
A Methodology for Testing Mobile Autonomous Robots

Jannik Laval, Luc Fabresse and Noury Bouraqadi
Mines-Telecom Institute, Mines Douai, France

e-mail: firstName.lastName@mines-douai.fr
web: http://car.mines-douai.fr

Abstract— Mobile autonomous robots are progressively en-
tering the mass market. Thus, manufacturers have to perform
quality assurance tests on series of robots. Therefore, tests
should be repeatable and as much automated as possible.
Tests are also performed for purpose of repairing robots. This
calls for reusing tests already defined for quality assurance.
In this paper we introduce a methodology to support the
definition of repeatable, reusable, semi-automated tests. Our
methodology describes the process of conducting tests in a way
that maximizes safety for human operators, while avoiding to
damage tested robots.

I. INTRODUCTION

Mobile autonomous robots are finding their way to the
mass market. Thus, robot manufacturers have to switch from
the prototype building mode to industrial production line.
Multiple instances of the same robot have to be built fast
enough to meet the customers demand. These robots are
supposed to be exact copies of the original prototype, and
thus exhibit the very same behavior. Hence, the quality
assurance (QA) team should test that produced robots meet
actually with their specifications.

Since tests are likely to be conducted on a large number
of robots, they should be repeatable. Running a given test
several times should consist in making the tested robots
perform the same actions under the same circumstances,
in the same environment. Automation can help ensuring
repeatability, while speeding up the test process.

Testing robots is also important for repair. Technicians
have to test a robot to diagnose the actual defect and figure
out the source of dysfunction. Repair should rely on tests to
identify which robot behavior or parts do not comply with
the specification.

Comparing a robot to its specification is a task shared
between QA and robot repair. Since defining tests is tedious
and time consuming, we advocate that tests should be reused
between QA and maintenance teams. This sharing can be
done in both ways. (i) Tests defined by QA should be
reusable for repair. (ii) Technicians fixing robots may identify
a frequent defect that is not detected by QA tests. Thus,
they’ll have to define new tests to detect such flaws. These
tests should be inserted back in the QA test suite.

Test reuse can be pushed a step further, by focusing on
behaviors rather than on robots. Indeed, behaviors matter
more that the way they are implemented, at least from the
customer point of view. Thus, tests that evaluate the way
robots conform to a behavior, should be reusable and apply
to different robots, even if they are built out of different parts.

In this paper, we argue that robots’ tests should be
repeatable and reusable. Last but not least, tests should be
conducted in a way to maximize safety. Risks to harm human
operators, or to damage the robot or other equipments should
be minimal. The main contribution of this article is a test
methodology to meet these requirements. This methodology
is the result of our experience and lessons we learned while
developing a service robotics application involving actual
robots.

We have identified three test dimensions that are: the robot
activity (sensing vs. acting), the environment nature (static
vs. dynamic) and testers knowledge of the environment (little
knowledge vs. good knowledge). These dimensions allow
grouping tests in eight different sets. Starting from these
test sets, and based on our requirements we re-organized
and ordered tests ending up into a hierarchy of five test
levels. Thus, our methodology guides roboticists to define
repeatable and reusable tests covering various facets of a
robot. The automation concern is also addressed during the
test definition step. Last, our methodology describes the
process of conducting tests while maximizing safety for
operators, the robot and other equipments.

Other sections of this paper are organized as follows.
Section II discusses requirements that should be met with
a process to test robots. Then, Section III presents thor-
oughly our methodology. In Section IV, we illustrate our
methodology by reporting our experiment testing two ROS-
based robots as part of a development of a service robotics
application. Next, Section V describes existing work related
to robot test. Last, Section VI concludes the paper and
sketches future work.

