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Abstract— We propose a new concept called friction sensitivity
which measures how susceptible a specific grasp is to changes
in the underlying friction coefficients. We develop algorithms
for the synthesis of stable grasps with low friction sensitivity
and for the synthesis of stable grasps in the case of small
friction coefficients. We describe how grasps with low friction
sensitivity can be used when a robot has an uncertain belief
about friction coefficients and study the statistics of grasp
quality under changes in those coefficients. We also provide
a parametric estimate for the distribution of grasp qualities
and friction sensitivities for a uniformly sampled set of grasps.

I. INTRODUCTION

Friction coefficients are important for determining the
quality of a specific grasp and for understanding whether a
grasp is force-closed or not. Most state of the art grasp syn-
thesis approaches typically assume fixed friction coefficients
and evaluate an associated grasp quality measure such as the
L1 grasp quality Qµ, [1]. In reality, friction coefficients may
vary depending on temperature, humidity and the presence
of dirt on an object. Also, a robot will rarely have knowledge
of precise friction coefficients to start with. Instead, we may
only be able to estimate a confidence interval of friction
coefficients. In this work, we address the following related
issues:

a) We systematically study the impact of changes in fric-
tion coefficients on the stability of grasps in the context
of a popular L1 grasp quality measure Qµ.

b) We propose the concept of friction sensitivity Sna,b(g)
of a grasp g with respect to Qµ and fit a Dirichlet
distribution to the distribution of (Qµ(g), Sna,b(g)) for
uniformly sampled grasp configurations with three con-
tact points.

c) We propose and evaluate algorithms for synthesizing
stable grasps with low friction sensitivity and for small
friction coefficients.

The paper is structured as follows: In Section II, we dis-
cuss related work and introduce preliminaries. In Section III,
we define friction sensitivity and describe our algorithms for
grasp synthesis. We discuss our experiments in Section IV.
Finally, we conclude our work and discuss future directions
in Section V.

II. BACKGROUND AND RELATED WORK

In the following, we review the grasp quality function Qµ
and the basics of friction coefficients and grasp synthesis.
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Fig. 1: For the red and blue contact point configurations depicted
on the object, we consider how the grasp’s stability, measured in
terms of a popular grasp quality function, varies with changing
friction coefficients. The vertical axis depicts grasp quality, while
the assumed friction coefficient µ is varied from 0.2 to 1.0. The
blue grasp remains more stable under changes in friction, while the
red grasp yields more stable grasps for higher friction values.

A. Grasp synthesis and L1 grasp quality

Similarly to the work reported in [2], we focus on deter-
mining contact point configurations on a surface S which
result in a force-closed grasp g. We consider grasps

g = (c1, . . . , cm, n1, . . . , nm, z) ∈ R3m × (S2)m × R3

consisting of contact points ci ∈ S on some surface S ⊂ R3

and with corresponding inward-pointing unit normal vectors
ni ∈ S2 = {x ∈ R3 : ‖x‖ = 1} such that S has centre of
mass z ∈ R3. To determine if such a grasp g can withstand
external forces, we need to estimate if g is a force-closed
grasp [3]. Ferrari and Canny [1] introduced an L1 grasp
quality measure Qµ which can be used for this purpose. For a
fixed friction coefficient µ > 0, the Coulomb friction model
states that – under the assumption that no slippage occurs
– forces applied at a contact ci ∈ R3 on some surface S
and with corresponding inward pointing unit normal vector
ni ∈ R3 satisfy ‖f ti ‖ 6 µf⊥i , where f ti ∈ R3 denotes
the component of fi tangent to S at ci, f⊥i ∈ R, and
f⊥i ni denotes the component along the normal direction
ni - i.e. these forces have to lie within the friction cone
Ci = {fi ∈ R3 : ‖f ti ‖ 6 µf⊥i }. For a particular grasp g as
above, these friction cones Ci can then be approximated by
Ci ≈ {

∑l
i=1 αifij : αi > 0} for l uniformly spaced vectors

fi1, . . . , fil ∈ Ci satisfying 〈fij , ni〉 = 1.
In this paper, we use l = 8 such uniformly spaced vectors.

