower intensity extrema. These calibration
artifacts appear because the reciprocity between exposure
and intensities is not held. These are the jointed numerical
effects (least squares fitting) and the intrinsic physical sensor
behavior. The results are noisy calibrations propagating into
salient artifacts in the HDR image, see figure 2.

A. Continuous Reciprocity-Consistent Calibration Model
The detrimental radiometric artifacts (see zooms in fig-

ure 2) resulting from [10] are unveiled by mapping the λ-
optimal smooth2 function gλ from its homomorphic3 domain
[19] to the lineal domain through the exponential transfor-
mation g∗λ(u) := exp u[gλ(u)], where the auxiliar variable
0 ≤ u ≤ (2m − 1) covers the intensity set Θ. The function
g∗λ(u) clearly illustrates the noise at the intensity extrema.
Furthermore, the discrete domain of gλ is a limitation when
using real intensity values resulting from our noise removal
and range enhancement fusion method [1]. Because of these
limitations, the calibration curve g∗λ is improved by estimat-
ing the continuous function gLλ which optimally (considering
reliability of the regions according to their confidence by
weighted regression) fits the tendency of g∗λ.

2The optimal smoothing is attained in lines 7-15 of algorithm 1.
3Homomorphic filtering is a nonlinear mapping to a target domain where

linear filtering is applied followed by back mapping, see example in [18].
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Algorithm 1 Extended-Radiometric-Calibration (S,ρ,ε,δλ)
Require: ρ(|S| − 1) > (2m − 1) and 0 < δλ ≤ 1

10
1: P ← [0]2mx2m , X ← [0]2mx2
2: λs ← 0, λmin ← 0, Emin ← ∞
3: for u = 0 to (2m − 1) do

4: X[u] ← [u, 1], P [u, u] = exp [−3(u−2m−1)2

2(m+1)−1
]

5: end for
6: K ← [XTPX]−1[XTP ]
7: while λs ≤ 1 do
8: g∗λs

← exp u[Debevec(λs,S,ρ)], M ← Kg∗λs
, λ ← λ+ δλ

9: for u = 0 to (2m − 1) do
10: δ ← (uM [1, 1] +M [1, 2])− g∗λs

(u), E ← E + δ2

11: end for
12: if (E < Emin) then
13: Emin ← E, λmin ← λs

14: end if
15: end while
16: λa ← λmin − δλ

2
, λb ← λmin +

δλ
2

17: g∗λa
← exp u[Debevec(λa,S,ρ)], Ma ← Kg∗λa

, Ea ← 0
18: g∗λb

← exp u[Debevec(λb,S,ρ)], Mb ← Kg∗λb
, Eb ← 0

19: for u = 0 to (2m − 1) do
20: δa ← (uMa[1, 1] +Ma[1, 2])− g∗λa

(u), Ea ← Ea + δ2a
21: δb ← (uMb[1, 1] +Mb[1, 2])− g∗λb

(u), Eb ← Eb + δ2b
22: end for
23: repeat
24: if (Ea < Eb) then
25: λb ← 1

2
(λa + λb), g∗λb

← exp u[Debevec(λb,S,ρ)]
26: Mb ← Kg∗λb

27: for Eb ← 0, u = 0 to (2m − 1) do
28: δb ← (uMb[1, 1]+Mb[1, 2])− g∗λb

(u), Eb ← Eb+ δ2b
29: end for
30: else
31: λa ← 1

2
(λa + λb), g∗λa

← exp u[Debevec(λa,S,ρ)]
32: Ma ← Kg∗λa

33: for Ea ← 0, u = 0 to (2m − 1) do
34: δa ← (uMa[1, 1]+Ma[1, 2])−g∗λa

(u), Ea ← Ea+δ2a
35: end for
36: end if
37: until ((λb − λa) > ε)
38: return gLλ ← K exp u[Debevec(Ebλa+Eaλb

λa+λb
,S,ρ)]

This is done by kernel weighted regression obtaining
a continuous model gLλ : R �→ R ; gLλ (u) ∼= g∗λ(u), see
algorithm 1 and figure 2. The applied Gaussian kernel N (μ =
1
2
(2m − 1), σ = 1