II. REQUIREMENTS FOR ROBOT TEST PROCESS

To define requirements for testing robots, we took our
inspiration from software testing. Chung et al. [5] already
proposed to build tests adapted from software engineering.
Testing software is a well-known process that has multiple
advantages: it validates the behavior of a piece of code, it al-
lows developers to refactor, maintain and improve the source
code backed with tests as a validation process. Software tests
also allow validating changes in the environment, such as a
new Operating System. Applied to the robotics domain, we
have identified and adapted 3 requirements:

• Safety: Safety is a key point during the tests execution.
Indeed, since tests are run on robots that potentially
have defects, it is important to ensure that they will

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1842

not damage themselves, someone or something in the
environment. This means that tests should be executed
in a precise order to first ensure the validity of basic
functionalities before high-level ones that are likely
more dangerous. Note that tests should also validate the
fact that robots will operate safely.

• Reuse: Tests have to be reusable for heterogeneous
robots built out of different components but which are
supposed to exhibit the same behavior. For example,
different robots may be equipped with equivalent though
different sensors or actuators. Still, their behavior should
be the same. This means that tests have to focus more
on robots behaviors rather than their internal structure.

• Repeatability: Tests should allow testers repeat the
same scenarios, and make robots face the exact same
situations. In this regard, the dynamicity of the en-
vironment where mobile robots are supposed to face
is challenging. Nevertheless, repeatability of tests is
necessary to be able to validate the behavior of each
robot at the end of a product line, or to ease the
diagnostic when repairing a robot. One way to deal with
repeatability is automation. Tests should be automated
or at least semi-automated to ensure that robots will
face the exact same situation on every test run. Another
benefit of automation is higher productivity that results
from minimizing operations performed by humans.

III. OUR METHODOLOGY

A. Test Dimensions
Our methodology organizes tests into levels to maximize

safety. These levels are derived from the following dimen-
sions that we have identified in robot tests:

• Sensing only vs. sensing and acting: A robot can either
sense its environment, or it can sense the environment
while acting. Since acting relies on feedback obtained
through sensors, tests involving actuators requires fully
functional sensors.

• Testers Knowledge of the environment: To test a robot,
tester should know the environment (e.g. dimensions of
the arena as well as locations and sizes of obstacles)
with some levels of accuracy. Based on this knowledge,
testers can predict values of sensed data that reflect a
correct behavior of the robot. Still, to test a robot more
thoroughly, testers need to experiment with different
environments, including ones for which they have little
knowledge or imprecise one.

• Dynamicity of the environment for test: The environ-
ment could be static or dynamic. A static environment
does not change while the robot performs its mission.
A dynamic environment is one that evolves over time.
Typically, it contains moving entities. Changes in sensed
data can be either caused by the robot itself or by other
entities.

Given an environment, one should run sensor tests first
to ensure the sensors are working properly. Then, tests
involving motion and actuation can be conducted, since
sensing can be considered as reliable.

To help understanding the behavior of the robot, tests
should be first done in an environment totally controlled by
developers. It’s easier to detect faulty behaviors and trigger
security halts. Once a robot passes those tests, testers can
proceed with experiments in less controlled environments.

Last, regarding the dynamicity dimension, safety requires
that tests in static environments should be run before those
related to dynamic environments. Robot should first be able
to function and move in a stable world, before being able to
cope with situations with mobile entities.

B. Ordering Tests for Safety

By combining the three previously defined dimensions, we
can obtain eight different kinds of tests. Nevertheless, we
consider some combinations of these dimensions as useless.
This is the case of tests which check sensing capabilities
in an unknown environment that can be either static or
dynamic. Indeed, since the environment is not controlled by
developers, it makes it difficult for them to define meaningful
tests, since they can not predict valid values for sensed data.

We ordered the remaining sets of tests in a way that
maximizes safety. Figure 1 shows the resulting tests order
organized in five safety levels. Upper levels are prerequisites
for lower ones. This means that a test should not be per-
formed on a robot until all tests in the levels above pass.
This order is based on the following assertions. For the first
dimension, we consider that sensing alone is safer than when
acting is involved. For the second dimension, we consider
that moving in a known environment is safer that moving in
an unknown one. For the third dimension, we consider that
a static environment is safer that a dynamic one.