To define this L1 quality measure, one then approximates the
set of wrenches satisfying

∑m
i=1 |f⊥i | 6 1 by the convex hull

Conv({0} ∪ S(g)), where

S(g) = Conv ({wij : i ∈ {1, . . . ,m}, j ∈ {1, . . . , l}}) ,
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and where wij = (fij , (ci− z)× fij). Qµ(g) is then defined
to be the radius of the largest ball inside Conv({0} ∪ S(g))
and centred at the origin. To compute Qµ(g), S(g) is
represented as an intersection of affine half-spaces S(g) =
∩sj=1{x ∈ R6 : 〈x, vj〉 6 λj} for some λj ∈ R, vj ∈ R6,
‖vj‖ = 1, which can be obtained using the Quickhull
algorithm [4]. Then Qµ(g) = max(0,minj λj). If a grasp
g satisfies Qµ(g) > 0, it is force-closed and can withstand
external wrenches in arbitrary direction. Furthermore, grasps
are considered more stable the larger Qµ(g) is.

B. Friction coefficients and grasp synthesis

For the purpose of robotic grasping, friction is commonly
modelled using Coulomb’s friction laws [3] for some fric-
tion coefficient µ as above. Friction coefficients depend on
various parameters: [5] discusses in particular the influence
of humidity on friction, while [6] study the dependence of
friction on temperature. Further factors influencing friction
include surface properties such as dusty or oily vs. dry and
clean surfaces [7].

Since robots are to work in extreme conditions such
as in search and rescue operations and in manufacturing
applications, the impact of environmental factors on friction
coefficients should be considered an important component
in the analysis of grasp hypotheses. Even in less-extreme
scenarios, such as that of a service robot in a home environ-
ment, friction can be influenced by dusty or dirty surfaces
and can vary even during a manipulation task, e.g. when a
robot is washing dishes. Clearly, none of these environmental
factors can be determined exactly, and the robot hence needs
to operate with an expected friction value. In current grasp
synthesis work, such friction coefficients are often set to a
fixed value according to friction tables for various material
combinations [3], [2].

To the best of our knowledge, the problem of assessing the
goodness of a force-closed grasp with respect to robustness
under changes in friction has so far not been studied in depth.
One work which mentions the problem of uncertainty in
friction coefficients is [7] where the impact of uncertainties in
friction and contact positions on grasp synthesis is discussed.
In order to deal with uncertainty in friction coefficients, the
authors suggest to work instead with ‘effective friction coef-
ficients’ which are obtained by multiplying the coefficients
of friction by some fixed reduction rate 1

κ 6 1 which is
assumed to be known. In the work of [8], independent contact
regions are computed on discretized objects taking into
account uncertainties in friction coefficients. There, these
uncertainties are also modeled using a reduction rate. Based
on the same concept, [9] developed an algorithm to compute
minimal required friction coefficients and contact forces.

III. METHODOLOGY

Fig. 1 displays two examples showing how the grasp
quality measure Qµ changes with respect to changes in
the assumed friction coefficient µ for the depicted contact
configurations and for µ ∈ [0.2, 1.0]. This figure highlights
several important features of the function µ 7→ Qµ(g).

Observe, for example, that the graphs are monotonically
increasing with increasing friction and that they have a
distinct almost piecewise-linear looking shape which seems
to be a generic property we encountered also for other object
shapes. Furthermore, we observe that, for µ = 1, a ranking of
these two grasps based on grasp quality alone would return
the red grasp as a preferable grasp hypothesis, while this
grasp is unstable for µ = 0.2 where the blue grasp remains
stable. A natural question arises: which grasp should we
choose if we only have knowledge of a confidence interval
µ ∈ [0.2, 1]?

