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Abstract— In recent studies, it has been revealed that robots
can form concepts and understand the meanings of words
through inference. The key idea underlying these studies is
“multimodal categorization” of a robot’s experience. However,
previous studies considered only nonhierarchical categorization
methods, which led to nonhierarchical concept structures. Our
concepts have a hierarchical structure, thus ensuring that the
resulting inferences are more efficient and accurate. In this
paper, we propose a novel hierarchical categorization method.
The method involves extending multimodal latent Dirichlet
allocation (MLDA) to hierarchical MLDA using the nested
Chinese restaurant process, which makes it possible for robots
to acquire concepts in a hierarchical structure. We show that a
robot can form a hierarchical concept structure based on self-
obtained multimodal information. Moreover, by focusing on the
common features of each category in the hierarchy, the robot is
able to infer unobserved information including word meanings.

I. INTRODUCTION

Categorization of things plays an important role in human
cognition [1]. By forming a category, humans can obtain
more information with a minimum reference to their expe-
riences [2]. The importance of categorization is prediction
using experience-based categories. Humans predict unknown
things. In addition, we consider “concept” categories that
have been classified by self-organization, and concept–word
links formed by the categorization have led to the under-
standing of a word’s meaning [3]. As such, it is considered
prediction based on the categorization is the bedrock of
human intelligence flexibility. Therefore, it is important that
intelligent robots have such a capability [3].

A method based on latent Dirichlet allocation (LDA) [4],
which is one of the statistical models in the field of natural
language processing, has been proposed [5], [6]. In these
studies, via LDA-based object clustering using multimodal
information such as visual, auditory, and tactile, it was
shown that robots can categorize (conceptualize) objects such
as tambourines, maracas, and stuffed animals in line with
human senses. However, those authors considered only the
formation of object categories that do not capture hierarchical
relationships, which is an inadequate model for representing
the concept of a human. Each category formed by humans
is not necessarily independent, and such categories form
an interrelated hierarchical structure. Using this hierarchy,
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humans can make predictions using an appropriate granular-
ity category even if the objects are unknown. For example,
objects such as maracas and tambourines are part of the
category “percussion.” In addition, they belong to a category
called “instruments” with many other objects. If a robot
learns a hierarchical relationship, it can predict the properties
and functions of objects even though they may not have
features similar to those of maracas and tambourines, but
have the characteristic features of an instrument. By contrast,
the LDA-based, conventional, nonhierarchical clustering can
form a subordinate instrument concept by combining the
concepts of maracas and tambourines. However, it may not
be able to predict the nature and features of the instrument
from an object that has features different from those of mara-
cas and tambourines. In other words, the members of each
category within a hierarchy of a hierarchically conceptual
structure have some common features. By focusing on these
common features, a robot can acquire concepts with a range
of granularity.

In this paper, we propose a method for robots to form
a hierarchical concept via hierarchical multimodal LDA
(hMLDA). This is an extension of hierarchical LDA (hLDA)
[11], a method in which the nested Chinese restaurant pro-
cess (nCRP) is applied to LDA. In [11], hLDA was applied
for the clustering of documents by topic, and each topic was
expressed as a path in a tree structure. In this model, a word
is generated according to the degree of sharing of each node.
That is, a word generated at a higher-ranked node is shared
among two or more topics and, therefore, represents a more
extensive category. In the proposed hMLDA, considering
documents as objects, topics as categories, and words as
features generated from objects, it is possible to categorize
the objects in an unsupervised manner.