Sensing in a Static
Known environment

Acting in a Static
Known environment

Sensing in a Dynamic
Known environment

Acting in a Dynamic
Known environment

Acting in a Static
Unknown environment

Acting in a Dynamic
Unknown environment

Test Level 1

Test Level 2

Test Level 3

Test Level 4

Test Level 5

prerequisite for

Fig. 1. Five Safety Test Levels

We now present each test level:
1) Testing robot sensing capabilities in a static known

environment. This test suite ensures that data produced
by sensors matches the expected accuracy level.

2) Testing robot sensing capabilities in a dynamic known
environment. Such an environment is controlled by

1843

developers, even if it is dynamic. For example a room
with some moving entities following a known path
or with the light changing according to some known
patterns. Compared to sensing in a static environment,
a dynamic one introduces the time factor. In a dynamic
environment, tests are more about the frequency of
collected data than their accuracy. For example, tests
in this level may evaluate if a robot can collect data
fast enough to detect potential obstacles.

3) Testing robot action in a static known environment.
Here the goal is to ensure that the robot actuators work
properly, and that the robot performs basic actions. Still
these tests can make use of sensors, since the robot is
likely to behave based on perception. Besides, testers
should ensure that they have some solutions to stop the
robot in case of emergency (e.g. an emergency stop
button).

4) This level contains two complementary kinds of tests
related to robot action in both static unknown and
dynamic known environments.

• Testing robot action in static unknown environ-
ment. The goal of these tests is to increase confi-
dence in the tested robot, by making it faces many
different situations. Thus, testers have more chance
to detect unexpected or unwanted behaviors in
situations uncovered by tests in a static known
environment. An example of such tests, is putting
a vacuum cleaner robot in a room full of obstacles
and check that it does not get stuck in between.

• Testing robot action in a dynamic known envi-
ronment. At this stage, testers can predict sensed
data. Since the environment is supposed to be
known, they can also predict when events occur
and test if the robot performs the right actions.
Tests do not only ensure that the robot does the
right action, but they also verify that the behavior
is fast enough. For example, knowing trajectories
of all entities of a given environment, one can test
obstacle avoidance in a dynamic environment.

5) Testing robot action in a dynamic unknown environ-
ment. This level represents the final tests. It aims at
confronting tested robots to as many different situa-
tions as possible, especially ones unforeseen by testers.
Tests are considered as passed if the robot can cope fast
enough with encountered events. An example of a such
test is making a mobile robot search for a person based
on face recognition, in a place many people passing by
(e.g. a train station).

C. Defining Reusable and Repeatable Tests
The definition of a test consists of:
• Test level. This information allows developers to iden-

tify prerequisite tests that should pass before attempting
to run the current test. This maximizes safety, but also
eases identifying issues. For example, consider a robot
that collides with obstacles. Collisions can have dif-
ferent causes, including a malfunctioning sensor. Thus,

tests for robot motion should not run until all tests for
sensors pass.

• Initial conditions. They refer to the state of the envi-
ronment (e.g. light intensity, obstacle positions). They
also include the state of the robot (e.g. its pose in the
environment). Initial conditions should be set prior to
running the test. They ensure the repeatability of the
test. Ideally, the test setup should be automated. At least,
human action should be limited, which have the nice
side effect of speeding up the test process. Note that
for the sake of reusability, initial conditions should be
as little as possible bound to the robot internals.

• Expected outcome. Each test should evaluate some
facets of a robot, such as sensed data or some behav-
ior. When dealing with numerical data, the expected
outcome should be expressed as an interval covering
the range of valid values. This enables reusability since
different robots with different components can produce
different values. It also allows repeatability, because
of the noise, but also because slight differences when
setting up initial conditions (e.g. initial pose of the
tested robot). In some tests, the expected outcome can
be more qualitative. An example is "robot should follow
smooth trajectories".

• Task to perform. This item defines the task to be
performed by the robot, and which outcome will be
compared to the requirements. The task can be as simple
as reading a sensor value, or a more complex task such
as fetching a drink from a fridge.