A friction coefficient of 0.2 corresponds to the friction of
a polythene (plastic) surface in contact with a steel surface,
while a friction of 1.0 corresponds to e.g. copper against
copper. In this section, we introduce a simple sensitivity
measure Sna,b(g) which we will use to assess a grasp’s
stability under variations in friction. Furthermore, we devise
a parametric approach for studying the sensitivity of generic
grasps as well as grasps on specific objects. Finally, we
describe a gradient based approach for synthesizing grasps
robust under changes in friction coefficients and develop a
new algorithm that can be used to determine force-closed
grasps even for small friction coefficients.

A. Quantifying a grasp’s sensitivity to friction

To provide a computationally tractable first-order approx-
imation of the average slope of the graph µ 7→ Qµ(g), for
µ ∈ [a, b] and for a fixed grasp g, we make the following
definition:

Definition 3.1. Consider a grasp configuration g and a
friction interval [a, b] ⊂ R>0. Fix n ∈ N and consider
δ = 1

n (b − a), {x0, . . . , xn} ∈ [a, b], xi = a + iδ for
i ∈ {0, . . . , n}. We define the sensitivity Sna,b(g) of g with
respect to the parameters a, b, n to be:

Sna,b(g) =
1

n−m

n−1∑
i=m

ki,

where ki = 1
δ (Qxi+1(g) − Qxi(g)) and m is the smallest

integer i ∈ {0, . . . , n− 1} such that Q(xi) is not zero. If no
such m exists, we define Sna,b(g) = 0.

We then consider grasps with large Sna,b(g) to be sensitive
to changes in friction, while grasps with small Sna,b(g) are
considered to be insensitive to such variations.

Suppose a robot has computed a set of grasp hypotheses
Hµ = {g1, . . . , gm} of grasps gi with underlying friction
coefficient µ > 0 and such that Qµ(gi) > 0. While traditional
ranking based approaches would select a grasp with largest
grasp quality Qµ, our definition of grasp sensitivity allows us
to react to uncertainty in the friction coefficients. Returning
to Fig. 1, we can compute that S20

0.2,1(gblue) ≈ 0.1640 for the
blue grasp, while S20

0.2,1(gred) ≈ 0.2287 for the red grasp.
If we are working under the assumption that µ ≈ 0.6, a
ranking by Q0.6 now favours gred, while a ranking by S20

0.2,1

for grasps with Q0.6(g) > 0 returns gblue, which indeed stays
stable over the whole friction interval [0.2, 1]. To provide a
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simple measure balancing the benefits of large grasp quality
with low sensitivity, we define

Φna,b,µ(g) =
Qµ(g)

Sna,b(g)
,

which provides a simple scoring function for grasps. We
propose that grasps with large Φna,b,µ(g) are desirable since
they arise from a comparatively large grasp quality and low
friction sensitivity.

B. Statistical properties of grasps and friction

Let us now describe how we shall study some of the basic
statistical properties of grasp quality and friction sensitivity.

Generic random sampling: To study grasps with m
contact points generically, that is without a notion of an
object, we consider the set D(r) = B(r)m × (S2)m × {0},
where B(r) = {x ∈ R3 : ‖x‖ 6 r} and S2 = {x ∈ R3 :
‖x‖ = 1} and 0 denotes the origin in R3. An element g =
(c1, . . . , cm, n1, . . . , nm, z) ∈ D(r) then represents a grasp
with contacts ci, inward pointing unit contact-normals ni and
with centre of mass z at the origin, and where the contacts are
constrained to lie in the ball B(r) around the origin. Using
the uniform probability distribution on D(r), we can now
produce an arbitrary number of random grasps in this set.
We employed a similar approach of grasp sampling in our
work [10]. The grasp quality Qµ and our sensitivity measure
Sna,b can in this context be considered as random variables
on this space whose properties we can study statistically. In
our experiments, we will in particular show that a Dirichlet
distribution provides a good fit to (Qµ(g), Sna,b(g)).

