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Abstract— An approach for adaptive shared control of an
assistive manipulator is presented. A set of distributed collision
and proximity sensors is used to aid in limiting collisions during
direct control by the disabled user. Artificial neural networks
adapt the use of the proximity sensors online, which limits
movements in the direction of an obstacle before a collision
occurs. The system learns by associating the different proximity
sensors to the collision sensors where collisions are detected.
This enables the user and the robot to adapt simultaneously and
in real-time, with the objective of converging on a usage of the
proximity sensors that increases performance for a given user,
robot implementation and task-set. The system was tested in a
controlled setting with a simulated 5 DOF assistive manipulator
and showed promising reductions in the mean time on simplified
manipulation tasks. It extends earlier work by showing that the
approach can be applied to full multi-link manipulators.

I. INTRODUCTION

Assistive manipulators aim to increase the level of inde-
pendence of its users through aiding in physical Activities
of Daily Living (ADL). One example is the commercial
Exact Dynamics iArm, see Fig. 1(a). Another is ASIBOT,
a 5 Degree Of Freedom (DOF) manipulator developed at
Universidad Carlos III de Madrid (UC3M) [1]. See Fig. 1(b).
Assistive manipulators typically require operation in close
proximity to the disabled or elderly user and safety is there-
fore critical. They also aim to perform tasks in real-world
partially structured environments such as a user’s home. For
a robot, autonomous or teleoperated by a potentially disabled
user, reliably performing such tasks remains a challenge. One
solution may be to enable both the user and the robot to
use their own sensing, control and planning capabilities in a
cooperative way. This is also known as shared control.

Vanacker et al. [2] presented a strategy for filtering the
commands coming from the disabled user of a wheelchair
using contextual information from sensor readings as well
as previous data from able-bodied users. A more recent
approach used plan recognition to obtain the probability of a
set of user plans, given a set of observed user commands [3].
Another approach for predicting the intent of a wheelchair
user was shown in [4], where specific local models for
actions, for example moving towards a door, is used. The
shared control helped increase safety and reduce the user’s
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(a) The iArm. (b) ASIBOT in the UC3M kitchen test bed.

Fig. 1. Examples of assistive manipulators, the goal application.

cognitive workload. There is also considerable work on
mobile robots that have an adjustable degree of autonomy.
Here shared control is on the lower end of the scale of
potential autonomous modes. See for example [5].

For higher-DOF platforms like manipulators there is
less work available, although collaborative selection among
known objects in the environment shows promise [6]. Other
work has focused on visual object selection by the user
followed by visual servoing by the manipulator [7]. The
sensor and action spaces of such manipulators can be large,
and exact models of the environment and their relation to
every part of the robot can be hard to obtain and maintain.
Distributed proximity sensing can help simplify the problem
(and reduce the algorithmic complexity), see for example
previous work by the authors on an adaptive proximity-based
collision-limitation behavior [8]. This is here developed
further and extended to a complete assistive manipulator.

II. SYSTEM DESCRIPTION

A. Overview

The adaptive shared control described here uses a set of
distributed collision and proximity sensors to limit collisions
during direct control by the user. The main purpose is to
incrementally assist the disabled user in preventing the types
of collisions he/she has had in the past, enabling a faster
execution. The addition of a collision-limitation behavior
can potentially affect negatively both the performance and
satisfaction of the user. It would therefore be beneficial
for the system to apply the minimum required amount of
assistance for a user’s abilities and disabilities, while maxi-
mizing the overall performance. This is attempted through a
Hebbian learning that during collisions associates the pattern
of activation of the proximity sensors to behaviors that slow
the robot down in the direction of obstacles. There are two
principal contributions. First, it can be applied on high-
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(a) For each robot link; n collision sensors (grid),
m proximity sensors (dotted lines).

(b) Example of existing
tactile sensors, from [9].

Fig. 2. Collision and proximity sensing assumed for approach.

Fig. 3. Collision sensors (black squares) and proximity sensors imple-
mented on the virtual ASIBOT manipulator. Simulated field of view shown
for each proximity sensor: Medium-range Sharp GP2D120 and short-range
Vishay TCND5000 as green and purple square pyramids, respectively.