There have been studies on the unsupervised learning
of object categories using only visual information [12],
[13], [14], [15]. Furthermore, in recent years, studies on
categorization without a teacher have been conducted using
point clouds acquired with a laser range finder or a time-
of-flight (TOF) camera [16]. However, in these studies, only
visual information is used, and a hierarchical structure is
not considered. Moreover, those studies aimed to find and
recognize an object category, while this study endeavors
to predict unobservable information. Therefore, it is a very
important point that an understanding of an object as well
as that of the meaning of a word are realizable using robots.
[17], [18], [19], [20] are mentioned as research on layered
category structure. These studies did not aim to understand
word meanings and form concepts through categorization,
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but pursued category recognition from the computer vision
viewpoint. Therefore, this study aims to improve recognition
performance by taking into account hierarchical category
structures. As stated before, the authors have been studying
object categorizaton using multimodal information, and it has
been indicated that multimodal information acquired by the
robot is important for object concept formation. However,
layered category structures have not been considered in
our previous studies. This study shows that highly precise
concept-based prediction can be achieved through the for-
mation of concepts having layered structures. For robots,
Ogata et al. proposed a method for learning the movement–
sound relationship using recurrent neural network (RNN)
[23]. However, hierarchical conceptual structures are not
considered in these studies. Moreover, practically, RNN is
considered to have scalability issues. For example, in [23]
only five objects are treated. Consequently, it is unclear
as to how complicated things can be treated. In contrast,
the statistical model used in this paper is conventionally
applied to the clustering of several thousands of documents.
Currently, robots can handle several tens to hundreds of
objects. Given the number of objects used in everyday life,
a model that can treat tens of thousands of objects should
be considered in the future.

II. MULTIMODAL CATEGORIZATION AND CONCEPT
FORMATION

Here, we outline categorization, the robot’s concept forma-
tion, and the relationship of understanding of the meaning
of a word. For details, please refer to [3]. In this section,
we outline MLDA and describe the layered structure of a
concept.

A. Categorization and Concept Formation

In this paper, each category is formed via clustering of the
robot-collected multimodal information, and these categories
are considered as concepts. Concepts have been expressed as
clusters in the feature space, and it is possible to predict un-
observable information from some input using the cluster. In
addition, language-related information is part of the feature
space, and the concept-based prediction mechanism serves
as an understanding of the meaning of a word. In order to
realize such a clustering and prediction framework, we use
multimodal LDA (MLDA), as described below.

B. Multimodal LDA

MLDA [3] is an extension of LDA that can classify
multimodal information. It is represented using the graphical
model shown in Fig. 1. In the figure, wv, wa, wh, and
ww denote visual, auditory, haptic, and word information,
respectively. In addition, β∗ is determined from the Dirich-
let prior distribution with parameter θ. z represents object
category, as generated from a multinomial distribution with
parameter θ. Similarly, θ is determined from the Dirichlet
prior distribution with a parameter α. The categorization
problem involves estimating the model parameters using
observed multimodal information. It can be seen from Fig.
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Fig. 1. Graphical model of MLDA.

  

   

  

Fig. 2. Robot platform used in this paper.

1 that MLDA offers the framework for stochastically pre-
dicting unobservable information. This serves as the bases
of prediction-based understanding.

C. Hierarchical Conceptual Structure

To ensure that the abovementioned MLDA classifies fea-
ture space uniformly, the formed concept is designed as a
nonhierarchical structure.

Therefore, it is difficult to predict the property of such an
abstract concept. For example, the concept of a maraca or a
tambourine is included within a dominant concept such as
a musical instrument. The dominant concept is formed by
embedding narrower concepts in it using MLDA. However,
the concept that suitably represents a musical instrument is
not necessarily formed through combinations of subconcepts
within the dominant concept, such as that of a maraca and
tambourine. Therefore, it becomes difficult to recognize an
unknown object that has the features of a musical instrument
but differs from those of a maraca or tambourine. This
problem can be solved by the concept model that considers
a hierarchical structure. In section IV, we extend MLDA to
hierarchical MLDA.

III. MULTIMODAL INFORMATION

Fig. 2 shows the robot platform used in this experiment.
A robot finds an object and acquires multimodal information
autonomously. Here, we describe the acquisition of multi-
modal information and its processing.

1) Visual Information: The target object is segmented out
in each image frame; thereafter, 128-dimensional DSIFT [21]
descriptors are computed. In a later experiment, 36 image
frames of each object are captured. Three hundred to 400

2273



feature vectors are extracted from each image, resulting in
about 10000–15000 features for each object. Each feature
vector is vector quantized using a codebook with 500 clus-
ters. The codebook is generated beforehand using a k-means
algorithm. Finally, a 500-dimensional histogram is built as
the bag-of-features representation.