Random sampling and surfaces: To study grasps on
an arbitrary surface S, we shall employ uniform random
sampling on S (as in [10]) to obtain a set C = {c1, . . . , cl}
of contact points. We can then study the set of

(
l
m

)
tuples

of distinct configurations of m such contact points as grasp
candidates. Using this procedure, we shall then obtain infor-
mation about the distribution of Qµ and Sna,b for a specific
surface.

C. Synthesizing stable grasps with small friction coefficient

As we shall show, stable grasps are difficult to synthesize
with sampling based approaches such as the ones used
by GraspIT [11] if the friction coefficients are small (e.g.
µ 6 0.5). We hence propose a new procedure using ‘virtual’
friction coefficients. Suppose we have a parametric form for
our graspable surface S, so that points and unit normals on S
are given by coordinates (x, y) ∈ R2 as c(x, y) and n(x, y)
respectively. Since we would like to execute a gradient based
method using Qµ, we shall use a modified definition, where
Q̂µ(g) = minj λj , rather than Qµ(g) = max(0,minj λj),
where λj are the offsets of the hyperplanes defining the
wrench space S(g) which we mentioned in Section II. The
advantage of Q̂ here is that we can obtain numerical gradients
even when Q̂ < 0, while Q just takes on the value zero in
those regions. Note that Q̂µ(g) = Qµ(g) when Qµ(g) > 0.

For grasps with m contacts, we then obtain a function Fµ :
R2m → R mapping m contact point coordinates to the grasp

Algorithm 1 Search for a stable grasp for a small friction
coefficient µend > 0 on a parametric surface S.
Require: S, 0 < µend < µstart, δ > 0, N,M ∈ N
g ← SampleGrasp(S)
for i ∈ {0, . . . , N − 1} do

µ← µstart − i
N−1 (µstart − µend)

g ← GradientAscent(Fµ, g, δ,M)
end for
return g

quality Q̂µ(g) of the corresponding grasp at those contact
points. We then proceed by iterating M steps of a standard
gradient ascent of Fµ with a small decrease in µ until a
desired target friction value µend is reached. Alg. 1 provides
details, where GradientAscent(Fµ, g, δ,M) executes M
gradient ascent steps with step size δ with respect to Fµ and
starting configuration g. Here, gradients are approximated us-
ing finite differences. SampleGrasp(S) returns a uniformly
sampled grasp configuration on the surface S.

IV. EVALUATION

In the following, we describe an evaluation of our pro-
posed methodology.

A. The impact of friction on grasp stability

Let us now study the impact of changes in friction
coefficients on Qµ. For this purpose, we sampled 10 sets
of 10000 uniform samples, U1, . . . , U10, from the uniform
distribution on D(2). Fig. 2 displays the mean percentage
of stable grasps (i.e. Qµ(g) > 0) among the grasps in these
sets Ui against friction coefficients ranging from 0 to 5 in
increments of 0.1.
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Fig. 2: Percentage of stable grasps for uniformly sampled grasps
from D(2).

In this and all the following experiments, we used l = 8
edges to approximate the fiction cones used in the calculation
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of Qµ. Fig. 2 additionally indicates the standard deviation
for our 10 sets of grasp samples U1, . . . , U10. Observe that
the percentage of stable grasps increases substantially as
the friction coefficient is increased and that this percentage
decays rapidly as µ tends to zero as can be seen in the second
plot. A friction coefficient of µ = 0.2 corresponds to the
friction of polythene plastic against steel, while a friction of
1.0 corresponds to copper against copper. For µ = 0.2, only
about 0.084% of the grasps were stable, while for µ = 0.5,
2.4% were stable and, for µ = 1.0, about 16.2% of the grasps
were stable.