DOF assistive manipulators sharing control with a user in
dynamic and only partially structured environments. Second,
the system learns online, and in real-time with the user. This
allows the robot and user to mutually adapt to each other,
giving the user continuous feedback on, and the ability to
respond to, changes in the system.

B. Proximity Sensing

In general m proximity sensors and n discrete collision
sensors are here assumed for each link of the robot manipu-
lator, see Fig. 2(a). Infrared proximity sensors were chosen,
which have previously been used on full-body manipulator
sensing [10] and for grasping [11]. Any type of proximity
sensor can be used however, even a mix of different types
for redundancy. The final implementation had 68 proximity
sensors in total. See Fig. 3. 18 were simulated as Vishay
TCND5000 (max. dist. 50 mm). These were all distributed
over the end-effector. The remaining sensors were simulated
as Sharp GP2D120 (max. dist. 400 mm). All proximity
sensors had a simulated 10 ◦ field of view, represented in
the simulation by a square 6 by 6 array of point distance
measurements. The voltage output of each proximity sensor
was simulated based on the minimum distance measured,
proxj , and the calibration specifications seen in Fig. 4. This
voltage was directly fed as input to the neural networks (pj).

C. Collision Sensing

There is currently a large research effort focused on devel-
oping tactile sensing for robots. See for example Fig. 2(b).
For the simple collision sensing used here, the assumed
minimum spatial resolution of the tactile sensing was 20 mm,
which is well within the capability of the current state of the
art [12]. See Fig. 3. A discrete value was used to represent
the existence of a collision for each collision sensor. The

(a) Sharp GP2D120. (b) Vishay TCND5000.

Fig. 4. Plots of simulated voltage output for proximity sensors used (pj ).
Gray line is output assumed, red triangles are calibration data points.

Fig. 5. Link-specific neural network with discounted Hebbian learning
for m proximity sensors (dashed grey arrows are synapses), pj , and fixed
weights for n collision sensors (solid black arrows are synapses), ci.

total number of individually distinguishable collision sensors
simulated for the manipulator was 229.

D. Adaptation of Proximity Sensor Usage

A Hebbian learning approach was chosen, inspired by
the Distributed Adaptive Control (DAC) paradigm for au-
tonomous robots [13]. See Fig. 5 for a visualization of the
neural network assumed for each link. Virtual proximity
sensors with a known location and pose are defined a priori
(d̂k in Fig. 2(a)). The activation of each of the neurons
representing the virtual sensors, ok, varies linearly with
the input it receives from collision (ci) and proximity (pj)
sensors, according to Equation (1).

ok =
n∑
i=1

wk,ici +
m∑
j=1

wk,jpj . (1)

Each collision sensor is hardwired (weights initialized
offline) to a set of the virtual sensors to generate activation
during collisions. For this paper a one-to-one mapping was
used (with weight 1), and each pair was therefore assumed to
be collocated. The proximity sensors have full connectivity
to the layer representing the virtual sensors, and the weights
(wk,j) are updated using the discounted Hebbian learning
rule in Equation (2).

∆wk,j =
γ

m
(ηokpj − εwk,j). (2)

Learning therefore occurs whenever there is input from a
given collision and proximity sensor, while “forgetting” (the
discounting over time) occurs at all times. These processes
are controlled with the learning rate η and discount rate ε,
respectively. The parameter γ can be used to control the rate
of change of the weights in general. The parameters η and ε
are tuned to avoid learning with only proximity input. Here
γ = 1, η = 1.25 ∗ 10−5 and ε = 1.5 ∗ 10−4 was used. See
Fig. 6 for an example of the learned neural network weights
for one link.
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(a) Neural network weights. (b) Corresponding visualization for v67.

Fig. 6. Example neural network weights for final link (participant 5 in
experiment). Visualization of weights for one virtual proximity sensor shown
(v67). Transparency of square pyramid representing the field of view of a
given physical proximity sensor is made to vary with the corresponding
weight connecting it to v67. High transparency indicates low weight.

