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Abstract— This paper presents a new dynamics-based 

method for image processing in coordination with rapid ocular 

movement. A camera positioning mechanism with piezoelectric 

cellular actuators will be employed to demonstrate the 

effectiveness of this approach. There are a number of 

mechanisms for automatic camera positioning, but few have 

much in common with the human ocular positioning system. 

When a rapid point-to-point motion is created in a camera 

positioner, like human saccadic motion, the image sensor 

receives blurry images. Existing image techniques rely solely on 

obtained images, or use external sensors to estimate a blur 

kernel, or  point spread function (PSF), for motion deblurring. 

Inspired by recent oculomotor studies, this paper proposes a 

method for estimating PSFs directly from the system dynamics 

of a camera positioning mechanism without motion sensors. The 

proposed method has been evaluated by using a single 

degree-of-freedom camera orientation system. Results are 

compared with conventional methods in terms of speed and 

accuracy. 

I. INTRODUCTION 

The human eye is a remarkable organ that detects light, 

allowing the brain to recognize the environment.  Due to its 

limited field of view (FOV), human eyes need to change the 

orientation to scan the environment or to change the region of 

interest (ROI). Human eye movements are created by six 

surrounding extraocular muscles [1]. These six extraocular 

muscles consisting of four recti muscles and two oblique 

muscles create various eye motions in three degrees of freedom 

(DOF). Human eyes are known to create two representative 

movements: smooth pursuit and saccade. It is known that 

movement time is within 50ms for 10 degree saccade and the 

maximum saccade velocity is 250 degree per second [2]. 

Saccade is some of the fastest and most accurate movement 

made by human [3]. Saccade occurs much more rapidly than 

proprioceptive, vestibular, or visual feedback that can be 

returned to the brain [4].  This fact suggests that the saccade is 

completed in an open-loop manner in the control point of view 

[4]. 

A variety of camera positioning devices, inspired by the 

human ocular system, have been designed. Lan et al. have 

developed a two DOF camera-orientation mechanism by using 

rigid links and servo motors [5]. Lesmana et al. have developed 

a bio-inspired open-loop controller for fast eye movements by 

using DC servo motors [8]. Song et al. have developed an 
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active binocular integrated system actuated by DC motors [9]. 

While these mechanisms successfully generated a rapid 

motion, heavy industrial servo motors have little in common 

with biological muscle actuation. In contrast, the human eye is 

positioned by means of antagonistic pairs of six extraocular 

muscles. There are several notable designs that orient the 

camera by means of antagonistic pairs of alternative actuators. 

Villgrattner et al. have developed a compact high-dynamic two 

DOF camera-orientation system driven by pairs of 

piezoelectric actuators [6]. Lenz et al. have designed a robot 

eye mechanism driven by pneumatic actuators [7]. Even 

though these designs have unique solutions to camera 

positioning, there is a discrepancy with muscle actuators. For 

example, the rigidity is an artifact of using traditional servo 

motors while the extraocular muscles are contractile and 

compliant. In addition, these actuators are controlled in 

closed-loop for a rapid motion while physiology study 

indicates that saccade is completed in an open-loop manner. 

Schultz et al. have developed a camera positioner driven by 

antagonistic pairs of compliant cellular actuators that are 

controlled by an open-loop, switching controller [10-11]. All 

aforementioned biologically inspired camera positioning 

robots are only focused on design and control of the 

mechanism but not on vision or image process. Although there 

was no vision processing for the previous studies, most of them 

employ a camera with a high frame rate over 100 frames per 

second (fps). 

Contrary to a high-speed camera that was employed to the 

existing systems, the frame rate of the human eye is known to 

be around 24 fps. Therefore, during saccade or right after 

saccade is completed, the human eye will perceive blurred 

images. Physiology studies indicate that the brain predicts 

consequences of the eye movement so that motion smear can 

be reduced by a neural compensation mechanism using 

information of eye movements [13-14].  

There are various approaches proposed in the area of 

computer vision for restoring degraded blurry images caused 

by motion. A point spread function (PSF) must first need to be 

estimated. The PSF is a blur kernel that describes the camera 

motion during exposure. Given the kernel, a blurry image can 

be reconstructed by using a standard deconvolution algorithm. 

Fergus et al. have attempted to estimate a PSF from a single 

blurred image and restored images using statics of an obtained 

image [15]. Multiple images have been used to remove blur in 

the images [16-17]. However, these approaches require a large 

amount of computation time for analyzing the blurry image. 
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Figure 2. Single degree-of-freedom tilting motion of the camera orientation 

system 

 

Figure 1. Camera orientation system 

There are studies using different approaches by using 

addition sensors. Joshi et al. have used a gyro sensor and 

accelerometer to track a camera shake and to estimate a PSF 

for image deblurring [18]. Ben-Ezra et al. have used an extra 

high frame camera with a low resolution to track the camera 

motion and to estimate a PSF [19]. While these approaches 

were able to remove blur in images by using motion 

information, they also require a large amount of computational 

effort. Ben-Ezra et al.’s approach requires post image 

processes of multiple images obtained from a secondary high 

frame camera. Joshi et al.’s approach involves computations 

estimating the path of a camera shake from noisy gyro and 

accelerometer sensors. 