Friction coefficients hence significantly influence the suc-
cess of sampling based grasp synthesis algorithms such as
[2]. While previous work has certainly been aware of this
phenomenon, the above simple ‘generic’ sampling based
approach provides us with a first quantitative analysis of
this phenomenon which, to the best of our knowledge, has
not previously been formalized in this way. Fig. 2 provides
clear evidence that ‘straight-forward’ sampling approaches
for grasp synthesis used e.g. by the popular simulation
environment GraspIT [11], are inappropriate for low friction
coefficients.

B. Friction sensitivity for generic grasps

Recall that, when Qµ(g) of a grasp g is relatively small
for the expected friction coefficient µ, a big Snµ−ε,µ+ε(g), for
ε > 0, indicates that it may be inappropriate to use the grasp
g when we are uncertain about the exact value of µ. Let us
now investigate the relationship between friction sensitivity
and grasp quality Qµ for a generic set of grasps.

For this purpose, we sampled a set W of 1 million grasps
with three contact points uniformly from the set D(2). We
assume that the true underlying friction coefficient µ lies in
the interval [0.2, 1.0] with an expected value of 0.6, and we
hence compute Q0.6(g) for all grasps g ∈W . Let us consider
the set of grasps W ′ = {g ∈ W : Q0.6(g) > 0.001}. W ′
contained 29236 stable grasps. For each g ∈ W ′, we now
compute an associated fiction sensitivity S20

0.2,1.0(g), using
a partition of the interval [0.2, 1.0] into 20 equally spaced
sub-intervals.

Fig. 3: The distribution of grasp quality Q0.6 (horizontal axis)
against sensitivity S20

0.2,1 (vertical axis) is displayed on the left and
the mapping of this data onto the standard simplex in R3 is shown
on the right.

Fig. 3 displays the distribution of (Q0.6, S
20
0.2,1.0) for our

set of stable grasps W ′. We will now study this distribution
in more detail.

A parametric density estimate: Observe that the data in
the left part of Fig. 3 is located in a cone with apex at the
origin. We can see that grasps with low sensitivity and high

grasp quality are sparse in this data-set. In order to be able
to quantify statements about the likelihood of encountering
grasps with prescribed grasp quality and friction sensitivity,
we propose a parametric density fit as follows: as a first
step, we determined edges e1, e2 of the smallest triangle in
R2 enveloping all the samples and with apex at the origin.
Both e1, e2 have one end-point at the origin and satisfy
〈e1 − e2, d〉 = 0, where d is the vector which equally
divides ∠(e1, e2). Moreover, the length of e1, e2 is chosen
as small as possible, and such that the triangle still contains
all the samples. In our case, e1 = (0.5756, 0.9094) and e2 =
(0.0017, 1.0762). The triangle containing the edges e1, e2 is
mapped to the standard 2-simplex ∆ = {(x1, x2, x3) : xi >
0, x1 +x2 +x3 = 1} by an affine map mapping the origin to
the vertex (0, 0, 1) ∈ ∆. The right part of Fig. 3 displays the
image of our data-points on ∆. Given our transformed data
points in ∆, we determined a Dirichlet distribution fit to the
data. Recall that a Dirichlet distribution Dir(α1, α2, α3) on
∆ is determined by three concentration parameters αi > 0.
We performed a maximum likelihood fit of the parameters to
the data using the fastfit Matlab toolbox [12]. The estimated
parameters were (α1, α2, α3) = (1.0001, 2.2273, 9.8739).

40

20

0

0.5

1.0

1.0

Fig. 4: Comparison between the fitted Dirichlet distribution and
the observed data.

The surface plot in Fig. 4 shows the resulting density
function of Dir(1.0001, 2.2273, 9.8739) over the projection
of ∆ onto the xy plane together with a standard histogram
density estimator. As we can see in that figure, the chosen
Dirichlet density provides a visually satisfying fit to the data
following the histogram density estimate closely.