• Evaluation. It is performed once the robot had finished
the task to do. The evaluation refers to the comparison
of the actual outcome to the expected one. Ideally,
this comparison is performed automatically. However,
human operator intervention might be required in situ-
ations such as measuring the travelled distance. Human
evaluation is even difficult if not impossible to replace
for qualitative tests, which are typically ones run in
unknown environments (levels 4 and 5).

• Minimum runs count. Tests usually should be run more
than once. This is true when evaluating that some value
falls inside some range. But, this is also the case when
it comes to qualitative tests.

D. How to use Tests?

Test levels we have introduced in Section III-B can be
used for QA and repair. But, they can also be used for
incrementally developing a control software for a robot,
in the following iterative process derived from Test-Driven
Development [1] (TDD):

1: Select a test level: Respecting the order given in
Section III-B, the tester has to select a test level such as all
its prerequisites pass. Initially, the first level will be chosen.

2: Define tests for the selected level, and implement the
corresponding features. This is done in a cycle, addressing
one feature at a time, as following:

2.1 Define a test for a specific feature: The test should
be defined as described in Section III-C and focus

1844

on a single feature of the robot. Tested features
can be of different granularity ranging from simple
sensing to complex behaviors.

2.2 Develop the feature to make the test pass: Here
developers write the code that is supposed to im-
plement the targeted feature. Developers should run
the test and adapt the code they have written until
the test passes.

2.3 Enhance the design: At this step, developers should
review their code and enhance it from the soft-
ware design point of view (e.g. use of design
patterns [6]). This step is important from future
software evolution and maintenance. At the end of
this step, developers should ensure that the test still
passes, meaning that the design was enhanced while
ensuring the correct functioning of the developed
feature.

2.4 Go back to step 2.1 if the current test level is not
covered yet. Otherwise go to step 3.

3: Run all the tests of the current level: This step
ensures that there is no regression, i.e. features that do
not work anymore because of the implementation of other
features.

4: Go back to step 1 if there are some test levels left.
Note that tests that evaluate the robot in unknown envi-

ronments (Level 5 and part of level 4) often do not result
into new features. Instead, they allow identifying situations
that developers didn’t though of, where the robot fails. These
situations should be converted into tests that should be added
to the appropriate level.

This TDD approach allows one to safely and reliably
develop the software for some robotic mission. Besides, it
has a valuable sub-product, namely the tests. Indeed, tests can
be reused afterwards for repair and for QA in a production
line.

IV. EXPERIMENTS

The context of our experiment is the CAIRE project1

which targets service robotics applications such as new ser-
vices to shopping mall customers. We bought two identical
robots, weighting 30 kg each. They are 2 wheels differential
drive robots, which maximum speed is 1 m/s. They have
multiple sensors: 1 laser, 16 infrared sensors, 9 ultra sonic
sensors, 2 webcams, and 2 wheel rotary encoders for odom-
etry. We wrapped the proprietary firmware into a ROS node
to communicate with these robots and benefit from the ROS
ecosystem. We developed this node using PhaROS2, a ROS
client implemented with the Pharo open-source Smalltalk
environment3.

In this section, we describe some tests defined for these
two robots using our methodology.

1http://car.mines-douai.fr/category/project/caire/
2http://car.mines-douai.fr/category/pharos/
3http://www.pharo-project.org

A. Sensing in a Static Known Environment (Level 1)

We expose here tests for the laser range sensor, a Sick
S3004 with a 270 degrees scan angle. The distance measuring
range is 30 meters. We put the robot in a known environment:
a box of one square meter. (illlustrated by Figure 2) This
environment is static, since there is no moving entity inside
the box.

Fig. 2. Testing the Robot Sensors in a Static Known Environment

We execute five tests inside the box, one with the robot
located at the center of the box, and the others with the
robot at each corner. These tests are semi-automatic, since
human intervention is required for placing the robot at
the appropriate positions in the box. Expected distances
measured by the laser should range between 20cm (half of
the robot width) and 60cm (half of the box width + 10cm)
when the robot is in the middle of the box. The maximum
values can go up to 80cm when the robot is at corners.
Distance measurement and comparison with expected values
is done automatically by a test software.

