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Abstract— Most object classes share a considerable amount
of local appearance and often only a small number of features
are discriminative. The traditional approach to represent an
object is based on a summarization of the local characteristics
by counting the number of feature occurrences. In this paper
we propose the use of a recently developed technique for
summarizations that, rather than looking into the quantity of
features, encodes their quality to learn a description of an object.
Our approach is based on extracting and aggregating only the
essential characteristics of an object class for a task. We show
how the proposed method significantly improves on previous
work in 3D object categorization. We discuss the benefits of the
method in other scenarios such as robot grasping. We provide
extensive quantitative and qualitative experiments comparing
our approach to the state of the art to justify the described
approach.

I. INTRODUCTION

A meaningful representation should retain only informa-

tion that is relevant for a specific task. This leads to the

question: What are the characteristics of an object that are

essential for a task? What makes it possible to grasp a pan

and a knife in a similar way [7][6], what characteristics

decide if an object affords drinking [9][20] and what makes

a chair a chair [10]? These characteristics are often non-

obvious, which is why they have been traditionally extracted

by statistical supervised learning techniques.

Statistical learning is based on the assumption that it is

possible to acquire a sufficient number of samples of the

phenomenon to be modeled. However, in many scenarios

this is not feasible due to the high-dimensionality of the

data. A common approach to circumvent this is to look at

information at a smaller scale where sufficient data can be

acquired, such as a small neighborhood “patch”. This set

of patches can then be summarized into a single represen-

tation [19], as shown in Figure 1 (top row). The traditional

approach to represent a 3D object can be considered as a

series of consecutive steps gradually increasing a level of

summarization. First, a point cloud is extracted from sensory

data, then local points are joined and summarized into a patch

representation; these patches are finally summarized into an

object representation. As such these summarizations can be

seen on a continuum.
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Fig. 1. We refer to the procedure of summarization as that of creating a
single representation for a set of observations [19]. (Top) Illustration of the
continuum of summarization steps that typically is a part of the pipeline of
generating a single representation of an object for object classification. In the
left a lagre number of very small patches are summarized while on the right
side few large regions are summarized resulting in a single representation
of the object. (Bottom) Illustration of the approach we take in this paper.
The left image shows all the patches (red squares) extracted from the image
with only a few being relevant for object description (yellow). Our descriptor
creates a representation by only summarizing these essential patches.

Previously we have addressed the problem of summarizing

local features to a global representation by incorporating

object structure [16]. In this paper we will focus on summa-

rization at a more local level and present an approach that

extracts only the “essential” features needed to represent a

specific object for a specific task, as explained in Figure 1

(bottom row). The intuition is that most of the local features

of an object are irrelevant for most tasks and therefore using

a summarization of all features will reduce the proportion of

the variance that is relevant in the descriptor. For instance,

take a cup and a can which share most of the same local

geometry; in terms of object categorization it is the handle

of the cup that is the essential characteristic while in terms of

one’s ability to drink from the cup, it is the opening. Neither

of these characteristics are dominant and are therefore likely

to “disappear” in a representation constructed by summa-

rizing all local features. To overcome these problems we

will adapt a newly proposed summarization method which

introduces the concept of a Qualitative Summarization [1].

The method facilitates supervision by creating a sparse

interpretable feature space which extracts and summarizes

only the essential characteristics of a class.

In this paper we will show that the applied method-

ology allows us to automatically discover essential and

easily interpretable object characteristics. They are not only

stable within each object category, but also specific to
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it. In consequence, by encoding relevant object properties

for a task, we significantly improve the categorization rate

for real scenarios compared to the state of the art. Our

approach opens doors for further enhancement of global

representations based on the local features, such as the

previously proposed Global Structure Histogram (GSH) [16].

Moreover, the information about a specific position of the

essential features might in the future facilitate planning of

robot actions required to verify an object class or a grasp

hypothesis.

The remainder of the paper is organized as follows:

Section II describes the related work that puts this paper

in context. Section III explains the proposed approach.

Section IV presents qualitative and quantitative results and

Section V discusses other robotics application of the method.

We conclude the paper and detail directions of future work

in Section VI.

II. RELATED WORK

Object representation methods aim to create a single object

description from high dimensional sensory information. In

order to facilitate efficient reasoning, it is desired to reduce

the complexity of the representation and create a compact

summary that encapsulates the key object properties. More-

over, in real applications, the representation needs to be

robust to sensor noise, variations in object pose and scale

as well as data incompleteness caused by occlusions and

imperfect segmentation.