To further quantify the quality of the fit, we ran a Pearson
χ2 test [13] to test the difference between the observed and
expected frequencies. For this purpose, we used Mathemat-
ica’s Monte-Carlo-based χ2 testing function to evaluate the
goodness of our fit and used a significance level of α = 0.05.
After repeating the test 10 times, the resulting average p-
value was 0.833, indicating that our fit is of high quality. The
usefulness of our parametric fit lies in the fact that it provides
a summary of the data enabling us to compute probabilities
for the occurrence of samples in different regions of the
quality/sensitivity parameter space.

Table I provides examples of computed probabilities for
encountering grasps in selected parameter regions based on
our Dirichlet distribution fit. The bracketed expressions in
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TABLE I: Probabilities for encountering a grasp in the selected
parameter regions in (S20

0.2,1.0, Q0.6) space for uniform samples in
{g ∈ D(2) : Q0.6(g) > 0.001} determined using our Dirichlet
distribution fit. The corresponding relative observed frequencies
from our data-set are displayed in brackets below each such value.

Q0.6 S20
0.2,1.0(g) 6 0.2 S20

0.2,1.0(g) 6 0.4 S20
0.2,1.0(g) 6 0.6

> 0.02 0.1003 0.4317 0.6002

(0.1127) (0.4576) (0.6109)

> 0.05 0.0196 0.2097 0.2913

(0.0189) (0.1994) (0.3062)

> 0.10 0.0001 0.0352 0.0923

(0.00007) (0.0379) (0.0902)

> 0.15 0 0.0042 0.0203
(0) (0.0046) (0.0236)

the table indicate the number of samples lying in those
regions divided by the total number of samples. Since
these are very close to the probabilities predicted by our
Dirichlet distribution fit, this provides further assurance that
the parametric representation can be used to calculate these
probabilities without the knowledge of the full sample set.

C. Friction sensitivity for example objects

Having studied properties of grasp quality and friction
sensitivity in a generic setting, we now concentrate on grasps
on the four surfaces displayed in Fig. 5. For the purpose
of this experiment, we assume a parametric representation
of these surfaces allowing us to compute normals at each
surface point p. We used four of the surfaces studied in
[10] and followed the same uniform contact point sampling
procedure as outlined in that paper.

Fig. 5: Example surfaces and grasps on them

In particular, to study the surface-specific distributions
of grasp quality and friction sensitivity, we sampled 100
contact points C uniformly from each of these surfaces and
computed the resulting

(
100
3

)
= 161700 distinct grasps with

three contact points chosen from C. Fig. 6 displays the
resulting distributions for each of the surfaces depicted in

Fig. 5 analogously to the generic case in Fig. 3. Observe
that, while the general concentration of the grasp qualities
and sensitivities towards the origin remains a dominant
feature, we can observe object-specific properties in these
distributions such as the sparse fringes for the box object and
a stronger concentration towards the origin for the top left
and bottom right object. Fig. 5 additionally displays sample
grasps which corresponds to the respective red points in
Fig. 6. These initial investigations provide evidence that such
distributions in terms of grasp quality and friction sensitivity
could be used also for the classification of the graspability
of various objects under varying friction assumptions.

Fig. 6: Distributions of Q0.6 (horizontal axis) and S20
0.2,1 (vertical

axis) for random grasps on the 4 surfaces displayed in Fig. 5 are
shown in the same order as in that figure. The red dots correspond
to the example grasps in Fig. 5 respectively.

D. Gradient ascent on Φna,b,µ(g)

(a) Bottle surface evaluation (b) Box surface evaluation

Fig. 7: Results of gradient ascent on Φna,b,µ(g) represented in (Qµ,
Sna,b) parameters. Original grasps (blue points) are improved by
gradient ascent resulting in the green points. The pairs of red dots
correspond to initial and final grasps displayed in Fig. 9.

We now experimentally verify that, for any grasp g with
Qµ(g) > 0, a simple fixed step-size gradient ascent can
dramatically improve the value of Φna,b,µ(g) and hence result
in a more desirable grasp. In the following, unless specified
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elsewhere, we set a = 0.2, b = 1.0, n = 20 and µ = 0.6.
Analogously to the proposed algorithm Alg. 1, we consider a
parametric surface representation ϕ : R2 → S of our object
S and perform gradient ascent of the function Hn

a,b,µ sending
a grasp g specified by the centre of mass z of the surface and
a triple of surface contact point coordinates to the resulting
value of Φna,b,µ(g).

