
Decomposing CAD Models of Objects of Daily Use and

Reasoning about their Functional Parts

Moritz Tenorth∗

tenorth@cs.uni-bremen.de

Stefan Profanter†

profante@cs.tum.edu

Ferenc Balint-Benczedi∗

balintbe@cs.uni-bremen.de

Michael Beetz∗

beetz@cs.uni-bremen.de

Abstract— Today’s robots are still lacking comprehensive
knowledge bases about objects and their properties. Yet, a lot
of knowledge is required when performing manipulation tasks
to identify abstract concepts like a “handle” or the “blade of a
spatula” and to ground them into concrete coordinate frames
that can be used to parametrize the robot’s actions. In this
paper, we present a system that enables robots to use CAD
models of objects as a knowledge source and to perform logical
inference about object components that have automatically
been identified in these models. The system includes several
algorithms for mesh segmentation and geometric primitive
fitting which are integrated into the robot’s knowledge base as
procedural attachments to the semantic representation. Bottom-
up segmentation methods are complemented by top-down,
knowledge-based analysis of the identified components. The
evaluation on a diverse set of object models, downloaded from
the Internet, shows that the algorithms are able to reliably
detect several kinds of object parts.

I. INTRODUCTION

Robots that are to perform household tasks like setting a

table or preparing simple meals [1] or that are to become

co-workers in a factory, as laid out in different research

roadmaps [2], [3], [4], will need to competently interact

with different tools and other objects of daily use. Most of

these items have been created for a specific purpose and

are therefore composed of a set of functional parts. Often,

objects are even defined by these functional parts: Wikipedia

for example defines a spoon1 as “a utensil consisting of a

small shallow bowl, oval or round, at the end of a handle”

and a bottle2 as “a rigid container with a neck that is narrower

than the body and a mouth”. To apply such definitions

when performing a task, a robot needs to be able to find

the components they refer to and compute their geometric

properties, like their positions and shapes, which is needed

for manipulating them.

Competently handling everyday items requires robots to

have large-scale object knowledge bases whose manual con-

struction can be a tedious and time-consuming task. We

therefore investigate methods to automate their construction

from existing sources on the Internet: On the one hand, there

are textual descriptions of which parts an object consists of,

in Wikipedia as well as in instructions for everyday activities

on pages like wikihow.com. This information can be imported

∗ Moritz Tenorth, Balint-Benczedi and Michael Beetz are with the
Institute for Artificial Intelligence and the TZI (Center for Computing
Technologies), University of Bremen, Germany. † Stefan Profanter is with
Technische Universität München, Germany.

1http://en.wikipedia.org/wiki/Spoon
2http://en.wikipedia.org/wiki/Bottle

Fig. 1. Overview of the system for the semantic interpretation of geometric
object models. The modules for mesh segmentation, geometric primitive
fitting and semantic annotation are integrated with the robot’s knowledge
base such that the identified components are instantiated in the knowledge
base to be available for logical inference and that symbolic knowledge can
be used for advanced interpretation.

into the robot’s knowledge base [5], but is not sufficient for

interacting with the real physical objects. On the other hand,

there are public databases such as the Trimble/Google 3D

warehouse3 that already contain hundreds of thousands of

CAD models and that are expected to grow substantially over

the following years. These databases provide detailed models

of the geometry of kitchen utensils, tools and appliances, but

almost no semantic annotations. Integrating both information

sources will enable robots to ground the textual descrip-

tions in geometric information to competently handle the

objects. To identity functional components in the monolithic

CAD models, they need to be decomposed, semantically

interpreted and set in relation to the textual descriptions. In

addition, robots have to perceptually ground the models in

their sensor data to be able to interact with them in the real

world.

This paper investigates how such hybrid symbolic-

geometric knowledge bases can automatically be constructed

by decomposing CAD models of objects into their functional

parts (Figure 1). The system consists of (a) a set of Prolog

3http://sketchup.google.com/3dwarehouse

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5943

rules that define objects and functional object parts in terms

of geometric primitives, (b) methods for segmenting CAD

models into these geometric primitives, and (c) components

for matching the CAD models to sensor data. Our system

automatically identifies geometric primitives like planes,

cylinders and spheres. Logical rules that define functional

components like handles or containers can be applied to these

primitives to identify higher-level concepts. The resulting

components are instantiated in the robot’s knowledge base

and can be used to answer queries that combine semantic

and geometric aspects like

• Where shall I grasp this object, where is its handle?