Object representation is often obtained by extracting a set

of local object features and then defining an object model

in terms of feature occurrence statistics, such as in the

Bag-of-Words (BOW) model [11]. Recently, the increased

accessibility of depth data has simulated development of

3D local descriptors. The majority of those representations

encode local shape in the neighborhood of a point, for

example the Fast Point Feature Histograms (FPFH) [21],

Signature of Histograms of Orientations (SHOT) [27], and

many more [12][26][8].

An object representation can be built incrementally where

information is repetitively summarized at each step. It has

been shown that incorporating information about object

structure beyond the local properties significantly improves

results [14][16]. Many 3D methods that incorporate object

structure have been inspired by those proposed in the field of

object modeling from 2D images. They usually first define

a set of object parts based on local features and then encode

their geometrical relationships.

One approach is to store coarse global spatial information

by counting local feature occurrence at particular positions

on an object, such as the 3D spatial pyramids [3][15].

However, since this quantitative approach relies on precise

estimation of an object boundary or its center, it is not

robust to imperfect segmentation or variations in object

orientation. Another group of methods are those that di-

rectly add information about object structure to the local

descriptor. For example, the methods from the Viewpoint

Feature Histogram (VFH)-family [22][2] extend the FPFH

by including estimation of a camera viewing direction and

creating a global reference frame. However, the relation to

the viewpoint makes them sensitive to object rotation. The

problem of robustness to different object poses and scales

has been addressed in [16]. We previously introduced the

Global Structure Histogram (GSH) descriptor that obtains

an incremental summarization by dividing an object surface

based on its local characteristics into patches of different

geometrical properties, and then encoding the distribution

of distances between pairs of the patches. By implicitly

representing a global ordering and position of the regions

in an object internal reference frame, the GSH provides

significant improvements to other state-of-the-art methods in

realistic scenarios.

However, these methods summarize all local object fea-

tures, whereas the intuition is that only a few are relevant

for a specific task. In this paper we take an approach

which we seek to extract only these essential features. This

concept has been explored in computer vision using graphical

models [13][24][29]. More generally, the approach is loosely

related to interest point detection [18]. A few 3D keypoint

detectors have been recently proposed and they are often

motivated by similar work in the 2D domain [25][28].

In terms of representing object regions, the Clustered

Viewpoint Feature Histogram (CVFH) [2] finds and de-

scribes all continuous surface patches in an object, as they are

assumed to be less affected by noise which is predominantly

associated with the object edges. Authors do not look into

importance of different object regions for a given task in

contrast to the method presented in this paper. Moreover,

our method does not make any explicit assumptions about

which information in the object is discriminative. Instead, it

automatically discovers and extracts this information from

data.

III. METHODOLOGY

Given a set of N objects O = {Oi}
N
1

associated with class

labels L = {li}
N
1

from the set li = {cm}M
1

, where M is the

number of classes, we wish to find a vectorial representation

yi that is low-dimensional and robust to noise variations that

are tied to those characteristics in the observations deemed

relevant. Each object Oi is initially represented as a point

cloud oi extracted from the scene. From this point cloud a

set of Pi local features Xi = {xi
j}

Pi

1
, where xi

j ∈ R
q , can

be extracted using one of the many local feature descriptors

such as [21][12]. The focus of this paper is on how to

summarize the set Xi, where each object Oi can have a

different cardinality, to a vector representation yi with the

same dimensionality.

The bag-of-words model [11] is a very popular approach

to achieve such summarization. In that model, the first step

is to obtain a discretization of the space of the local feature

X by finding a set of key points often referred to as words.

The words are usually found by clustering all local features

from all objects. The notion is to direct words according to

the underlying structure of the data. The final step in the

summarization consists of associating each feature with a
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word through a similarity measure and using the distribution

of associations as the feature space X = R
q . However, if

the set Xi is dominated by features xi
j that are irrelevant or

contain very little information about the class then yi will

not be a good representation of li. For example, a cup might

be discriminated from a can by having a handle, but not by

large cylindrical surfaces that are common for both objects.

To avoid a representation that is dominated by irrelevant

information, a summarization method based on the quality

of a word rather than the quantity was proposed in [1].