3
(2m − 1)) (dotted line in figure 2) properly

integrates the smooth region of the curve g∗λ while gradual
disregarding the broken reciprocity regions. Because of this
gradually tendency integration, the calibration deviations and
detrimental artifacts were soundly removed. This extended
radiometric calibration is superior to [8], [9], [10], [12] be-
cause the model gLλ is reciprocity consistent even at intensity
extrema. Moreover, the calibration model gLλ estimates the
sensor response function at continuous intensities of k iso-
exposed images by our method in [1] as:

gMλ (Îik) := ln(Îik · gLλ [1, 1] + gLλ [1, 2]), (2)

where Îik is the i-exposed temporal fusion of k images and
gMλ is the standard homomorphic domain of the radiometric
calibration function. The improved radiometric calibration is
unique per color channel and (due to the logarithm in eq. 2)
is restrictively defined within the interval:
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Fig. 2. Model calibration gLλ accomplished by kernel weighted
regression in the exponential domain. Gaussian kernel weighting N
ponderates the λ-optimal g∗λ calibration to estimate the model gLλ .
The model calibration is gLλ,R (Ir) = ln(0.007961∗Ir)−0.001419
@ λR = 0.94726. Plots of the continuous reciprocity-consistent
calibration model gMλ and the comparison to the results from [10].
The deviation plot shows the removed detrimental effects.

gMλ :

(
max(−gLλ [1, 2]/g

L
λ [1, 1], 1), (2

m − 1)

]
∈ R

+ �→ R. (3)

In summary, the radiometric calibration model gMλ is an
improvement and extension of the method in [10]. The model
calibration does not only address the parameter selection
in an optimal manner. It also provides a continuous and
computationally efficient radiometric function which enables
the integration of the whole reachable radiance without
producing detrimental artifacts. Since the reciprocity is not
physically held at sensor level, the kernel weighting N used
during the regression must be also applied during the HDR
synthesis as follows: i) For an initial integration time Δt1 a
set of k1 images is captured in order to estimate the temporal
fusion image Î1k . ii) Next, the following integration time Δt2
is set and the next set of images with cardinality k2 is taken
in order to obtain the fusion image Î2k . iii) The collection
of n temporal fused images {Î1k , ..., Înk } and the radiometric
calibration model gMλ are synthesized into a HDR image as

ln(Ex) =

∑n
i=1 N

(
Îik(x)

)
ln

(
Îik(x) · gLλ [1,1]

Δti
+

gLλ [1,2]

Δti

)
∑n

i=1 N
(
Îik(x)

) . (4)

The acquired spatial discrete and non-quantized radiance
map, namely the HDR image E : N2 �→ R is a consistent
(up-to-scale) manifold of the scene radiance L, see figure 5.

IV. OPTIMAL EXPOSURE CONTROL

In addition to the continuous reciprocity-consistent cal-
ibration model gMλ , the consistency of the resulting HDR
images depends on: i) The proper selection of integration
times. ii) The amount of images to be fused per exposure.
iii) The precise exposure timing.
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Therefore, a detailed analysis of the exposure control is
presented. Afterwards, a novel method is introduced for
optimal selection of the amount and particular integration
times for optimal radiance sampling. Finally, the robust
and accurate image acquisition of experimental scenarios is
presented.

A. Embodiment Aspects
When capturing the Wycoff set of a scene, the integration

time Δti is controlled according to the camera specification
[20], see figure 1. However, there might be issues when using
different camera models or even different firmware versions
of the same camera. The first problem occurs when the in-
tegration time is not consistent for the complete image. This
happens systematically when using rolling shutter sensors or
(in case of global shutter) it may occur while dynamically
changing the exposure settings. This issue is anticipated
by the inclusion trigger. This trigger is fired by means of
exposure stability analysis. This analysis takes into account
the latency of the capture system. The exposure stability
index Si(t) :=

1
wh

∑
x∈Ω Iit(x) integrates the image intensities

while controlling the exposure time Δti. Its differential anal-
ysis δ(Si(t))/δt determines reliable capture intervals. Without
this analysis, the storage trigger could be eventually fired
within unstable intervals. Furthermore, cameras supporting
the specification in [14] provide an indexed set of exposure
times E . However, depending on the particular camera, frame
rate and firmware the indexing integration times are not
always regularly distributed. Without this consideration, the
HDR synthesis (eq. 4) is corrupted.