Results show that distances for angles 0 to 1 and for angles
269 to 270 are too small (less that 18 centimeters) for both
robots. After analysis, we found out that lasers were badly
mounted. The border of the robot body is too close to the
laser. This problem is easy to fix. So, we could proceed using
both robots.

B. Sensing in a Dynamic Known Environment (Level 2)

The example we provide here evaluate how fast is the
onboard laser. Our goal is to ensure that the scan frequency
is high enough for detecting obstacles that are less than 20cm
far of the robot, before collisions.

The average human walking speed is approximatively
1.49m/s (5.0km/h). The maximum speed of our robots is
1m/s. Suppose that we have a robot at maximum speed
and a walking human moving towards each other. If they
are at 20cm one from the other, the collision will occur in
approximatively 80ms. So, to ensure safety, we expect that

4http://www.sick.com/

1845

the robot detects the danger in less than 80ms. Thus, the
expected laser scan frequency should be at least 12.5Hz.

Data collected by the laser is published in a ROS topic
named /scan5. Our test uses the rostopic hz /scan6 command
provided by ROS to automatically measure the frequency of
publications. Thus, our test takes into account delays intro-
duced by processing raw data from the laser and transforming
into the required format for publication in a ROS topic.

It turns out that the scans frequency is approximatively
15Hz. This means that the robot detects obstacle position
changes every 67ms approximatively. We can conclude that
the laser scans frequency is high enough to allow the robot
to detect potential collisions.

C. Acting in a Static Known Environment (Level 3)

Based on previous tests, we are confident about the sensing
capabilities of our robots. Besides, we verified that the
emergency stop button is working properly. In this section,
we report tests we performed to check whether the robot can
move accurately at different speeds (0.25 m/s, 0.5ms, 1 m/s),
based only on odometry, in a known static environment.

1) Moving in a Corridor: The environment we used in
this series of tests is a section of a corridor which both ends
were closed using boards. The corridor section is 5m long
and 1.30m wide. The robot which is 40cm wide was put
at one end of the section, 50cm far from the closing board
and 45cm far from the walls. This setup requires human
operations.

We run different tests where the robot moving at different
speeds was expected to travel 4m in a straight line. A 3%
margin of error was considered as acceptable. We measured
the traveled distance ourselves (human operation). But, we
relied on the laser to automatically check that the distances
to both walls remain higher than 30cm from walls.

We repeated the experience 10 times for each robot at
different speeds. We observed that one robot can actually
travel forward at least 4m with an average error 7.5cm i.e
1.87% which is acceptable. For the second robot, test failed 5
times when the robot went too close to the wall. We identified
that the problem comes from a wheel partially blocked by a
broken spring. Because this robot failed to pass this test, we
did not run higher-level tests on it.

2) Following a S-Shaped Path: Knowing that one of
our robot can move forward accurately, we checked more
complex trajectories. We set up a test where the robot had to
follow a s-shape path. We marked on the floor 4 points of the
path coordinates: (0,0), (1,-0.5), (3,0.5), and (4,0). This path
corresponds to a cumulative rotation of 180 degrees. The
robot was expected to pass by every one of these waypoints.
We considered 3% as an acceptable margin error for travelled
distance, 10% for rotation.

The test requires human intervention for putting the robot
at point (0,0). Human operators were also required to

5We eventually connected this topic to the GMapping SLAM algorithm
from OpenSlam

6see rostopic documentation http://www.ros.org/wiki/rostopic#rostopic_
hz

evaluate that the robot goes through the way points, and
stops at an acceptable position. Measurement of the final
position revealed that the robot meets our expectations. The
traveled distance margin error is approximatively 1.9%, and
the rotation margin error is approximatively 9.2%.