We consider the bottle and the box surface depicted in the
left column of Fig. 5. The grey points in Fig. 7 display the
distribution of grasp quality and sensitivity values for the
bottle and the box surface which we computed previously
and which are also displayed in Fig. 6. We divide the
parameter region [0.01, 0.285]× [0.01, 0.385] into uniformly
spaced boxes of size 0.025× 0.025 and picked a grasp from
the grey sample points for each non-empty box. This results
in a set of grasps G for each of the two surfaces. G is
depicted by blue dots in Fig. 7. We then apply 200 steps of a
standard fixed step-size gradient ascent with respect to Hn

a,b,µ

for every grasp in G and compute gradients numerically
using small finite differences.

Fig. 7 shows the result of this gradient ascent on both
the bottle and the box surface by green points. We can see
that almost all the blue dots in Fig. 7 have been moved
towards the right edge of the distribution cone, indicating an
improvement in Φna,b,µ(g). Fig. 8 illustrates the performance
of the gradient ascent using bar-plots, with black and blue
bars showing Φna,b,µ(g) values before and after gradient
ascent respectively. It is worth mentioning that, looking at
Fig. 8, the final value of Φna,b,µ seems to bounded by similar
upper bounds, both for the bottle and the box surface. Fig. 9
displays two examples of gradient ascent on both surfaces
and corresponding to the red dots in Fig. 7. The trajectory on
the object surface represents the location of contacts in each
iteration of the gradient ascent. Note that, if we imagine the
bottle to be wet or slippery, the red grasp is intuitively less
stable than the blue grasp, which is confirmed by the graph
of the grasp quality depicted next to the bottle.
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Fig. 8: Results of the gradient ascent on Hn
a,b,µ on the bottle (top)

and the box (bottom) surface. Each bar represents a grasp sample
shown in Fig. 7. Bars are sorted in ascending order of the final
Φna,b,µ(g) values which is depicted along the vertical axis. Black
bars depict Φna,b,µ values of the original grasp samples and blue
bars are values after gradient ascent.
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Fig. 9: An example of gradient ascent for Φna,b,µ corresponding to
the red points in Fig. 7. The red grasps converge to the blue ones
under our gradient ascent. The trajectories are depicted as faint
lines.

E. An evaluation of Algorithm 1

We now come to an evaluation of Alg. 1 which we
proposed in order to synthesize force-closed contact con-
figurations on surfaces with low friction coefficients. Again,
we consider the bottle and box surfaces displayed in Fig. 5.

2 4 6 8 10
0%

20%

40%

60%

80%

100%

2 4 6 8 10
0%

20%

40%

Fig. 10: Percentages of stable grasps for each of the 10 runs of
our experiment with 120 grasps per experiment for the bottle (top)
and box (bottom) surfaces and for µstart = 1 and µend = 0.2.
In red, we display the percentages of stable grasps for the original
random grasps, in green, the percentages of stable grasps after a
simple gradient ascent of Fµend and, in blue, the percentage of
stable grasps synthesized using Alg. 1.

We sampled 10 contact points uniformly on these surfaces
and computed all

(
10
3

)
= 120 distinct 3-contact grasp

configurations for these contacts, resulting in a grasp set
G for each surface. Next, we studied the effectiveness of
Alg. 1 for these grasps, setting µstart = 1.0, µend = 0.2 and
descending from µstart to µend in N = 50 steps and using a
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gradient ascent with step size δ = 0.05 and M = 40 steps per
iteration according to Alg. 1. We repeated this experiment 10
times for each surface, resulting in the percentages of stable
grasps (Qµend