• Into which of these objects can I pour one liter of

liquids?

• I need to pour batter onto a pancake maker, where shall

I pour it?

• Which part do I need to grasp to open a bottle?

Our main contributions are (1) the approach of modeling

objects by their functional parts, combining geometric and

semantic information, (2) methods for automatically creating

these functional object models from CAD models down-

loaded from the Internet, and (3) the integrated system from

perception to semantic interpretation that allows robots to

reason about the parts and properties of the objects in front

of them.

II. RELATED WORK

The work we present is related to affordances [6] that

also deal with functional object parts and the actions that

can be performed with them. There has been much work

on recognizing affordances in sensor data, often focusing on

graspability (e.g. [7], [8], [9], [10]). The common approach

is to segment two- or three-dimensional sensor data in a

bottom-up fashion and to compute properties like concavity

or affordances like graspability directly from the sensor data.

This has the advantage that no models are required, so that

a robot can interact with unknown objects based only on

their geometric properties. These approaches are however

limited in that they have to deal with noisy data, can only

interpret the visible parts of an object, and do not make use

of higher-level knowledge. Information about the objects can

help to distinguish perceptually similar objects with different

functions (a roll of tape and a bowl may look similar, but

only one is a container).

Model-based approaches can apply prior knowledge to

improve the interpretation. Aldoma [11] presents a system

that detects affordances like containment or stack-ability

using CAD models of object categories. Kresse [12] de-

scribes methods for recognizing and classifying tools like

spoons, spatulas or skimmers, and to use the result for

parameterizing the robot’s controller. These approaches are

closely related to ours, though their focus is on perception

and on the classification of whole-object affordances, while

we concentrate on extracting knowledge from the models and

on performing reasoning about object components.

While we apply state-of-the-art techniques to segment the

object models into parts, we not claim to make contributions

to this research area. There is a large body of work on mesh

segmentation[13], [14] and geometric primitive fitting [15]

using techniques like hierarchical clustering [16], [17] or

machine learning [18], [19]. These methods are rarely used

for robotic applications ([20] is one example) and provide

only geometric, but no semantic analysis.

III. OVERVIEW

In this section, we will explain how objects are represented

in our hybrid geometric-semantic knowledge base and how

this internal representation can be generated.

A. Object representation

The object representation in the knowledge base needs to

bridge the gap between the abstract symbolic description of

object parts and the detailed geometry in the CAD models.

It is based on the assumption that many functional object

parts can (very roughly) be described by a combination

of only a few geometric primitives, namely planes, cones,

cylinders and spheres. The spoons in Figure 2, for example,

consist mainly of the handle (approximately cylinder-shaped)

and the bowl (approximately a sphere segment). There is

evidence from psychological research that humans model

and recognize objects by separating them into primitive

geometrical shapes called geons [21].

Note that we do not require the shapes to match exactly:

The spoons’ handles are not straight and flat on the top, their

bowls are somewhat elongated, neither surface is smooth.

Yet, the primitives can be matched, and the abstraction allows

to relate abstract descriptions (“a small shallow bowl [...]

at the end of a handle”) to the geometric information. As

the examples in Figure 2 show, this also allows some gen-

eralization across concrete objects. Section VI will explain

the representation of objects and their components in the

knowledge base in more detail.

Fig. 2. Representation of objects as a set of functional components. Though
the spoons are of very different shapes, they are composed of the same
functional components.

B. Model acquisition

The analysis of a new object model starts with a seg-

mentation based on the surface curvature and a fitting of

geometric primitives into these segments. After this step,

the basic object components are known and can be repre-

sented in the knowledge base. The symbols generated for

these components remain linked to the respective segmented

surface mesh, which allows to compute additional properties

like their area or their volume later on. Once there is a

symbolic representation of the composition of an object,

5944

logical definitions of functional parts can be applied. These

Prolog rules identify the respective parts in the geometric

primitives and to instantiate them in the knowledge base.