This summarization is referred as the Qualitative Vocabulary

Based Descriptor (QVBD) and is computed for a 3D point

cloud data in the following three steps:

1) Estimate a local feature descriptor for each point and

cluster the data

2) Compute the local classifiers for each word and each

class

3) Describe the objects by max-pooling the responses

obtained from the local classifiers

We will now proceed to describe this summarization method

in detail and outline its specifics to 3D object representation.

A. Qualitative Features

Assume a feature set Xi representing each object Oi with

the associated label li and a set of words W = {wk}
K
1

,

where K is the number of words, that partition the space X .

The qualitative feature summarization begins by associating

each feature xi
j with the most similar word wk in W. We

will assume that similarity is encoded by proximity meaning

that each feature is associated with its closest word. In the

second step the aim is to try to recover the class-dependent

structure of each word. To that end, a hyper plane f cmwk
is

found for each class cm and each word wk. The hyper-

plane f cmwk
is aimed at finding the best separation between

each feature associated with word wk that has class label

cm and all other features associated with word wk. The

intuition here is that a word for which each class has the

same structure is irrelevant, but one with large separation is

discriminative and contains important information about the

class (see Figure 2). By employing such hyper-planes, we

can generate a representation of each object zcmi ∈ R
Pi×K

with respect to the class cm, where each element zcmi (·, ·) is

a pseudo probability 0 ≤ zcmi (·, ·) ≤ 1 obtained from

zcmi (j, k) = δ
(

w(xi
j),wk

)

L(xi
j

T

f cmwk
). (1)

Here w(xi
j) is the closest word to xi

j , L(·) is the logistic

function which transfers the responses into a pseudo prob-

ability and δ(·, ·) is the Dirac delta function. The value of

zcmi (j, k) is equal to zero for every word wk 6= w(xi
j). Each

element of this representation measures how well a given

feature is representative of class cm. Large separations are

discriminative and contain important information about the

class (see Figure 2).

Having {zc1i , . . . , zcMi } for each object instance, a final

representation is calculated by summarizing them into one

fixed dimensional matrix yi ∈ R
M×K with

yi(m, k) = max{zcmi (j, k) : j ∈ [1, . . . , Pi]}. (2)

w

x

x

w1

w2

w3

xi

fC1

w3

fC2

w3

fC3

w3

xj

Fig. 2. Illustration of the qualitative summarization method from [1]. The
method is a two stage approach. In the first step we estimate a set of words

(shown in red) to partition the space of features. In the second step, side
information (such as class label) is used to find a hyper-plane (dashed lines)
that creates a soft partitioning of each word space with respect to class.
This plane provides a measure of how representative a specific feature is to
describe the concept used to supervise the procedure. The figure has been
adopted with permission from [1].

The final representation contains the responses for the most

representative features found on the object with respect to

each word and each class, and is referred as the Qualitative

Vocabulary Based Descriptor (QVBD).

The QVBD is a universal descriptor, which given an object

point cloud, can extend any local feature descriptor to include

qualitative information. In the next section, we evaluate the

QVBD based on the popular FPFH [21] local descriptor by

applying it to a 3D object database.

IV. EXPERIMENTAL EVALUATION

In this section, we present a qualitative and a quantitative

evaluation of the QVBD descriptor for 3D object catego-

rization. First, we thoroughly and systematically analyze its

descriptive and discriminative properties, and demonstrate its

ability to select essential 3D object characteristics. Second,

we compare its performance with the state-of-the-art repre-

sentations that use different types of summarization in real

scenarios.

A. Database

Evaluation is performed on the challenging Stereo Object

Category (SOC) database [17] that contains RGB-D data

(images and point clouds) collected using the 7-joint Armar

III robotic head equipped with two foveal and peripheral

cameras. Objects are separated from the background using

an active segmentation method [4]. The database contains 14

object categories: ball, bottle, box, can, car-statuette, citrus,

cup, 4-legged animal-statuette, mobile, screwdriver, tissue,

toilet paper, tube and root-vegetable, with 10 different object

instances per category.

The SOC database consists of two datasets. In the first

one, for each object, the data are collected from 16 views
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(a) Illustration of the first experimental setup of the
SOC database where rotation of single objects differs;
8 views per object are used for training an object model
(top row) and other 8 views for evaluation (bottom
row).