E. The Proximity Ratio

Algorithm 1 shows the scheme used for calculating the
maximum proximity ratio for each link. Each virtual sensor
“reading” ~dk is given the magnitude of the inverse of
the respective output of the neural network ok. Then the
“reading” that has the largest ratio of the projection of the
commanded velocity and its own magnitude is used at each
instant. This ratio is here named the proximity ratio rk. The
constant ξvel is chosen to be small to avoid computational
issues if ok is zero. The proximity ratio can then be used
to limit velocities based on the virtual sensor “reading”
where a collision will likely occur, and where collisions
have occurred in the past (learned by the neural network).
A non-zero αproj means velocities in other directions are
also slowed down. The translational velocity of each virtual
sensor, ~vk, is calculated from the commanded end-effector
velocity and the current kinematic pose of the robot. This is
further described in Section II-F.

Algorithm 1 Maximum proximity ratio for a link, based
on the translational velocities of the virtual sensors, ~vk,
the outputs of the link-specific neural network, ok, and the
direction of the respective virtual sensors, d̂k.

for k = 1 to q do
~dk = 1

ok+ξvel
d̂k

projk = ~vk · d̂k
rk = αproj+βprojprojk

‖~dk‖
end for
rmax = max

k
(rk)

F. Full-Body Collision-Limitation

Fig. 7 shows the schema for the collision-limitation behav-
ior for a complete multi-link manipulator. The commanded
velocities of the end-effector, ~vee, are here represented in the
robot base frame (b superscript). Using an iterative solver for
the inverse Jacobian, the corresponding joint velocities for
all joints are calculated. The translational velocities of each

sensor for each link are then estimated, and used to calculate
the proximity ratios (Section II-E). Finally, the original
commanded end-effector velocities are limited based on the
maximum proximity ratio for the complete manipulator. The
output velocity, ~vee,out, is the user-commanded velocity ~vee
divided by this ratio. The behavior will only activate if the
ratio exceeds one. For the behavior to work consistently for
sensors on any link of a given manipulator, it is therefore
assumed that ~vsj scales proportionally with ~vee for a given
instantaneous pose. Audio feedback was used to help the
user assess when the collision-limitation behavior was acting.
This consisted of simple tones being played with breaks in
between. The frequency of the alternation was proportional
to the current maximum proximity ratio, see Fig. 7. The
frequency of the tones was used to identify the link, from low
frequency at the base to high frequency at the end-effector.

III. EXPERIMENT METHOD

A. Participants

8 able-bodied participants were used, all graduate and
under-graduate students at UC3M. There were 3 female and
5 male, all right-handed. 4 had previous experience with
3D input devices and 3 had previous experience controlling
robots. The mean age was 23.7, with a range from 19 to 40.
Each participant was paid e10 for participation, and all gave
their informed to participate. The experiment was performed
in accordance with UC3M regulations.

B. Simulated Disability

As in previous work by the same authors [8], a noise
was added to the user input, according to Equation (3).
This was Gaussian noise, low-pass filtered at 2 Hz and
generated independently for each Cartesian component of
the noise vector (~z = [zx, zz, zpitch, zyaw]T ). The magnitude
of the translational velocities caused by the noise increased
proportionally to the magnitude of the translational velocities
commanded by the user, with some noise existing also
when the user did not indicate movement (non-zero αnoise).
Similarly for the rotational velocities. See Fig. 8(b) for
example trajectories.

~vee = ~vinput + ~vnoise,

where :

~v = [~vtrans, ~vrot]T = [vx, vz, vpitch, vyaw]T ,
and :
~vnoise,trans = ~ztrans(αnoise + βnoise||~vinput,trans||),
~vnoise,rot = ~zrot(αnoise + βnoise||~vinput,rot||),
zx, zz, zpitch, zyaw ∼ N (0, σ2).