The system is realized as an extension of the KNOWROB

knowledge base [22] that is available as open-source soft-

ware in the ROS distribution4. KNOWROB is a knowledge

processing system that is specifically designed to be used

on and by robots, and that provides them with knowledge

needed for performing everyday manipulation tasks. It is

based on SWI Prolog [23] and represents knowledge in

terms of OWL statements [24]. The KNOWROB ontology

provides descriptions of hundreds of objects, objects parts,

and their properties. Each geometric analysis method (e.g. a

handle detector) is attached to the respective concept in the

knowledge base it computes (in this case, the class Handle).

IV. OBJECT MODEL SEGMENTATION

The first interpretation step is a segmentation of the object

model into parts. We apply a curvature-based segmentation

technique and fit geometric primitives like planar surfaces,

spheres, cones and cylinders to the segments. We apply the

curvature estimation method proposed by Rusinkiewicz [25]

that can be used for irregular triangle meshes (which are

commonly found in models downloaded from the Internet). It

computes the vertex curvatures based on a weighted average

of the normal vectors of the adjacent triangles.

As a compact representation of the curvature at each

vertex, we compute a color value from the curvature tensor.

The hue (0 to 360 degrees) and saturation (-1 to 1) are

calculated based on the mean curvature H = (k1 + k2)/2
and the Gaussian curvature K = k1 · k2 as follows:

hue =
4

3
| atan(H2 −K,H2 · sgn(H)) | (1)

sat =
2

π
atan((2H2 −K) · scale) (2)

The scale parameter indicates how curved a surface may

still be to be still considered planar. A smaller value leads to

greater tolerance for lightly curved surfaces to be regarded as

planes. The color value is used to segment the object surface.

First, each vertex is annotated with the kind of primitive

shape (planar surface, convex/concave sphere, convex/con-

cave cone) it most likely belongs to. The annotation of a

triangle is determined by majority voting among the annota-

tions of its vertices. In the rare case that all three annotations

are different, we prioritize planes over spheres and cones, and

convex over concave annotations which we found to occur

more frequently in our data set. Neighboring triangles with

the same annotations are then combined to larger surfaces

using a region-growing approach. The resulting segmentation

is smoothed by merging very small annotations into larger

neighboring surfaces (if their area is below 5% of the larger

surface) and by averaging annotations of adjacent triangles.

4http://www.knowrob.org

V. GEOMETRIC PRIMITIVE FITTING

The result of the previous step is a segmentation into sub-

meshes of approximately the same curvature. By matching

geometric primitives, we obtain a compact and parameteriz-

able representation as intermediate step towards the semantic

interpretation.

A. Plane Fitting

A plane is defined as a two-dimensional rectangle in 3D

space described by a normal vector and two values for the

length of each side. The formula for a 3D plane through

(0, 0, 0) is a · x + b · y + c · z + d = 0. We minimize the

distance from each point to the plane by determining a, b, c
and d such that the following equation becomes minimal

f(a, b, c, d) =
∑ (a · xi + b · yi + c · zi + d)2

a2 + b2 + c2
(3)

by setting the partial derivatives with respect to d to zero.

The plane normal vector is then the largest eigenvector of the

resulting matrix. To determine the extent of the plane, we fit a

rectangle to the vertices projected into a plane perpendicular

to the normal vector. The enclosing rectangle for these points

is then calculated by first computing the convex hull using

the Graham Scan algorithm [26] and then calculating the

minimal-area enclosing rectangle whose sides are aligned

with the edges of the convex hull. Figure 6 shows examples

of planes found in the models.

B. Sphere Fitting

A sphere is described by (x − a)2 + (y − b)2 + (z −
c)2 = r2, where (a, b, c) is the sphere center and r is its

radius. Our algorithm is based on [27]; a precondition is

that not all the points are coplanar, which is given since

otherwise the vertices would not have been classified as part

of a sphere in the segmentation step. The algorithm fits a

sphere to the vertices of a mesh segment by minimizing the

following energy function:

E(a, b, c, r) =

m
∑

i=1

(Li − r)2 (4)

with m as the number of vertices and Li =
√

(xi − a)2 + (yi − b)2 + (zi − c)2. It can be solved

using fixed-point iteration after setting the partial derivatives

with respect to a, b, c, and r to zero. Examples of fitted

spheres are shown in Figure 3.

C. Cone and Cylinder Fitting

Cylinders are a special case of cones whose bottom and

top radii are equal, i.e. the following algorithm can be used

for both kinds of primitives. Cones are described by their

generating line, their height, and the bottom and top radii.