B. Scene Aspects
Each scene has a singular radiance distribution depending

on the lighting, materials and viewpoint. In order to optimally
acquire the visual manifold of each scene, the humanoid
robot can use our method [2] to fuse every available in-
tegration time of the camera to create a highly accurate
HDR image. However, in practice this is neither desirable
nor feasible for online applications. The limitation is the
long period of time (in the order of minutes) necessary to
complete the HDR image acquisition. In this process, the
amount and distribution of the exposures plays a critical
role. Slightly differing integration times capture “almost”
the same radiance segment. This redundancy can be removed
without negative effects4 during the HDR synthesis. Based
on the radiometric calibration model and the exposure gran-
ularity of a particular camera, it is possible to determine
the minimal set of exposures Emin � E necessary to sample
the complete reachable radiance range of the sensor. When
using a Bayer pattern camera, the minimal set of exposures
depends on the radiometric calibration models (gMλ,R, gMλ,G
and gMλ,B) of the color channels, the regression kernel N
used during calibration and the intrinsic minimal sampling
density κ0.

4The noise reduction by integrating redundant exposures [10] is not
necessary in our pipeline (see figure 1) due to the “noiseless” images
attained by our optimal temporal fusion [1] during the exposure bracketing.

C. Sampling Density
The intensity extrema of the images do not hold the

reciprocity principle. The comparative results of the pro-
posed calibration model (in figure 2) experimentally support
these observations. Despite the attained continuous and reci-
procity consistent calibration model for HDR image synthe-
sis (eq. 2), the physical nature of the sensor still produces
unreliable measurements at the intensity extrema. The kernel
weighting N compensates these effects by gradually disre-
garding these intensity regions. Consequently, by considering
the calibration interval (in eq. 3), the weighting associated
with the pixel location x resulting from the exposure with
integration time Δti is expressed as

κ(x,Δti) =

⎧⎨⎩N
(
Îi(x)

)
, if Îi(x) > max

(
−gLλ [1,2]

gL
λ
[1,1]

, 1

)
0, else.

(5)

This piecewise weighting is the density indicator of the repre-
sentativeness of the value Îi(x) at the exposure Δti. Ideally,
all pixels in the image have to be (at least once) sampled
with the maximal density ∀x ∈ Ω, ∃Δt̂i ∈ E : κ(x,Δt̂i) = 1.
However, since the radiance range can be rather wide and
the pixel intensities are continuously and arbitrary spread
along the sensor irradiance, the required amount of exposures
is impractical large in terms of scope and granularity. The
required exposure set may have a cardinality larger than
one available from the particular camera E . Nevertheless,
the accumulated sampling contributions attained by the ex-
posure times (Δtj ≈ Δt̂i) are close enough to the ideal
exposure time Δt̂i. These exposures provide the necessary
information to approximate the ideal radiance sampling. This
accumulated collection of sampling contributions (in terms
of kernel weighting) is called radiance sampling density δΦ
and is expressed as

δΦ(x) :=
n∑
i

κ(x,Δti). (6)

Based on this concept, the minimal set of exposures Emin

ensuring the sampling density δΦ(x) > κ0, ∀x ∈ Ω is
the key to reduce the total visual manifold capturing time
without decreasing the HDR image quality. Therefore, the
minimal exposure set Emin is also subject to ∀x ∈ Ω, ∃Δťi ∈
Emin ⇒ κ(x,Δťi) ≥ κ0, this guarantees the minimal exposure
overlapping removing the exposure redundancy. Moreover,
if not all pixels captured from a scene can be sampled
with the minimal sampling density κ0, it can be affirmed
that the lighting conditions are beyond the physical sensor
capabilities. This is an important fact for reasoning and
planning for robots.