(3)

This served as a crude estimation of the loss of control
caused by a physical impairment, and allowed for a homo-
geneous set of able-bodied participants. While real end-users
are needed to validate the clinical credibility of any assistive
technology [14], the use of simulated disabilities can help
drive the early development. For example a random compo-
nent being added to an able-bodied user’s computer mouse
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Fig. 7. The full-body collision limitation schema. The current joint angles are used in calculating the Jacobian (J), but are here omitted for clarity. The
b superscript is used to denote the robot base frame, while T denotes transformation. Grey color indicates external modules.

movements [15]. Exploratory works in shared control have
also used simulated disabilities [3]. A velocity-dependent
noise was here used, as it amplifies an effect already seen
in the speed-accuracy trade-off of many human movements.
That is, faster movements require greater forces in the
muscles, which again may introduce more nervous system
noise [16]. An increase in the signal-dependent neuromotor
noise has been related to stroke-related motor deficiencies
[17], and children with dystonia [18].

C. Simulated Environment and Tasks

The simulated environment used in the experiment can be
seen in Fig. 8 and Fig. 12. The experiment was performed
in the OpenRAVE simulator [19], running at approx. 50 Hz.
The ASIBOT robot was simulated to be attached to the right-
hand side of the user’s wheelchair. Implementing the system
first in simulation provided a flexible and easily controllable
environment for including human trials actively in the devel-
opment process [8]. The tasks performed involved moving
the end-effector of the robot from an initial resting position
to a pre-grasp position around one of 5 simulated cans in
the virtual environment. See Fig. 8(a). For a given trial the
target can was red, while the remaining were blue. A trial
was automatically judged as completed when the two fingers
of the robot end-effector was positioned around the thickest
part of the can, with a velocity below a given threshold.
The participants controlled the Cartesian x, z, pitch and
yaw velocities of the robot end-effector, in the end-effector
local frame. The arm was reset to the initial position if any
part of the robot collided with the environment, the physical
model of the user, or any of the cans. The participant would
then loose the time spent up until the collision, as the timer
kept running. For all trials the participants were instructed
to attempt to achieve the lowest mean times possible, while
keeping in mind that collisions were costly in terms of time.
See [8] for details on this performance metric.

(a) Example translational trajecto-
ries. Partic. 6, shared control.

(b) Participant performing experiment
(with 3D effects activated).

Fig. 8. The experiment setup.

D. Physical Setup

The physical experiment setup can be seen in Fig. 8(b).
The input device was a SpaceNavigator 6 DOF joystick. The
simulation of the robot in the environment was displayed in
3D on a 40 inch (approx. 102 cm) display (Samsung 3D
TV, UE40D8000). The participants used active 3D glasses
for depth perception. A colored timer was also shown. The
execution rate of the shared control was 40-70 Hz, while the
4 neural networks operated at 80-100 Hz, nominally. The
experiment was run on an 8-core Dell i7-2600 @ 3.4 GHz.

E. Procedure

The testing was performed over 2 days for each par-
ticipant, with multiple sessions each day. The total time
committed each day was about one hour per participant.
Each session consisted of 3 repetitions of each of the 5
tasks (5 target locations), for 15 trials in total. The first day
the participants were introduced to the experimental setup
and was given 3 sessions for training. This was followed
by 2 sessions for establishing a benchmark. The shared
control was not used. The second day the participants were
introduced to the shared control, and were first given a
maximum of 2 training sessions with the adaptive shared
control activated. That is, each participant was told to attempt
to achieve a comfortable level of assistance, and could decide
when the training should be ended. Then the adaptation was
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(a) Average MT over
participants.

(b) Individual MT, error bars
indicate standard error.

(c) Average MT
learning curves.

Fig. 9. The Mean Time (MT) with and without (benchmark condition) the
shared control. Based on the two non-training sessions for each condition.

disabled (both learning and forgetting), and each participant
was given 2 sessions to establish the performance with the
shared control, using the learned neural network weights.