2) Auditory Information: Sound is recorded while the
robot grasps and shakes an object. The sound data are then
divided into frames and transformed into 13-dimensional
mel-frequency cepstral coefficients (MFCCs) as feature vec-
tors. Finally, the feature vectors are vector-quantized using a
codebook with 50 clusters, and a histogram is constructed.

3) Haptic Information: Haptic information is obtained
from the three-finger robotic hand equipped with a tactile
array sensor. A total of 162 time series of sensor values
were obtained by grasping an object. Each time series was
approximated using a sigmoid function, the parameters of
which encode the object’s tactile information [9]. Hence,
a total of 162 feature vectors are obtained by grasping an
object. Again, the bag-of-features model is applied to the
data so that any variation resulting from changes in the
grasping point can be absorbed. The feature vectors are
vector-quantized using a codebook with 15 clusters, and the
corresponding histogram is constructed.

4) Word Information: The user teaches object features to
the robot through speech. The robot recognizes speech using
continuous speech recognition and divides the recognized
speech into words using morphological analysis. Finally, the
word information is treated as the bag of words.

It should be noted that a dictionary of words is required
for speech recognition and morphological analysis. In this
study, it is assumed that the robot that has a vocabulary in
advance, and we provide a framework that can understand
meaning by connecting words with concepts. Therefore,
the problem that we tackle in this study is not vocabulary
acquisition but word grounding. However, it is possible to
simultaneously acquire vocabulary as a phoneme sequence
by applying unsupervised morphological analysis. In this
study, the formation of a hierarchical conceptual structure is
the main aim; therefore, we do not consider the simultaneous
acquisition of vocabulary, but will do so in future.

IV. HIERARCHICAL CATEGORY CLUSTERING

Blei et al. have used the nested Chinese Restaurant Process
(nCRP) as a prior distribution of the LDA. nCRP is an
extension of the Chinese Restaurant Process (CRP), one of
the Dirichlet processes. Here, we extend hLDA to hMLDA,
which can form hierarchical concept structures by classifying
robot-gathered multimodal information.

A. Chinese Restaurant Process [22]

CRP is the marginal distribution on partitions induced
by the Dirichlet process that generates infinite-dimensional
multinomial distributions by considering a Chinese restaurant
with an infinite number of tables. When n−1 customers are
already at K tables, the table zn at which the n-th subsequent
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Fig. 3. Illustration of CRP.
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Fig. 4. Nested CRP

customer sits is drawn from the following distribution:

P (zn = k|γ) =

{
Nk

γ+n−1 (k = 1, · · · ,K)
γ

γ+n−1 (k = K + 1)
, (1)

where Nk is the number of customers who sit at table k, and
γ is a CRP parameter. An example of a Chinese restaurant
is shown in Fig. 3. In this figure, ten customers are seated,
and a new customer chooses a table according to the number
of customers.

B. Nested CRP [11]

nCRP is an extension of CRP. nCRP can be defined by
the following scenario. We suppose that there is an infinite
number of Chinese restaurants, each of which has an infinite
number of tables, in a city. One of these restaurants is the
root restaurant, and there is a card that indicates a name of
another restaurant on each table in each restaurant within
the city. In addition, there is a card that refers to another
restaurant on each table in the restaurant referred in the root
restaurant, and this structure repeats infinitely. However, each
restaurant is referred once. Thus, an infinitely-branched tree
is organized.

A tourist arrives in the city, enters the root Chinese
restaurant, and selects a table using Eq. (1) on the first
evening. On the second evening, he goes to the restaurant
referred to on the card placed on the table at which the tourist
sat last night. The tourist repeats this process for L days. At
the end of the trip, the tourist has sat at L restaurants, which
constitute a path from the root to a restaurant at the L-th level
in the infinite tree structure. Fig. 4 shows an example of the
path in the case of five tourists and L = 3. In this figure,
each box represents a Chinese restaurant, and each Chinese
restaurant has a probability distribution with a parameter βℓ,i,
which generates the data.