D. Combined Radiance-Exposure Model
The radiometric image formation process g(Ii) and radio-

metric calibration model gMλ (Ii) are consistently combined

g(Ii) : Image formation︷ ︸︸ ︷
lnE + lnΔti ∼=

gM
λ (Ii) : Radiometric calibration model︷ ︸︸ ︷
ln
(
Ii · gLλ [1, 1]) + gLλ [1, 2]

)
,

E ∼= Ii · g
L
λ [1, 1]

Δti
+

gLλ [1, 2]

Δti
. (7)
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This model associates the intensity values Ii according
to the integration time Δti by means of the radiometric
calibration model gMλ . Eq. 7 may lead the reader to assume
its direct applications for image synthesis. However, its
straightforward application produces severe artifacts due to
the broken reciprocity effects of the physical sensor. These
effects have to be properly managed by kernel weighted
fusion of various exposures (in the homomorphic domain as
presented in eq. 4). Fortunately since this model depicts the
ideal relationship between radiance and exposure, it can be
exploited to delineate the boundary curves of the radiance
functions of the specific camera integration times. This
representation merges the radiometric calibration with the
integration times in the exposure set E allowing to determine
the minimal subset Emin as follows.

E. Full Reachable Radiance by Minimal Exposure Set

The extraction of the minimal exposure set Emin requires a
unified representation of i) the combined radiance-exposure
model (eq. 7), ii) the valid interval of the calibration model
(eq. 3) and iii) the sampling density (eq. 6). The estimation of
the set Emin should also consider that Bayer pattern cameras
have three different color radiometric calibrations.

1) Radiance-Exposure Bounding Curves: The radiomet-
ric calibration is defined only within the interval expressed
in eq. 3. Since the scene radiance L ≥ 0 cannot be negative
(see figure 1), the minimal valid intensity value (for all three
color channels) is called the “lower reachable” intensity as

η := max

(⌈
−gLλ,R[1, 2]

gLλ,R[1, 1]

⌉
,

⌈
−gLλ,G[1, 2]

gLλ,G[1, 1]

⌉
,

⌈
−gLλ,B [1, 2]

gLλ,B [1, 1]

⌉
, 1

)
,

(8)
where η ≥ 1 for eq. 2 to be defined. This implies an irra-
diance lower bounding curve E l function of the integration
time

Lower bounding︷ ︸︸ ︷
El(Δti) =

Fixed lower exposure︷ ︸︸ ︷
(η · gLλ [1, 1] + gLλ [1, 2])

Shutter speed︷ ︸︸ ︷
Δt−1

i . (9)

There is also an upper bounding curve Eu defined by the
maximal intensity minus the saturation margin ν > 1

Upper bounding︷ ︸︸ ︷
Eu(Δti) =

Fixed upper exposure︷ ︸︸ ︷
((2m − ν) · gLλ [1, 1] + gLλ [1, 2])

Shutter speed︷ ︸︸ ︷
Δt−1

i .
(10)

Following this pattern, the ideally sampled intensity Imid =
1
2
(2m − 1) defines the curve Emid. At this middle intensity

(eq. 6) the maximal sampling density is found. The curve is

Optimal sampling︷ ︸︸ ︷
Emid(Δti) =

Fixed central exposure︷ ︸︸ ︷
((2m − 1)/2 · gLλ [1, 1] + gLλ [1, 2])

Shutter speed︷ ︸︸ ︷
Δt−1

i .
(11)

Eq. 11 is called optimal sampling curve (see figure 3).
2) Calibrated Exposures: The previous bounding curves

describe the continuous range which can be sampled depend-
ing on the integration time. Each integration time available
on the camera has an associated irradiance range.