D. Acting in a Dynamic Known Environment (Level 4)

We illustrate tests for this level with the example of
emergency stop in case an obstacle comes too close to a
moving robot. The experiment consists in making a robot
move forward following a straight line in a corridor. The
corridor is initially empty, but when the robot reaches a
particular position marked in the floor, an operator puts
a cardboard panel at 30cm from the robot. The robot is
expected to stop immediately without touching the board.

We repeated the experiment several times with the only
robot that passes the tests from the previous level. It turns
out that the robot passes this test for different speeds ranging
from 0.25m/s up to 1m/s.

The experiments allow us to discover issues on robots
that are not easy to highlight without tests. Moreover, after
repairing the robot failing on level 3, we will reuse our tests
and validate its correct reparation.

V. RELATED WORK

Koo Chung et al. [5] propose a guideline to adapt the ISO
standard for software testing to the components for robotics.
The paper takes the main items of ISO 9126 and adapt them
to each component of the robot. Like in ISO, the approach
is based on scenario. Compared to this work, our approach
enables to test not only isolated components, but also the
whole robot. Besides, Chung et al. did not consider the safety
issue, neither test reuse. They however support some level
of repeatability by defining expectations for each test.

Biggs [3] proposal also focuses only on components. He
proposes a repeatable regression testing method for software
components that interact with hardware. In a first session,
the approach backups data from the hardware on a particular
port. Then, the port is emulated and receives previously saved
data independently of the hardware. This technique is clearly
repeatable after the first session where data is collected. It is
also safe, since the hardware is not involved when running
tests. The limitation is that it focuses only on individual
components, and more specifically software ones.

Bensalem et al. [2] propose a safe-by-construction ar-
chitecture, based on a formal description. However, this
approach is limited to the functional level. It thus should
be complemented by tests of higher levels, such as the ones
we proposed.

Many approaches use simulation to test the software
before plugging it into the hardware. For example, SITAF
[9] is a framework to test robot components by simulating
environment. It generates test cases based on a specification
given by the developer. This test generation combined with
simulations allows repeatability of tests. It also discards the
need of test reuse, since they are generated. Besides, working

1846

at the simulation level allows detecting flaws without taking
any risk either for humans or for the robot. However,
although some simulations can be realistic to some levels,
tests with actual robots as we discussed in our methodology,
are still needed.

Among work relying on simulations, some introduce
hardware-in-the-Loop. For example, Chen et al. [4] propose
to insert an extra step for hybrid tests between simulation and
tests in real world. The same idea was taken a step further
by Petters et al. [8] who present multi-level testing strategies
for teams of autonomous robots. The authors propose three
levels of tests: component tests (automated), online test (with
the judgement of a human) and offline test (using logs).
Each of these levels can be run with simulated robots, or
with actual robots. Although the availability of different test
levels allows better safety, the authors provide no guideline to
help engineers selecting the appropriate level. Among work
relying on ordering tests, Son et al. [10] propose 3 levels
of tests: unit testing, state testing and API testing. The 3
levels allow to evaluate performance of components. The
presented system allows one to validate the safety of the
tested components by measuring their durability for example.

Lim et al. [7] also propose a test method for robot
components. The method is based on OPRoS [11]. The
authors propose an IDE that generates automatically test
cases. In this work, there are also 3 levels for tests: unit
testing, integration testing and system testing. This work
provides safety, test reusability and automation, but it is
particularly applied to the software part of the system.
Applying their method to a whole robot would conduce to
the same problems we discussed in this paper.

VI. SUMMARY AND FUTURE WORK

Developing mobile autonomous robots is a challenging
task. Making reliable robots for the mass market is even more
challenging. This is why we argue that the robotic industry
needs a rationalized process, especially at the end of product
lines for quality assurance. In this regard, we believe that
tests should play an important role in the process of making
robots.

Testing robots should be performed in a way that is
safe for human operators, and that preserves robots and
other expensive equipments. Besides, tests, especially in the
context of product lines, should be repeatable and as much
automatic as possible. The methodology we have introduced
in this paper targets this goal.