C. Hierarchical Multimodal Latent Dirichlet Allocation

hLDA is a model that can classify documents hierarchi-
cally by introducing nCRP into the topic model. We extend
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Fig. 5. Graphical model of hierarchical multimodal LDA.

hLDA to hMLDA to allow for the hierarchical clustering of
multimodal information. The graphical model of hMLDA is
shown in Fig. 5. In this figure, c is a path on the tree structure
generated using γ-parameterized nCRP. In addition, z is an
object category generated by the π- and α-parameterized
stick-breaking process. wv , wa, wh, and ww denote visual,
auditory, haptic, and word information and are generated
from a multinomial distribution with parameter β∗. β∗ is
determined from the Dirichlet prior distribution using a
parameter η∗. Object generation using hMLDA is given as
follows:

1) For each modality(m ∈ {v, a, h, w}), the multinomial
distribution parameter βm

k , which represents the prob-
ability of generating multimodal information in table
(k ∈ T ), is determined. (T represents a set of tables. )

βm
k ∼ Dirichlet(ηm) (2)

2) The following process is iterated for each object d(∈
{1, 2, · · · , D}).

i) Path cd in a tree structure is determined using
nCRP.

cd ∼ nCRP(γ) (3)

ii) Parameter θd of multinomial distribution is gen-
erated using the stick-breaking process.

θd ∼ GEM(α, π) (4)

iii) The following is repeated for each feature n of
modality m.
a) Category zmd,n of the n-th feature of modality

m is determined.

zmd,n ∼ Mult(θd) (5)

b) Feature wm
d,n is generated from the category

zmd,n on the path cd.

wm
d,n ∼ Mult(βcd

[zmd,n]) (6)

D. Hierarchical Category Clustering

Object categorization is equivalent to learning the model
parameters shown in Fig. 5 using multimodal information.
In this paper, Gibbs Sampling is used to learn the model pa-
rameters. The hMLDA parameters are estimated by sampling
the category zmd,n and path cd from the posterior distribution.

1) Sampling Category: Given the current path assign-
ments, a category zmd,n of the n-th feature of modality m
in object d is sampled from distribution as follows:

p(zmd,n|zm−(d,n), c,w
m, α, π, ηm) ∝

p(zmd,n|zmd,−n, α, π)p(w
m
d,n|z, c,wm

−(d,n), η
m),

(7)

where c and wm denote a set of paths assigned to all
the objects and a set of object feature of modality m,
respectively. In addition, zm−(d,n) and wm

−(d,n) denote the
vectors of category allocations and observed features except
for zmd,n and wm

d,n, respectively. Moreover, zmd,−n is the
remainder except for the category zmd,n assigned to the n-th
feature from the set of categories zmd assigned to all features
of modality m of object d. The first term of Eq. (7) denotes a
multinomial distribution generated using the stick-breaking
process, and represents probability that k is assigned to a
category of n-th feature of modality m of d-th object.

p(zmd,n = k|zmd,−n, α, π)

= E

Vk

k−1∏
j=1

(1− Vj)|zmd,−n, α, π


= E

[
Vk|zmd,−n, α, π

] k−1∏
j=1

E
[
1− Vj |zmd,−n, α, π

]
=

(1− α)π +#[zmd,−n = k]

π +#[zmd,−n ≥ k]

k−1∏
j=1

απ +#[zmd,−n > j]

π +#[zmd,−n ≥ j]
,

(8)

where #[.] counts the elements of an array satisfying a
given condition. The second part of Eq. (7) is the probability
that a feature quantity will be generated from path cd and
category zmd,n. The following formulas can be obtained under
the assumption that the multinomial distribution parameter
that generates the feature quantity is in itself generated from
Dirichlet distribution with hyper-parameter ηm.

p(wm
d,n|z, c,wm

−(d,n), η
m) ∝

#[zm−(d,n) = zmd,n, c
m
zd,n

= cd,zm
d,n

,wm
−(d,n) = wm

d,n] + ηm

(9)

This equation expresses the number of times that category
zmd,n was assigned to feature quantity wm

d,n on path cd.
2) Sampling Paths: Given the category allocation vari-

ables, path sampling is carried out as follows:

p(cd|wv,wa,wh,ww, c−d, z, η
v, ηa, ηh, ηw, γ)

∝ p(cd|c−d, γ)

× p(wv
d|c,wv

−d, z
v, ηv)p(wa

d|c,wa
−d, z

a, ηa)