Given a cone-shaped mesh segment, we compute the generat-

ing line by iterating over all vertices, randomly selecting two

other vertices, and computing the intersection points of the

planes described by the position and normal vectors of the

vertices. The apex (tip of the cone) is the intersection point;

if there is none, the annotation is a cylinder, not a cone.

5945

Fig. 3. Examples of convex (red) and concave (green) spheres fit to different
objects. In case of thin-walled objects like the spoons, bowl, glass or cup,
there are usually also the complementary inner/outer spheres.

The cone direction is computed from the mean positions of

the vertices and the apex position, the opening angle by the

angle between the generating line and the vectors between

the apex and the vertices. The values for each set of vertices

are averaged and then used to compute the top and bottom

radii as the averaged distance of vertices above and below the

center to the generating line. The algorithm iterates between

computing the radius and correcting the direction of the

generating line by comparing the direction of the radius with

the vertex normals until convergence.

VI. KNOWLEDGE-BASED OBJECT REPRESENTATION

The primitive shapes determined in the previous step

are now instantiated in the symbolic knowledge base. In

the KNOWROB system, objects are represented as instances

of abstract object classes like Cup or Spoon. Using the

properPhysicalParts relation, these instances are linked to

the object’s parts, which are themselves instances of concepts

like Cylinder or Sphere. The generation of these compo-

nent instances is performed automatically whenever a query

involves components of an object that has not yet been

analyzed. All components are cached for future queries and

remain linked to the corresponding surface mesh segment

that can be used to compute additional information like the

dimensions, volume, diameter of the component. Table I

lists which properties can be computed for the different

kinds of annotations. As for the components themselves, the

computation of these properties is automatically triggered

whenever they are needed to answer a query. Example

queries are shown in Section IX.

VII. SEMANTIC ANNOTATION OF OBJECT PARTS

The representation of object parts in the knowledge base

forms the basis to apply abstract knowledge to identify

semantically meaningful higher-level concepts. In this paper,

we exemplarily describe the identification of containers,

handles, and supporting planes by applying logical rules to

the representation of object parts.

A. Finding Containers

The kind of containers we consider are concave objects

that are open on one and closed on another side. In par-

ticular, we define containers as “concave cones that have a

planar surface near one end, which is perpendicular to the

generating line of the cone and has approximately the same

Planar surfaces Spheres
normalDirection (vector) radius (float)
objectLongSide (vector) volumeOfObject (float)
objectShortSide (vector) areaOfObject (float)
areaOfObject (float) areaCoverage (float)
areaCoverage (float) ConcaveTangibleObject

SupportingPlane (computable class) (computable class)

Cones/cylinders Containers
radius (average radius, float) volumeOfObject (float)
maxRadius (float) longitudinalDirection

minRadius (float) (opening direction, vector)
volumeOfObject (float)
lengthOfObject (float) Handles
longitudinalDirection (vector) Handle (computable class)
areaOfObject (float)
areaCoverage (float)

TABLE I

PROPERTIES DEFINED FOR THE DIFFERENT OBJECT PART ANNOTATIONS.

area as that end of the cone”. This definition is obviously

not exhaustive, but due to the composability of logical rules,

it can easily be extended. Additional definitions for e.g. box-

shaped containers can be added, and queries will return the

union of the results of all definitions.

Fig. 4. Classification of containers (dark green color). Note that the
container of the cup is recognized despite its hexagonal shape.

Based on the abstract definition, the system searches for

planes that intersect with the generating line of a concave

cylinder and checks if the angle is approximately 90 degrees.

For those candidates, it verifies that the intersection point

between the generating line and the plane is close to the end

of the cone and that the cone is open at one end. Figure 4

shows examples of containers that were identified using this

definition.

B. Identifying Handles

We focus on two kinds of handles for our analysis: On

the one hand, we consider (largely) cylindrical handles in a

(configurable) diameter range that can be chosen depending

on the robot’s gripper. On the other hand, we identify convex

object parts that are smaller than the robot gripper’s opening

range. For the former type of handle, we rank cones by a

weighting function that considers the minimum/maximum ra-

dius (in our experiments 0.4–4cm) and minimum/maximum

length (1–80cm) that a handle needs to have. The resulting

value is further influenced by the fitting error of the cylinder

and its area coverage weighted by a sigmoid function. For the

second kind of handle, convex object parts are identified by

combining neighboring annotations of geometric primitives

if the angle between the normals of triangles along the edge

is larger than 180 degrees (corresponding to a convex shape).