(b) Illustration of the second experimental setup of the SOC database for testing object
representations in real conditions. Models trained on the data from the previous setup are
tested on examples from 10 natural scenes where an object pose and scale, and a degree of
occlusions vary significantly.

Fig. 3. Experimental setups and examples of objects from the Stereo Object Category database [17]. Object representations are evaluated only on 3D
portion of the database. We use images of the objects here for better visualization. Data for all objects and natural scenes can be viewed at our web site
http://www.csc.kth.se/˜madry/research/stereo_database/index.php.

uniformly spaced around the object (every 22.5◦), see Fig-

ure 3(a). In the second, the data are extracted from 10 natural

scenes where 10 to 15 object instances from 14 different

categories are randomly placed on a table. This dataset has

235 object point clouds that are characterized by significant

variations in the objects poses, scale and degree of occlusion

typical for real scenarios, see Figure 3(b).

B. Experimental Setup

In this paper, we used the same setup as in [16]. We

performed cross-validation with the data divided into a

training and test set with ratio 60:40%. Each experiment was

repeated three times for randomly chosen object instances in

order to average the results. Moreover, an object instance

used for the training phase was never again used for an

evaluation.

The state-of-the-art descriptors compared in this pa-

per model the distribution of different features using the

histogram-based representation. Following the previous suc-

cessful results of applying the SVM classifier to this type

of data [5], we employ the same strategy. We report the

categorization results for a linear kernel for our approach,

and the best of linear, RBF, χ2 and histogram intersection

kernels for the other discussed methods.

C. Qualitative Evaluation

As stated, our aim is to identify object characteristics

that are essential for categorization. It is desired that the

selected features are consistent for different object instances

within one category and remain stable over variations in

object pose and scale, and are unaffected by changes in data

quality. Moreover, they need to be specific to each category

to enable discrimination between different object classes. We

first analyze these properties qualitatively for our method on

the SOC database for both the single object dataset and the

natural scenes (Figures 3).

To this end, we first extract a local surface descriptor

for each 3D point. We used the established FPFH [21]

Fig. 4. Estimation of essential characteristics of an object for a given
category. The heat maps visualize values of pseudo-probabilities at each
object point (the brighter the point, the higher the probability). The bright
regions consist of features that are crucial for identification of an object
category. (Top) Four animal object instances in different poses interpreted
by the animal category model. Our method is able to identify consistent
feature regions for objects within one category. (Bottom) A tiger object
interpreted by four different category models. The non-animal models find
features on the tiger that correspond to their own class.

for feature extraction, since it is related with the further

discussed (semi)-global descriptors. Then, we cluster the

features using K-means with the Euclidean distance to obtain

words and assign the features to their closest word. We

computed the local linear classifiers for each word and each

object category, Thus, the final number of the local classifiers

is equal to K × M , where K is the number of words and

M is the number of object categories (see Section III).

Next, we measured the response of each feature vector to

the corresponding M local classifiers (f cmwk
hyper-planes).

This gives a pseudo-probability value for each 3D point and

each category. Thus, we could interpret an arbitrary object

point cloud using a category-specific model. Figures 4 and 6

visualize the probabilities obtained on different point clouds

as heat maps.
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The high probability regions (indicated by bright color)

consist of features that play a significant role in identification

of an object category. Our method does not use all the

features in the high probability regions, but chooses the best

candidates that support a given hypothesis. The visualizations

of these regions in terms of heat maps show the robustness

of our method in selecting similar features across different

examples. Figure 4 (top row) presents the heat maps for

a few different animal objects that have been interpreted

by the animal category model. We can observe that our

method consistently identifies important regions (for the

animal category around the neck and ears) generalizing over

object instance specific characteristics and various poses.

What links the tiger with an animal, a cup, a screwdriver

or a citrus? To find the answer, we applied the models

of different categories to the tiger instance, as presented in

Figure 4 (bottom row). In line with one’s intuition, our results

suggest that the regions close to the tiger’s neck, claws and

tail are important to perceive it as an animal, the shape of the

tail links it with a cup, its body with a screwdriver, the round

sides of the body are common with a citrus and it does not

have characteristics that are essential for a box. This shows

that the QVBD allows us to automatically discover human-

interpretable properties of a given object that are common

with objects from other categories. This is key to define a

suitable object representation for autonomous agents.