(g) > 0) depicted by blue dots in Fig. 10.
To compare our result to a more straightforward approach,

we tested the alternative approach of simply performing a
gradient ascent of Fµend

for each grasp, and with step-size
δ = 0.05 and for M = 200 iterations which resulted in the
much lower percentages of stable grasps depicted in green.
If we simply use a sampling based approach and evaluate
the grasp quality for each grasp in our set with friction
µend, almost none of the sampled grasps had positive grasp
quality as indicated by red dots. Our results hence indicate
that Alg. 1 can be used to successfully synthesize stable
grasp configurations on objects with low friction coefficients
by repeating the algorithm a few times with different random
starting grasps until a stable grasp is found.

V. CONCLUSION

Studying grasping under uncertainty is an important area
in robotics [14], [15], [16], [17], [18]. While most current
state of the art approaches concentrate on aspects of imper-
fect object or robot models, we studied another fundamental
problem in grasp synthesis in this work: the dependence of
grasp stability on friction coefficients. We believe that this
is an important problem when robots are to operate in open-
ended environments with changing conditions.

We have in particular studied the statistics of stable grasps
under changes in friction coefficients and have introduced the
notion of friction sensitivity measuring the susceptibility of a
grasp’s quality to changes in friction. Furthermore, we have
proposed and evaluated two gradient ascent algorithms for
synthesizing force-closed contact configurations on paramet-
ric surfaces with potentially low friction and for the synthesis
of stable grasps with low friction sensitivity.

In our future work, we would like to evaluate our approach
with a real robot and study changes in friction coefficients
in a real application such as a household robot cleaning
dishes which might be dirty or wet, impacting heavily on
the resulting friction properties. Further directions might also

include the study of alternative friction models and grasp
quality scoring functions.
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[8] M. A. Roa and R. Suárez, “Influence of contact types and uncertainties
in the computation of independent contact regions,” in IEEE ICRA,
2011, pp. 3317–3323.

[9] Y. Zheng, M. C. Lin, and D. Manocha, “On computing reliable optimal
grasping forces,” IEEE Trans. on Robotics, vol. 28, no. 3, pp. 619–633,
2012.

[10] F. T. Pokorny, K. Hang, and D. Kragic, “Grasp moduli spaces,” in
Proc. of Robotics: Science and Systems, Berlin, Germany, June 2013.

[11] A. Miller and P. Allen, “Graspit! a versatile simulator for robotic
grasping,” IEEE Robotics Aut. Mag., vol. 11, no. 4, pp. 110–122, 2004.

[12] T. Minka, “The fastfit matlab toolbox,” 2006. [Online]. Available:
http://research.microsoft.com/en-us/um/people/minka/software/fastfit

[13] H. Chernoff and E. L. Lehmann, “The use of maximum likelihood
estimates in 2 tests for goodness of fit,” The Annals of Mathematical
Statistics, vol. 25, no. 3, pp. 579–586, 1954.

[14] K. Huebner, S. Ruthotto, and D. Kragic, “Minimum volume bounding
box decomposition for shape approximation in robot grasping,” in
ICRA, 2008.

[15] M. Toussaint, N. Plath, T. Lang, and N. Jetchev, “Integrated motor
control, planning, grasping and high-level reasoning in a blocks world
using probabilistic inference,” in IEEE ICRA, 2010, pp. 385–391.

[16] M. Przybylski, T. Asfour, and R. Dillmann, “Planning grasps for
robotic hands using a novel object representation based on the medial
axis transform,” in IEEE/RSJ IROS, 2011, pp. 1781–1788.

[17] D. Song, K. Huebner, V. Kyrki, and D. Kragic, “Learning task
constraints for robot grasping using graphical models,” in IEEE/RSJ
IROS, 2010, pp. 1579–1585.

[18] M. Madry, D. Song, and D. Kragic, “From object categories to grasp
transfer using probabilistic reasoning,” in IEEE ICRA, 2012, pp. 1716–
1723.

3526