IV. RESULTS AND DISCUSSION

The overall results, expressed in Mean Time (MT), can be
seen in Fig. 9. MT is here the mean time over all attempts
for all tasks for one participant. There was a statistically
significant improvement in average MT over participants of
32.5% with the shared control. A paired t-test was used,
with t(7) = 3.96, p = 0.005. This is comparable to previous
results [8]. Fig. 9(b) shows the equivalent comparison for
each participant. While all participants had a reduction in
the MT metric, there were large individual differences in the
amount of reduction, ranging from 5.3% for participant 7 to
59.9% for participant 5. That is, in under 20 minutes each
participant was able to “negotiate” a level of assistance that
at least did not inhibit, and for most cases seems to have
improved the performance. One participant noted that “[the
system] helped out when close to the target, could move
faster”, another that “it helped a lot on the more complex
tasks, and on the simpler especially in the last second before
finishing, where before attempted to go step-wise”.

Fig. 10. Examples of the development of the neural network weights for the
final link. Mean weights for each proximity sensor of final link, normalized
with maximum over 3 participants: a) 3, b) 5 and c) 6.

See Fig. 10 for examples of the development of the
neural network weights for the final link. A corresponding
visualization of the final usage of the proximity sensors
is given in Fig. 11. While participant 3 primarily received

(a) Participant 3. (b) Participant 5. (c) Participant 6.

Fig. 11. Visualizations of the learned proximity sensor usage for the final
link. Transparency of square pyramid representing the field of view of a
given sensor is made to vary with the mean neural network weights for
sensor. High transparency indicates low usage, and vice versa.

assistance when close to obstacles on the left, participants
5 and 6 had a more symmetric usage of the proximity
sensors. The latter two participants also used the in-hand
sensors, which are useful for slowing the robot down in
the last moments of the tasks. An example of the effect
of the shared control on the end-effector velocities can be
seen in Fig. 12. Significant assistance is provided as the
participant is approaching the target can, by the limitation
of the commanded x and z velocities from 12 seconds
onwards. It can also be seen that the system allows the user
to freely perform gross movements when there is sufficient
space (first 4 seconds here). In a ”real life” implementation
the user should likely be given control over when to adapt
the proximity sensor usage. Different sets of weights could
also be stored for different contexts, for example indoor vs
outdoor environments.

A within-subject experiment design was used, with the
same order for each participant. Extensive practice was
therefore given to attempt to reduce the effect of learning
across conditions. Fig. 9(c) shows that the MT improved
considerably during the first 2 sessions for each condition and
stabilized reasonably well for the last 2 sessions (in which
performance was measured). Furthermore, the experiment
was spread over 2 days to avoid excessive fatigue in the
participants. There is extensive evidence of the enhancing
effect of sleep on for example sequential finger tapping,
although there is less evidence of a significant effect on
for example pursuit tracking [20]. In any case, future ex-
periments should be counterbalanced, with separate days for
training, benchmarking and shared control.

V. CONCLUSIONS AND FUTURE WORK

The adaptive collision-limitation behavior developed can
be applied to high-DOF manipulator platforms operating
in environments where a set of sufficiently accurate envi-
ronment models and sensor to end-effector mappings are
difficult to obtain. This might make it interesting also in other
applications, such as in teleoperation. The online nature of
the adaptation seems important for maintaining the system
predictable from the user’s perspective. A controlled exper-
iment with realistic simulations of the tasks, sensors and
the 5 DOF ASIBOT manipulator showed promising results
for 8 able-bodied participants with simulated disabilities.
Future work will refine the experimental paradigm used, and
explore the application on a larger set of tasks (including
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Fig. 12. One attempt by participant 1 on one task with shared control. Cartesian x, z, pitch and yaw components of velocities (in end-effector frame)
shown, with time in seconds on the x-axis. A discrepancy between the input (~vuser) and the output (~vrobot) velocities of the shared control means
assistance is provided. Actual robot poses along trajectory shown, but the camera angle is altered for visualization. End-effector camera view shown in
inserts. Description of phases: 0-4 seconds: highly coordinated gross movement, 4-8 seconds: adjustment of pitch during forward movement, 8-12 seconds:
mainly yaw adjustments, 12-16 seconds: the final approach to the target.

generalization to unseen tasks) and to usage over a longer
time-frame. The workload and overall satisfaction of disabled
users controlling virtual and physical implementations of the
system will have to be investigated.
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