In order to achieve discrimination between different cate-

gories, a representation should capture unique characteristics

of each class. As presented in Figure 6, a cup, a can, a bottle

and a toilet paper all have large cylindrical surfaces. This

makes them difficult to distinguish for quantitative descrip-

tors (see the confusion matrix for the BOW in Figure 7).

In contrast, our qualitative descriptor extracts essential prop-

erties for each category and considers repetitive structures

irrelevant. It identified as distinctive the regions close to: (a)

the rim and the handle of a cup, (b) the flat top of a can, and

(c) the narrowing of the neck of a bottle. For any category, the

cylindrical areas were not seen as important. We will show

in Section IV-D that this property significantly improves the

results compared to the methods based on other types of

summarization.

Figure 5 presents the most important results for applying

a model to a specific category to all objects in a scene.

As can be seen, the high probability regions are consistent

with the previous results. For example, the method finds

important features close to the neck of an animal, the rim

and the handle of a cup. This confirms that it is capable

of generalizing over large variations in object appearance,

pose and scale. Since the pseudo-probabilities are calculated

using local classifiers with no information about the global

structure of the object, high probability regions can appear on

object instances from other categories. For example, for a box

additional objects that have box-like features were detected

(the mobile phone or the tissue package). In this framework

it is left to the final classifier to pick which responses are

needed to identify each object class.

Fig. 6. Estimation of unique characteristics for geometrically similar object
categories. The high probability regions (indicated by bright color) consist
of features that play a significant role in identification of object categories. In
the first row, the cup model is applied to different instances of this category
and it can be seen that distinctive features of the cups are robustly extracted
across several instances. Meanwhile, models coming from other categories
do not produce high probability regions on the cup instance (second row).
For objects that are similar to a cup (third row), their corresponding models
highlight regions that are unique for those categories and not shared across
the other categories.

Fig. 7. Confusion matrices obtained for: (left) the Bag-of-Words (BOW)
and (right) the Qualitative Vocabulary Based Descriptor (QVBD) for the
first setup of the Stereo Object Category (SOC) database [17] presented in
Section IV-C. The images are best viewed in color.

D. Quantitative Evaluation

In this section, we present a comprehensive quantitative

comparison of our method with several state-of-the-art 3D

descriptors adapting different methods of summarization,

such as Bag-of-Words (BOW) based on Fast Point Feature

Histograms (FPFH) [21], and the (semi-)global descriptors

such as the Global Fast Point Feature Histograms (GF-

PFH) [23], the Viewpoint Feature Histogram (VFH) [22],

the Clustered Viewpoint Feature Histogram (CVFH) [2] and

the Global Structure Histogram (GSH) [16]. We selected

results that demonstrate the most important properties of

these representations for use under real-world conditions. For

each experiment, we report the average categorization rate

and the standard deviation (σ). We refer to results presented

in [16].
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Fig. 5. Estimation of essential characteristics of objects in three real scenes. Each of the scenes is analyzed for two different categories and the results
are aligned row-wise. All objects in the scenes are interpreted by the same category model, for example 14 objects in the first scene by the animal model
(top row, middle column). The high probability regions (indicated by bright color) indicate features that are crucial for a given category.
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(a) First setup - Results for single objects from the SOC database where
training and test data differ in object rotation. Experimental setup is shown
in Figure 3(a).

(b) Second setup - Results for objects from 10 natural scenes in the SOC
database where training and test data differ significantly in an object pose
and scale. Experimental setup is shown in Figure 3(b).

Fig. 8. Comparison of several quantitative and qualitative object representations in terms of average categorization rate performed on data that differ
in quality and amount of available training examples. Abbreviations used for representations: BOW-JAC - Bag-of-Words based on the Jaccard distance
with 100 words; GFPFH - Global Fast Point Feature Histogram [23]; VFH - Viewpoint Feature Histogram [22]; CVFH - Clustered Viewpoint Feature
Histogram [2]; GSH - Global Structure Histogram [16]; BOW-JAC - Bag-of-Words based on the Euclidean distance with 1000 words; QVBD - Qualitative
Vocabulary Based Descriptor (QVBD) with 1000 words. The BOW-JAC, GFPFH, VFH and GSH have been evaluated in [16].