Afterwards, a cone is fit to the convex shape and the same

weighting method is applied to check whether it is suitable

as handle.

5946

Fig. 5. Classification of cylinders of suitable size as handles, as abstractly
defined in the knowledge base.

C. Locating Supporting Planes

Supporting planes, i.e. horizontal planes that objects can

be put upon (Figure 6), are an important concept for robots,

for example for putting down objects. Whether a plane

qualifies as supporting plane depends on the object’s pose;

we therefore evaluate this concept only on object instances

whose pose in the environment has been determined. We

consider a planar surface as ’supporting plane’ if its normal

vector, considering the estimated current object pose, devi-

ates by less than ten degrees from the global z-axis.

Fig. 6. Examples of supporting planes (orange) found in pieces of furniture,
industrial parts and household items.

VIII. OBJECT RECOGNITION AND CAD MODEL

MATCHING

As the final step, in order to apply the results of the geo-

metric and semantic interpretation techniques, a robot needs

to be able to fit the CAD models to the perceived sensor data.

The poses of the object components are described relative

to the object’s main coordinate system and can, once the

object’s pose in the environment has been determined, be

transformed into global coordinates and used, for example,

to identify the handle of an object. Although the model fitting

to real scenes is not the focus of this work, we consider it

an integral role in the context of robots finding objects. For

this reason we briefly present a possible approach for fitting

some of the segmented 3D CAD models to simple table top

scenes (Figure 8).

A detailed processing pipeline is shown in Figure 7. For

acquiring and preprocessing our scans we rely on the Point

VFH
Descriptor
Extraction

Points
from one

view

VFH
Descriptor
Extraction

Clustering

Pose

Check
Free

Space

RGB-D
Sensor
Data

CAD
Model

VTKPCD

PCDPCD

Particle Filter: n best poses

Instantiate
in Knowledge

base

Nearest-
Neighbor
Matching

6DOF
Initial

Alignment
ICP

Fig. 7. Pipeline for fitting CAD models to sensor data.

Cloud Library (PCL) [28]. In an offline phase we generate

synthetic partial views of the CAD model from known poses

and extract VFH descriptor [29] for each. During execution,

after a successful segmentation of the object, we find the best

k matches from the trained models using nearest-neighbors

matching. The best model is selected using a combination

of RANSAC and ICP as in [11]. This is aided by the

“visibility scoring” described in [30] to reject fits that would

mean that large parts of the model end up in front of or

behind the scanned points. After the successful fit of the

CAD model in the real scene, identifying the previously

extracted semantically interesting object parts comes down

to a simple coordinate transformation.

IX. EVALUATION

Our evaluation includes different aspects: First, we quan-

titatively evaluate how well the segmentation and geometric

primitive fitting identifies functional object components. We

then present the whole pipeline from sensor data to functional

models in the knowledge base and show queries that can be

answered based on this information.

A. Identification of functional parts

We evaluated the system of a set of 337 object models

downloaded from the Google 3D warehouse and the 3D-Net

database (http://3d-net.org). The diverse set includes

kitchen tools, silverware, cooking vessels, pieces of furniture

as well as industrial parts. For each of the models, we

generated the top three annotations by area or quality (in case

of handles) and manually annotated the results regarding two

criteria:

a) Are position, orientation & scale correct? For each

annotation type and model, this score between 0 and

1 indicates how many of the top three annotations are

correctly fit (Quality of fit).

b) Are the most relevant object parts among the top three

components? This score between 0 and 1 rates which

amount of the most relevant object parts are among the

top three annotations (Relevance).