In figure 3 (at marker 1), the shortest available integration
time Δt1 = 3.0994415 μs captures the highest reachable
irradiance. The maximal intensity value with (2(m:=8) − 1) =

255 obtained at the time interval Δt1 is (using for example the
calibration gLλ = [0.00811,−0.0289]T from figure 2) produced
by the sensor irradiance E((2m−1),Δt1) = (2m−1)·gLλ [1, 1]+
gLλ [1, 2])(Δt1)

−1 = 657, 908.9, meanwhile its lower reachable
intensity η corresponds to the irradiance E(η,Δt1) = 2, 616.6.
Notice the nonlinear behavior at the middle intensity value
E( 1

2
(2m−1),Δt1) = 324, 292.3. Unfortunately, these extreme

values are usually corrupted due to the broken reciprocity in
physical sensors (see section II). In order to address this, the
kernel weighting (in terms of the sampling density of eq. 6)
enables the integration of the information robustly. This
means, beyond a cut-off sampling density κ the irradiance
cannot be reliably captured. For example, the region within
the cut-off sampling density κ = 0.001 is bounded with
the intensities [16, 239] (see figure 3 at (1)). By applying
kernel weighting, the sensor irradiance range can be robustly
sensed to [32015.2, 616569.4] at Δt1 from a larger (only ideal)
range of [2616.6, 657908.9]. The kernel-integrated range is
only 89.2% of the ideal capacity of the sensor. In figure 3
(at marker 2), the same situation is found at the longest
integration time Δt651 = 24.491072 ms. In figure 3 (at marker
3), the lower irradiance captured by one exposure with the
configuration (Δt217 = 6.359 @ κ = 0.001) is denoted as
E(I = 16, κ = 0.001) = 15.6, whereas the upper reachable
irradiance as E(I = 239, κ = 0.001) = 300.5. This range
emphasized in figure 3 (at marker 4) solely depends on the
radiometric calibration and the sampling density cut-off.

Since the radiometric calibration is constant (for a fixed
camera-lens combination), the variation of the cut-off (sam-
pling density) narrows or expands the reachable irradiance
range at each particular exposure. The lower the cut-off the
wider the range. Accordingly, with a lower cut-off less expo-
sures are needed to cover the whole irrandiance range of the
camera sensor. However, a low cut-off would also produce
holes in the radiance distribution of the scene. Hence, the cut-
off estimation (in algorithm 2) ensures the whole irradiance
range by covering at least one exposure within the minimal
sampling density κ0. The irradiance range captured with all
available integration times (using a low cut-off sampling
density κ = 0.001) is [4.1, 616569.4]. The intensity value
requires at least �ln2(616, 569.4− 4.1)� = 20 bits for its
integer representation. Thus, the radiance representation is
32 bit floating point per color channel.

3) Minimal Calibrated Exposure Set: Now with the
proper unified representation for the extended radiometric
calibration and integration time in figure 4, it is possible
to introduce the Algorithm 2 which formally describes the
applied method to select the minimal exposure set Emin. The
strategy is to select the exposures producing the minimal
sensor irradiance overlapping (see zoom in figure 5). This
process starts from the shortest integration time towards
the longest integration time. See the resulting set Emin and
minimal safe sampling density κ0 in figure 4.
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Fig. 3. The combined radiance-exposure model. This plot shows the unified representation of the bounding irradiance curve functions of
the exposure times. This representation merges the radiometric image formation process with the extended radiometric calibration while
considering the kernel sampling density. Four integration examples are marked and discussed along section IV. Since the sampling density
is defined by a Gaussian kernel, thus it is possible to obtain the envelope curves at the lower and upper density quantiles (each at the
first and second standard deviations E(mid+qσ) | q ∈ {−2,−1, 1, 2}.