In order to systematically study the properties and robust-

ness of the method, we formulated two experimental setups

of increasing complexity. First, we perform experiments on

the first part of the SOC database in which we vary rotation

of single objects used for training and testing, as presented

in Figure 3(a). The quality of the data is also influenced by

imperfect segmentation and real sensory noise. Second, the

models obtained for the first setup are tested against objects

extracted from 10 natural scenes, as presented in Figure 3(b).

In this setup, the difficulty of the problem is considerably

increased by significant variations in the object pose, scale,

and data resolution as well as data incompleteness due to

object occlusions.

(1) Importance of qualitative information:While comparing

the confusion matrices for the BOW and the QVBD (Fig-

ure 7), we can observe that incorporating qualitative infor-

mation helps to discriminate between object categories that

share a substantial portion of the local appearance and only

differ in a small amount of features. As reasoned in the

previous section, the QVBD is able to correctly discriminate

between such categories whereas BOW easily confuses them.

For example, the cup category is well discriminated from the

bottle, can and toilet paper. The hardest to recognize are the

ball and citrus. Since in 3D they both contain almost solely

one type of features (describing round surfaces), the QVBD

discovers one kind of essential regions and in consequence

does not improve the results.

Figure 8 compares the categorization rates of the QVBD with

the BOW representations based on the Euclidean distance

(BOW-EUC) and the Jaccard distance (BOW-JAC), where

the latter is adapted from [16]. The QVBD clearly outper-

forms the BOW representations for both analyzed setups,

confirming the importance of high quality features.

(2) Summarization method: We compare QVBD with the

state-of-the-art 3D descriptors that are based on different

types of summarization. For the first setup (Figure 3(a)), the

VFH descriptor slightly outperforms other descriptors. Nev-

ertheless, the results show that the QVBD performs equally

well as the three quantitative descriptors - the VFH, CVFH,

GSH (σ=1.8%). However, in this setup all object poses used

at the test time were also available during training and there

is relatively small variance in the amount of different types

of features between the training and testing views. Collecting

data that represent all possible object orientations present in

real scenarios is very expensive or even unfeasible.

Therefore, more realistic results are those obtained for the

second setup (Figure 3(b)). We tested the descriptors on the

real scenes where an object pose, scale and data resolution

significantly differ. The QVBD massively outperforms all the

quantitative descriptors encoding global object structure (by

17% comparing to GSH) and the BOW (by 11%). Finally,

while comparing two closely related descriptors, namely the

VFH and the CVFH, we can see that describing only the con-

tinuous regions is highly effected by the data incompleteness.

These results demonstrate the great importance of encoding

and properly selecting the relevant object characteristics.

V. DISCUSSION

In this work we showed how to extract the essential

object characteristics for discriminating between different

object classes. However, we believe that the benefits of the

proposed method expand beyond object classification. First

and foremost, the method can learn a representation given

labels of any kind, not necessarily corresponding to human-

defined object categories. As such, one possible application

is grasping, for which our method would permit learning

relationships between the local characteristics of an object

and the grasp parameters. This would facilitate transfer of

grasps between locally similar objects.
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As can be seen from the qualitative results, the response of

the feature is consistent over both object instances and view-

points. This information can be exploited in order to perform

other types of reasoning about objects. In particular, imagine

a scenario where a robot located in a kitchen is tasked

with finding an object to drink from; our representation

would allow the robot to search for characteristics resembling

objects that are known to afford drinking. Furthermore,

knowledge about essential features would allow the robot

to plan for observing the viewpoints that are most relevant

for discriminating the object of interest.

Finally, the approach generates a sparse representation

in which an object is described by only a subset of the

extracted local features. We believe this to be a very useful

property for extending the global summarization methods,

such as the GSH descriptor [16], where focusing on the

essential local characteristics should further improve the ob-

ject categorization performance. Moreover, the sparsity of the

representation should significantly reduce the computational

complexity. This is where we intend to focus our future work.

VI. CONCLUSIONS

Building representations of objects is traditionally based

on incremental summarization of local features. In this paper

we have shown that local statistics of 3D features contain

a large portion of variations that are not discriminative for

the class. As a solution, we proposed the use of a qualitative

summarization approach which generates a representation by

automatically selecting only the essential characteristics of an

object given the task. Further, the features are consistent over

various instances of the same class, and most importantly,

form interpretable structures which could be used in many

robotics applications. We demonstrated significant improve-

ments for 3D object categorization on a challenging dataset

with respect to other state-of-the-art methods.
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