While b) is a partly subjective measure, it is important

to verify that the most relevant functional parts (from a

human point of view) have been detected. We concentrate

on the three most significant components of each type to

avoid issues with small annotations that may be correct from

a geometric perspective, but do not carry much semantic

5947

Annotation type # annotations Relevance Quality of fit

Cone 938 0.8549 0.7833

Plane 825 0.7660 0.9082

Sphere 666 0.8739 0.6997

Container 291 0.3829 0.5381

Handle 480 0.5100 0.7735

TABLE II

EVALUATION OF THE OBJECT SEGMENTATION REGARDING

QUALITY OF FIT AND COVERAGE OF RELEVANT PARTS.

information (e.g. cylinders fit to rounded edges). Table II

lists the results of the evaluation. Examples of the matches

can be found in the figures throughout the paper. One can see

from the results that the primitive annotations (upper rows)

are better recognized than the composed ones (containers and

handles). The reasons are that the latter ones require all of

the underlying primitive annotations to be correct, and that

handles depend on the object’s scale. We have not adjusted

the scale of the downloaded models, but random samples

among failed examples showed that often the model’s scale

was not correct so that the “handle” did not fit the given

dimensions (i.e. did not fit into the robot’s gripper).

B. Semantic queries about observed object scenes

The main contribution of this paper is to enable robots

to reason about the functional parts of objects in front

of them. We therefore evaluate the whole system from

perception of objects to semantic queries about the scene.

Figure 7 introduced the pipeline for matching CAD models

of objects to sensor data, for computing their poses and

for instantiating the objects in the knowledge base. Once

these object instances are created, we can ask Prolog queries

about their parts and properties that are answered based on

the functional object model (which is generated on the fly

from the CAD models associated with the objects). Fig-

ure 8 shows examples of scenes observed by the robot (top

row), the aligned CAD models (second row), and selected

functional components in the bottom rows. These functional

components are the results of semantic queries that will be

explained in more detail in the following sections.

a) Selecting appropriate containers: When pouring liq-

uids into a container, a robot needs to select a container that

is larger than the volume of stuff to be poured into it. This

kind of common-sense knowledge can be formulated as a

rule and can be used to select among different containers

in a scene, in this case between the cup and the cooking

pot. For example, the robot can ask for objects that have a

container with a volume of at least 1 liter (0.001 m3) as part:

? - o w l h a s (Obj , k r : p r o p e r P h y s i c a l P a r t s , C) ,

o w l i n d i v i d u a l o f (C , k r : ’ C o n t a i n e r ’) ,

r d f t r i p l e (k r : volumeOfObject , C , V) ,

V > 0 . 0 0 1 .

Obj = kr : ’ po t 1 ’ ,

C = kr : ’ C o n t a i n e r A r t i f a c t F q D o s f s b ’ ,

V = 0 .00293

b) Determining which surface to pour batter on: When

pouring batter onto the pancake maker, the robot should

use the largest area on the top of the pancake maker, i.e.

the largest supporting plane. The same holds in general for

Fig. 8. Top row: View of the PR2 robot watching the tabletop scenes.
Second row: CAD models fit to point clouds perceived by the robot.
Bottom rows: Segmented CAD models; the results of the Prolog queries
are highlighted.

pouring something onto something, e.g. oil onto a pan, so

we can formulate the following rule:

p o u r o n t o (Obj , P a r t) : -

f i n d a l l (A- P ,

(r d f t r i p l e (k r : p r o p e r P h y s i c a l P a r t s , Obj , P) ,

r d f s i n s t a n c e o f (P , k r : ’ S u p p o r t i n g P l a n e ’) ,

r d f t r i p l e (k r : a r e a O f O b j e c t , P , A)) , P l a n e s) ,

k e y s o r t (P l anes , P l anesAsc) ,

l a s t (P lanesAsc , - P a r t) .

? - p o u r o n t o (k r : ’ maker1 ’ , P a r t) .

P a r t = k r : ’ F l a t P h y s i c a l S u r f a c e U o s q O A f b ’ .

c) Finding grasping points: For many objects, their

handles are the preferred grasping points. Knowledge about

the composition of objects and the positions of their handles

can therefore be used for determining where to grasp them.

g r a s p p o i n t (Obj , G r a s p P o i n t) : -

r d f t r i p l e (k r : p r o p e r P h y s i c a l P a r t s , Obj , Handle) ,

r d f s i n s t a n c e o f (Handle , k r : ’ Handle ’) ,

a n n o t a t i o n p o s e l i s t (Handle , G r a s p P o i n t) .

? - g r a s p p o i n t (k r : ’ po t 1 ’ , P) .