Algorithm 2 Extract-Minimal-Exposure-Set (κ,σ,gLλ ,η,ν,E)
Require: κ > 0 and |E| > 1

1: Emin ← Δt1
2: Il ← max( 1

2
(2m − 1)− ln(κσ2)

1
2 , η)

3: Iu ← min( 1
2
(2m − 1) + ln(κσ2)

1
2 , ν)

4: for i = 2 to |E| do

5: E l
i ← (Ilg

L
λ [1, 1] + gLλ [1, 2])/Δti

6: Eu
i ← (Iug

L
λ [1, 1] + gLλ [1, 2])/Δti

7: Omin ← ∞, k = 0
8: for j = (i+ 1) to |E| do

9: E l
j ← (Ilg

L
λ [1, 1] + gLλ [1, 2])/Δtj

10: Eu
j ← (Iug

L
λ [1, 1] + gLλ [1, 2])/Δtj

11: if (Eu
j > E l

i) ∧ ((Eu
j − E l

i) < Omin) then

12: Omin ← (Eu
j − E l

i), k ← j
13: end if
14: end for
15: if (k > 0) then
16: Emin ← Emin ∪Δtk
17: end if
18: end for
19: return Emin

V. EXPERIMENTAL EVALUATION

The coordinated integration of both methods (our previous
work [1] and the novel method presented in this article in
section IV) enables humanoid robots to acquire the visual
manifold in a robust, efficient and high quality manner (see
figure 5 and 6). This high signal-to-noise ratio HDR image

results from integrating multiple images while precisely
controlling the exposure. The minimal amount of exposures
is soundly attained by the minimal exposure set which is
extracted based on the improved radiometric calibration and
the exposure granularity of the cameras. This determines the
minimal amount of images to be captured while simultane-
ously avoiding redundant sampling and ensuring high quality.

VI. CONCLUSIONS

The noiseless images captured by the temporal fusion
method are systematically merged into high-dynamic-range
images by optimal exposure bracketing. This dynamic range
expansion is precisely archived through the improved ra-
diometric calibration and meticulous exposure control. The
proposed radiometric calibration model properly holds the
reciprocity principle even at the intensity extrema with an
efficient computational representation for continuous im-
ages. Based on these elements, the optimal combination
of temporal fusion and exposure bracketing is properly
controlled. This is concretely reflected in the high quality
images for feature extraction with minimal acquisition time.
These observations are supported by experimental evaluation.
In figure 6, the results of the method introduced in this
article show the minimal exposure set with 11 out of 651
available exposures (only 1.69% of the exposures are

actually needed). The results also expose the particular
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Fig. 4. The minimal calibrated exposure set containing 11 exposures (out of 652 available in E). Emin := {Δt1 = 0.0031,Δt3 =
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Fig. 5. Visual manifold acquisition. The HDR mesh is the ln(E) compressed representation of the radiance scene acquired with VGA
resolution using the 4mm lens, see also the integrated HDR acquisition pipeline in figure 1). The total acquisition time of this HDR image
is 6.672 sec fusing 11 exposures with 16 samples during the temporal fusion per iso-exposure. When fusing only one out of ten (1/10)
exposures of the total 651 (available in camera) it takes 34.236 sec to acquired the HDR image. When capturing with less than (1/10)
exposures the result presents holes in the high range regions of the images, for instance at laps or in the ceiling, see marked zone in
figure 6. This means a 513.11% time performance improvement compared to the 1/10 regular distributed (naive exposure) plan.

cut-off of the sampling density (κ0 = 0.3671381) which
is determined by the larger gap (Omin in lines 7-12 of
algorithm 2) between consecutive exposures using the kernel
weighting of eq. 6. A lower cut-off κ < κ0 would generate
either sampling holes in the irradiance domain because the
minimal sampling density would not be thoroughly ensured.
Thus, the minimal exposure set is fully determined by our
method based exclusively on the radiometric calibration and
integration time granularity for the camera. Based on this

method, it is possible to acquire the visual manifold for
complex visual tasks using standard cameras. This is the
missing component for a robust, precise and efficient visual
transducer for robot vision.
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Fig. 6. Everyday scene where the visual perception of the humanoid robot should recognize environmental elements for attaining its
own 6D pose. This viewpoint contains high-dynamic-range produced by large radiance difference between the doors and stove. The left
HDR mesh ln(E) of the region marked with a rectangle in figure 5. The (12mm lens) visual manifold, the large focal length significantly
improves the spatial resolution. The red rectangle shows the synergistic integration of both temporal and exposure fusion methods.
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