Our methodology builds upon three dimensions for robotic
tests. The first dimension is about operations performed
by the tested robot: sensing only vs. sensing and acting.
The second dimension is about testers knowledge of the
environment were tests are performed: they can have a
precise knowledge of the environment vs. little knowledge
of it. The last dimension is about the environment: it can be
static vs. dynamic with other moving entities for example.

The above three dimensions allow us to group tests in
different sets. Based on an analysis of these sets, we have
identified five relevant test levels. We ordered them to

maximize safety of humans while limiting risks to damage
tested robots. Indeed, testers must ensure that a robot passes
lower levels, before proceeding with tests from higher levels.

We reported our experiments with two similar ROS-based
robots. These experiments were conducting while developing
a demo application that will be showcased in an industrial
event next october 2013. Our methodology allowed us to
develop a semi-automatic repeatable test suite. This suite
already help us to identify different defects of the robots
and fix them. Since we can re-run it at will, we can reuse it
in the future to check our robots’ correct functioning.

Regarding future work, we plan to focus on repeatability
and automation of tests. Currently, some tests require human
intervention for the setup or for checking the result con-
formance to requirements. Ideally, test environments should
be instrumented, similarly to an automated product line.
Another interesting perspective derives from our experience
defining tests. We will investigate how software tools can
help human testers to develop tests and enforce their execu-
tion order.

ACKNOWLEDGMENTS

This work is supported by Nord-Pas de Calais Regional
Council through the CAIRE project (2012-2014). We also
thank Anthony Fleury for his comments and feedback.

We gratefully acknowledge the sponsoring of ESUG (the
European Smalltalk User Group) http://www.esug.org/.

REFERENCES

[1] Kent Beck. Extreme Programming Explained. Addison-Wesley, 2001.
[2] Saddek Bensalem, Lavindra de Silva, Félix Ingrand, and Rongjie Yan.

A verifiable and correct-by-construction controller for robot functional
levels. Journal of Software Engineering for Robotics, 2(1):1–19,
September 2011.

[3] G. Biggs. Applying regression testing to software for robot hardware
interaction. In Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on, pages 4621–4626, 2010.

[4] Ian Yen-Hung Chen, Bruce A. MacDonald, and Burkhard C. Wünsche.
A flexible mixed reality simulation framework for software devel-
opment in robotics. Journal of Software Engineering for Robotics,
2(1):40–54, September 2011.

[5] Yun Koo Chung and Sun-Myung Hwang. Software testing for
intelligent robots. In International Conference on Control, Automation
and Systems 2007, pages 2344–2349. IEEE, 2007.

[6] Erich Gamma, Richard Helem, Ralph Johnson, and John Vlissides.
Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[7] Jae-Hee Lim, Suk-Hoon Song, Jung-Rye Son, Tae-Yong Kuc, Hong-
Seong Park, and Hong-Seak Kim. An automated test method for
robot platform and its components. International Journal of Software
Engineering and Its Applications, 4(3):9–18, July 2010.

[8] S. Petters, D. Thomas, M. Friedmann, and O. Von Stryk. Multilevel
testing of control software for teams of autonomous mobile robots.
Simulation, Modeling, and Programming for Autonomous Robots,
pages 183–194, 2008.

[9] Hong Seong and Jeong Seok. SITAF: simulation-based interface
testing automation framework for robot software component. In
Florian Kongoli, editor, Automation. InTech, July 2012.

[10] Jung-Rye Son, Tae-Yong Kuc, Jong-Koo Park, and Hong-Seok Kim.
Simulation based functional and performance evaluation of robot
components and modules. In Information Science and Applications
(ICISA), 2011 International Conference on, pages 1–7. IEEE, April
2011.

[11] Byoungyoul Song, Seungwoog Jung, Choulsoo Jang, and Sunghoon
Kim. An introduction to robot component model for opros (open
platform for robotic services). In Workshop Proceedings of SIMPAR,
pages 592–603, 2008.

1847