P = [0 . 0 0 1 , 0 . 0 6 2 , - 0 . 9 9 8 0 , - 0 . 1 7 3 ,

- 0 . 9 9 8 , 0 . 0 6 2 , 0 . 0 0 1 9 , - 0 . 1 0 9 ,

0 . 0 6 2 , 0 . 9 9 6 , 0 . 0 6 2 8 , 0 . 1 1 5 ,

0 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0 0 , 1 . 0 0 0] ;

d) Identifying bottle caps: Virtually all bottles and

many other kinds of containers like jars are closed with a

cylindrical screw cap that is close to the top of the object. The

following Prolog rule defines a cap as the topmost cylinder

and enables a robot to identify this important object part:

b o t t l e c a p (Obj , Cap) : -

f i n d a l l (Z - P ,

(r d f t r i p l e (k r : p r o p e r P h y s i c a l P a r t s , Obj , P) ,

o w l i n d i v i d u a l o f (P , k r : ’ Cone ’) ,

o b j p a r t p o s (P , [, , Z])) , ConePos) ,

k e y s o r t (ConePos , ConePosAsc) ,

l a s t (ConePosAsc , - Cap) .

? - b o t t l e c a p (k r : ’ pancakemix1 ’ , Cap) .

Cap = kr : ’ Cone vcRxyUbK ’ .

5948

X. CONCLUSIONS

In this paper, we presented a system that enables robots

to use CAD models of objects as knowledge source and

to perform logical inference about object components that

have automatically been extracted from these models. The

system includes several algorithms for mesh segmentation

and geometric primitive fitting that are integrated into the

robot’s knowledge base as procedural attachments to se-

mantic representations. The bottom-up segmentation is com-

plemented by a top-down, knowledge-based analysis of the

resulting components to determine semantically meaningful

components based on abstract, symbolic specifications in

the knowledge base. The evaluation on a diverse set of

object models, downloaded from the Internet, shows that

the algorithms are able to reliably detect the different kinds

of object parts, and that these models can be turned into

a useful knowledge resource for autonomous robots. We

expect that the system will help robots to better apply

common-sense knowledge by grounding abstract symbols in

geometric object models. The functional models complement

the original object CAD models that remain available for

perception and visualization purposes.

ACKNOWLEDGMENTS

We would like to thank Zoltan-Csaba Marton, Emal Sadran and

Maximilian Wenger for their help on the model fitting part for real

scenes. This work is supported in part by the EU FP7 Projects

RoboHow (grant number 288533) and RoboEarth (grant number

248942).

REFERENCES

[1] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,
D. Pangercic, T. Rühr, and M. Tenorth, “Robotic Roommates Making
Pancakes,” in 11th IEEE-RAS International Conference on Humanoid

Robots, Bled, Slovenia, October, 26–28 2011.

[2] J. Hollerbach, M. Mason, and H. Christensen, “A Roadmap for
US Robotics – From Internet to Robotics,” Computing Community
Consortium (CCC), Tech. Rep., 2009.

[3] R. Bischoff and T. Guhl, Eds., Robotic Visions to 2020 and Beyond

– The Strategic Research Agenda for Robotics in Europe. European
Robotics Technology Platform (EUROP), 2009. [Online]. Available:
http://www.robotics-platform.eu

[4] Bicchi, A., et al., “Research Roadmap,” EURON – European
Robotics Network, Tech. Rep. DR.1.3, 2007. [Online]. Available:
http://www.euron.org/miscdocs/docs/year3/DR.1.3.pdf

[5] M. Tenorth, D. Nyga, and M. Beetz, “Understanding and Executing
Instructions for Everyday Manipulation Tasks from the World Wide
Web,” in IEEE International Conference on Robotics and Automation

(ICRA), Anchorage, AK, USA, May 3–8 2010, pp. 1486–1491.

[6] J. J. Gibson, The Theory of Affordances. John Wiley & Sons, 1977.

[7] N. Dag, I. Atil, S. Kalkan, and E. Sahin, “Learning affordances
for categorizing objects and their properties,” in 20th International

Conference on Pattern Recognition, ser. ICPR ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 3089–3092.

[8] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Sucan, “Towards reliable grasping and manipulation in household
environments,” in Proceedings of RSS 2010 Workshop on Strategies

and Evaluation for Mobile Manipulation in Household Environments,
2010.