× p(wh
d |c,wh

−d, z
h, ηh)p(ww

d |c,ww
−d, z

w, ηw),

(10)

where c−d denotes the remainder excluding cd from c.
p(wm

d |c,wm
−d, z, η

m) is the probability that the feature quan-
tity of modality m will be generated from a specific path and
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p(cd|c−d, γ) is the prior probability generated by nCRP. In
each modality m, the probability that the feature quantity is
generated as follows by marginalizing the parameters of the
multinomial distribution.

p(wm
d |c,wm

−d, z
m, ηm)

=
∏
ℓ=1

Γ(
∑

w #
[
zm−d = ℓ, c−d,ℓ = cd,ℓ,w

m
−d = w

]
+ V mηm)∏

w Γ(#[zm−d = ℓ, c−d,ℓ = cd,ℓ,wm
−d = w] + ηm)

×
∏

w Γ(#[zm = ℓ, cℓ = cd,ℓ,w
m = w] + ηm)

Γ(
∑

w #[zm = ℓ, cℓ = cd,ℓ,wm = w] + V mηm)

(11)

3) Learning by Gibbs Sampling: Given a random initial
value c1 ∼ cD and z1 ∼ zD, the following steps are iterated
until convergence.

1) For each object d ∈ {1, . . . D}
i) Sampling path

cd ∼ p(cd|wv,wa,wh,ww, c−d, z, η
v, ηa, ηh, ηw, γ)

(12)

ii) Sampling a category for the n th feature quantity
of modality m for each object

zmd,n ∼ p(zmd,n|zm−(d,n), c,w
m, α, π, ηm) (13)

Finally, the path and category of all objects converge to ĉ
and ẑ, respectively, by repeating this algorithm.

E. Unknown Object Recognition

Unknown object recognition becomes possible using the
learned hMLDA. When the multimodal information wv

d̄
, wa

d̄
,

wh
d̄

and ww
d̄

of novel object d̄ are given, learned parameters
ĉ and ẑ are fixed, and path sampling, as mentioned in the
above algorithm, and category sampling are performed only
for the novel object d̄. However, the following equation is
used instead of Eq. (11).

p(wm
d̄ |ĉ,wm, ẑm, cd̄, z

m
d̄ , ηm)

=
∏
ℓ=1

Γ(
∑

w #
[
ẑm = ℓ, ĉℓ = cd̄,ℓ,w

m = w
]
+ V mηm)∏

w Γ(#[ẑm = ℓ, ĉℓ = cd̄,ℓ,w
m = w] + ηm)

×
∏

w Γ(#[ẑm = ℓ, ĉℓ = cd̄,ℓ,w
m = w]

Γ(
∑

w #[ẑm = ℓ, ĉℓ = cd̄,ℓ,w
m = w]

+#[zm
d̄

= ℓ,wm
d̄

= w] + ηm)

+#[zm
d̄

= ℓ,wm
d̄

= w] + V mηm)
,

(14)

where ẑm is a set of categories that assigned to the feature
quantity of modality m at the time of learning.

F. Predicting Unobserved Information

The validity of hMLDA lies in the prediction of unob-
served information. That is, by looking at an object, the
robot can predict its hardness or whether the object emits any
sound. Conversely, if a word is given, the robot can under-
stand its meaning by predicting multimodal information from
observed information. Here, we consider predicting word
information ww

d̄
from visual information wv

d̄
of an unknown

TABLE I
EXAMPLES OF TEACHER’S UTTERANCES (THE EXPERIMENT WAS

CARRIED OUT IN JAPANESE.)

This is a Bear stuffed animal. It is white and light.
This is a stuffed animal with tinkling sounds. This thing is soft.
A blue spray can. It is likely to sound.
This is a drink. This is a plastic bottle.
This drink is tea. This is food.