[9] M. Nieuwenhuisen, J. Stückler, A. Berner, R. Klein, and S. Behnke,
“Shape-primitive based object recognition and grasping,” ROBOTIK

2012, 2012.

[10] H. Kjellström, J. Romero, and D. Kragic, “Visual object-action
recognition: Inferring object affordances from human demonstration,”
Computer Vision and Image Understanding, vol. 115, no. 1, pp. 81 –
90, 2011. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S107731421000175X

[11] A. Aldoma, F. Tombari, and M. Vincze, “Supervised learning of hidden
and non-hidden 0-order affordances and detection in real scenes,” in
IEEE International Conference on Robotics and Automation (ICRA),
St. Paul, MN, USA, May 14–18 2012.

[12] I. Kresse, U. Klank, and M. Beetz, “Multimodal autonomous tool
analyses and appropriate application,” in 11th IEEE-RAS International

Conference on Humanoid Robots, Bled, Slovenia, October, 26–28
2011.

[13] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh seg-
mentation based on fitting primitives,” The Visual Computer, vol. 22,
no. 3, pp. 181–193, 2006.

[14] A. Agathos, I. Pratikakis, S. Perantonis, N. Sapidis, and P. Azari-
adis, “3D Mesh Segmentation Methodologies for CAD Applications,”
Computer-Aided Design & Applications, vol. 4, no. 6, pp. 827–841,
2007.

[15] R. Bénière, G. Subsol, G. Gesquière, F. Le Breton, and W. Puech,
“Recovering primitives in 3d cad meshes,” in Proceedings of SPIE,
vol. 7864, 2011, p. 78640R.

[16] M. Attene, S. Katz, M. Mortara, G. Patané, M. Spagnuolo, and A. Tal,
“Mesh segmentation - a comparative study,” in IEEE International

Conference on Shape Modeling and Applications (SMI). IEEE, 2006.
[17] M. Garland, A. Willmott, and P. S. Heckbert, “Hierarchical face clus-

tering on polygonal surfaces,” in Proceedings of the 2001 Symposium

on Interactive 3D Graphics, ser. I3D ’01. New York, NY, USA:
ACM, 2001, pp. 49–58.

[18] F. Tombari and L. D. Stefano, “Automatic semantic segmentation of
3d urban scenes,” in 3D Imaging, Modeling, Processing, Visualization

and Transmission Conference (3DIMPVT 2011), May 16-19 2011.
[19] F. Tombari, L. D. Stefano, and S. Giardino, “Online Learning for

Automatic Segmentation of 3D Data,” in 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2011.
[20] S. Lee, K. D. Yoo, J. W. Kim, and M. J. Lee, “Surface patch

primitive based object modeling from cad data,” Applied Mechanics

and Materials, vol. 162, pp. 179–183, 2012.
[21] I. Biederman, “Recognition-by-components: a theory of human image

understanding,” Psychological review, vol. 94, no. 2, p. 115, 1987.
[22] M. Tenorth and M. Beetz, “KnowRob – Knowledge Processing for

Autonomous Personal Robots,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2009, pp. 4261–4266.
[23] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “Swi-prolog,”

Theory and Practice of Logic Programming, pp. 67–96, 2012.
[24] W3C, OWL 2 Web Ontology Language: Structural Specification and

Functional-Style Syntax. World Wide Web Consortium, 2009,
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027.

[25] S. Rusinkiewicz, “Estimating curvatures and their derivatives on trian-
gle meshes,” in 2nd International Symposium on 3D Data Processing,

Visualization and Transmission (3DPVT 2004), 2004, pp. 486–493.
[26] R. Graham, “An efficient algorithm for determining the convex hull

of a finite planar set,” Information processing letters, vol. 1, no. 4, pp.
132–133, 1972.

[27] D. Eberly, “Least squares fitting of data,” 2008.
[Online]. Available: http://www.geometrictools.com/Documentation/
LeastSquaresFitting.pdf

[28] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011, pp. 1–4.

[29] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in Proceedings of

the 23rd IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Taipei, Taiwan, October 2010.
[30] O. M. Mozos, Z. C. Marton, and M. Beetz, “Furniture Models Learned

from the WWW – Using Web Catalogs to Locate and Categorize
Unknown Furniture Pieces in 3D Laser Scans,” Robotics & Automation

Magazine, vol. 18, no. 2, pp. 22–32, June 2011.

5949