Spray can Plastic bottle Glass bottle

Noodle Shampoo Flooring cleaner Chips

Cookies Yarn Plushie Rattle

Fig. 6. Sixty-seven objects used in experiment. (objects in the rectangle
are used for recognition experiments in V-B and V-C as unseen objects. )

object d̄. First, object category recognition is performed from
the given information, as described in the previous section.
However, the following equation is used instead of Eq. (10).

p(cd̄|wv, ĉ, ẑ,wv
d̄, z

v
d̄, η

v, γ) ∝
p(cd̄|ĉ, γ)p(wv

d̄|ĉ,w
v, ẑv, cd̄, z

v
d̄, η

v) (15)

In addition, category sampling is performed only for vi-
sual information. Through repetition of the above-described
procedure until samplings converge, an object category can
be determined using only a part of the information. For a
category that has been estimated, we can determine the prob-
ability of a word’s occurrence using the following equation.

p(ww
d̄ |ẑ, ĉ,w

w,wv, cd̄,w
v
d̄, α, π, η

w, ηv) =∑
zd̄

p(ww
d̄ |zd̄, ẑ

w, ĉ,ww, ηw)p(zd̄|ẑv, ĉ,wv, cd̄,w
v
d̄, α, π, η

v)

(16)

This refers solely to word prediction; other predictions can
possibly be made following a similar method.

V. EXPERIMENTS

Experiments were carried out using information such as
visual, audio, haptic, and word information acquired by the
robot, as shown in Fig. 2. As word information, five subjects
taught characteristics of an object to the robot using the
speech recognition. Examples of the teacher’s utterances
are shown in TABLE I. In addition, the 67 objects shown
in Fig. 6 were used, we set the number of layers to 4
and performed clustering, recognition, and prediction using
hMLDA. Hyper-parameters γ, α and π of the model were
set to the values given in the literature [11], and η∗ wrere
determined empirically.
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Fig. 7. Categorization result using hMLDA.

 

0

s
o
u
n
d

r
e
d

c
o
lo

r

is
 (

m
a
s
u
)

is
 (

h
a
)

is
 (

d
e
s
u
)

in
 (

te
)

th
is

is
 (

g
a
)

c
o
n
ta

in

s
h

a
k

e

b
r
o

w
n

o
f

in
to

c
o
n
ta

in
 (

ir
u
)

g
r
e
e
n

c
o
n
ta

in

h
a
r
d

s
o
u
n
d

w
a
te

r

y
e
ll

o
w

c
o
n
ta

in
 (

ir
u
)

in
 (

d
e
)

m
a
k
e

m
a
k
e

b
o
x

s
q
u
a
r
e

m
il

k

b
is

c
u
it

b
u
tt

e
r

c
h
o
c
o
la

te

o
r
a
n
g
e

o
f

s
n
a
c
k

w
a
s

c
o
n
ta

in
(
te

r
u
)

te
a

o
r
a
n
g
e

ju
ic

e

p
la

s
ti

c
 b

o
tt

le

d
r
in

k

s
o
u
n
d

c
o
lo

r

s
o
u
n
d
 [

V
r
e
b
]

g
r
e
e
n

s
h
a
m

p
o
o

s
o
a
p

h
a
n
d

li
q
u
id

r
e
f
il

l

s
o
f
t

d
e
te

r
g
e
n
t

b
a
g

u
s
e

g
r
e
e
n

h
a
r
d

s
o
u
n
d

s
h

a
k

e

b
o
tt

le

g
la

s
s
 b

o
tt

le

d
r
e
s
s
in

g

g
la

s
s

s
a
u
c
e

ta
s
k I

*
te

*
to

*
y
o

*
to

s
o
u
n
d
 [

V
r
e
b
]

Category 1 Category 3 Category 4

Category 6 Category 8 Category 9Category 7

0.3

0.25

0.2

0.15

0.1

0.05

0

0.2

0.15

0.1

0.05

0

0.2

0.15

0.1

0.05

0

0.2

0.15

0.1

0.05

0.3

0.25

0.2

0.15

0.1

0.05

0

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0

0.15

0.1

0.05

Fig. 8. Inference results of words in each category: * represents a function word in Japanese, while words inside parentheses denote different word in
Japanese that have the same meaning in English.

A. Hierarchical Categorization

First, hMLDA was used for hierarchical categorization
of 67 objects, the result of which is shown in Fig. 7. In
the layers corresponding to L = 2 in the Fig. 7, Category
2 was composed of only the spray can. Below it, in the
layers corresponding to L = 3, individual categories were
formed based on spray can size. Similarly, Category 13
was composed of only the instant noodle. Below it, in the
layers corresponding to L = 3, individual categories were
formed based on instant noodle type. In addition, in the
hierarchy of L = 2, category 3 consisted of plastic bottles,

glass bottles, shampoo, flooring wiper, and cookies, and in
the hierarchy below it, flooring wiper and cookies formed
individual categories. In addition, in the hierarchy of L = 4,
plastic bottles and shampoo were classified correctly. In the
hierarchy of L = 2, category 11 comprised rattles and
plushies. In the hierarchy of L = 3, rattles and, plushies were
classified correctly. As mentioned above, some incorrect
categories, such as category 10, which comprises cookies and
snacks, exist. However, using hMLDA, the robot was able to
pick up clues regarding similarities in terms of visual, audio,
haptic, and word information, and form both extensive and
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concrete categories automatically.
Furthermore, the top ten words with high probability

were extracted from each category, and the probabilities
of those words are shown in Fig. 8. Because categories
1 and 3 consist of two or more types of objects, words
that occur in any categories such as “this” and “is” have
high probability in these categories. Furthermore, category 4
has a high probability of occurrence of words “water” and
“contain”, which indicate the liquid contains, and of a word
“sound”, which indicates sounder. Finally, from categories
6, 7, 8, and 9, which form individual object categories, the
words “biscuit,” “bottles,” “shampoo,” and “dressing”, which
express each category, are generated with high probability.
Thus, it is correctly connected with the word that expresses
each category in lower layer.

B. Unknown Object Recognition

Next, 67 objects were divided into objects for recogni-
tion and learning, hMLDA was learned by the objects for
learning, and the objects for recognition were recognized
as unknown objects. In Fig. 6, the objects in the rectangle
are used for recognition. The result of recognition is shown
in Fig. 9, and objects surrounded by a rectangular were
the recognized objects. From this figure, a plushie was
misclassified as yarns in the right category of L = 4;
however, the other objects were classified correctly.

C. Word Prediction

Then, using the visual, auditory, and tactile information
of the recognition objects, word information is predicted
by hMLDA. Figs. 10 (a)–(d) show the results of word
prediction, and represent the probabilities of the occurrence
of the top five words with high probability. The same
prediction was performed using MLDA for comparison (Fig.
10 (e)–(h)). However, because it was necessary to define
the number of categories beforehand, we set the number of
categories to 11. Fig. 10 shows that hMLDA can accurately
predict a word that expresses an object category name and
its features. However, using MLDA, words contained in
every object such as “is” and “this” are predicted, but
the word representing a category is not predicted. Because
MLDA does not consider hierarchy, it predicts the words that
occurred frequently during learning. However, considering
the hierarchy in hMLDA, we were able to circumvent this
problem.

VI. CONCLUSION

In this paper, we have proposed hMLDA that can form
hierarchical concept structure. Concepts were formed by
classifying the visual, audio, tactile, and word information
acquired by a robot. hMLDA is extended from hLDA,
which was a method proposed for document clustering, to
classify multimodal information, and, therefore, the robot
can form the categories of various granularity, which are
from concrete categories to extensive categories. Although
in a limited situation, it was experimentally shown that such
a layered structure can actually be formed. Furthermore,

the connection between a concept and a word is obtained.
In the nonhierarchical conceptual structure formed using
MLDA, functional words ”this” and ”is” are connected with
many concepts. Therefore, when predicting a word from
sensory information, a heuristic method that removes such
words is required. By contrast, in hMLDA, the higher layer
of a hierarchical structure absorbs such functional words.
Furthermore, because the proposed hMLDA is based on the
Bayesian nonparametric method, it does not required the
number of categories in advance.

We are planning to apply online learning to hMLDA for
future research. Moreover, we believe that it is necessary to
conduct a large-scale experiment with a considerably greater
number of objects. Furthermore, it is necessary to consider
concept formation for adjectives. For example, the concept
of a red object will be formed and it will be connected with
the adjective “red.” However, in order to form a category that
essentially means red, it is necessary to perform category
clustering considering only color modality. Such clusterings
can be realized by model selection introducing weight to
modality [24]. This idea will be applied to hMLDA, and
we will realize the formation of various concepts having
hierarchical structures.
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Fig. 9. Unseen object recognition using hMLDA.
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