This paper presents a biologically inspired estimation of 

the PSF by visual-motor coordination for image deblurring. 

The human brain uses information of eye movements to reduce 

motion smear [13-14]. This paper presents a method inspired 

by this observation. Understanding both mechanical properties 

and control architecture, PSFs can be estimated in an 

open-loop manner without the analysis of inherent image 

characteristics. This method directly estimates the PSF from 

the control system without any sensors resulting in less 

computational effort for image restoration. Although the 

ultimate goal of camera orientation system is a three 

degree-of-freedom system, the proposed method is tested and 

verified using single degree-of-freedom system as shown in 

Fig. 1.  

II. DESIGN AND CONTROL OF THE CAMERA-ORIENTATION 

SYSTEM 

A. Mechanical Design 

The camera orientation system used in this study is shown 

in Fig. 1. A Logitech C270 HD webcam is used for image 

acquisition.  

The moving platen is connected to a rod that transmits the 

force from antagonistic pairs of cellular actuators located on 

both sides. The cellular actuator consists of sixteen Lead 

Zirconate Titanate (PZT) stackactuators with deformable 

amplification mechanisms [12], [20]. The multi-layered strain 

amplification structure amplifies the displacement of PZT 

from its extremely small strain. This mechanism exhibits zero 

backlash and noise-less operation since no gears or sliding 

mechanisms are used in the structures while still extremely fast 

movement is achieved. In addition, the nested compliant 

mechanism has been reported to resemble characteristics of 

human extraocular muscles [27].

The axis of the rod is assembled perpendicular but not 

orthogonal to the pivot axis. Therefore, when the rod is pushed 

or pulled by the antagonistic pairs of the cellular actuators, a 

moment is applied to the moving platen resulting in a tilting 

motion of the camera positioning system as shown in Fig. 2. 

B. Mechanical Control 

A total of 32 APA50XS (Cedrat corporation) PZT 

actuators are used to position the camera. The maximum 

displacement of the PZT stack actuator is 80 �m and it can be 

controlled continuously by adjusting the input voltage. The 

PZT actuator has hysteresis response requiring closed-loop 

control with additional sensing devices. In this study, however, 

the PZT is given only maximum input voltage of 150V or 

minimum input voltage of 0V in order to operate in an on-off 

manner so that the hysteresis response issue can be avoided. 

Since the system has a number of PZT stacks in an 

amplification mechanism to the maximum free displacement of 

12.9mm, a discretized desired distance can be obtained by 

defining the numbers of on and off PZT actuators. In this 

approach, the cellular actuators share the principles in 

common with human muscles where a motion of the human 

muscles is a summation of motor units [10].The camera 

positioning mechanism exhibits a single dominant frequency 

at 14.4 Hz with a damping ratio of 0.12. Therefore, the system 

can be represented as a linear second-order system given as: 
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where K is the residue, nZ  is the natural frequency, and 

] is the damping coefficient. 

A saccade-like motion is an open-loop controlled 

point-to-point motion with 50ms settling time at the maximum 

angular velocity of 250deg/sec. In order for camera positioning 

mechanism to generate the saccade-like motion, quantized 
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Figure 3. (a) Time response of a rapid point-to-point motion of the camera 

orientation system ranging in various desired angles (b) Discrete switching 

commands to suppress vibration 

 

Figure 4. Velocity profiles of a rapid point-to-point motion ranging in 

various desired angles given the discrete switching commands 

 

Figure 5. (a) Exposure Window I. The image is obtained during partially 

stationary and in motion. The image is partially blurry. (b) Exposure 

Window II. The image is obtained in full motion (c) Exposure Window III. 

The image is obtained during partially stationary and in motion but fully 

blurred. (d) Exposure Windows of image acquisition by the bio-inspired 

camera orientation device  

input commands must be given at appropriate times to the PZT 

stacks with successful vibration suppression. This can be 

achieved by understanding the mechanical properties of the 

system such as the natural frequency and the damping ratio. By 

applying a phase-vector analysis of mechanism control [11], 

discrete switching commands can be given to the system as 

shown in Fig. 3(b). Figure 3(a) shows representative time 

responses of a point-to-point movement of the camera 

orientation system in various desired angles given integer 

values of amplitudes at appropriate times. The results show 

that the vibration has been suppressed and the settling time of 

each motion is within 60ms. If a step command is given to the 

system, however, the response shows considerable oscillation 

due to the lightly damped system. Figure 4 shows that the 

maximum peak velocity of the camera orientation system given 

the discrete switching commands is approximately 350 deg/sec. 

As a result, the speed of response of the camera positioning 

mechanism is comparable to that of the human ocular motion. 

III. IMAGE ACQUISITION AND DEBLURRING 

A. Exposure Windows 

Images can be obtained by the camera in various situations 

when a motion is involved as shown in Fig. 5(d). Exposure 

Window I is that the camera first starts taking an image at a 

stable state, but soon the motion takes place during the image 

acquisition. This results in acquisition of a blurred image in 

partial region because data is not loaded to an image sensor 

simultaneously for all pixels. Exposure Window II is that an 

image is obtained in motion for full exposure window. 

Exposure Window III is similar to Exposure Window I where 

an image is obtained partially stationary and in motion, but the 

whole image is blurred. The period of image acquisition 

includes writing, reading and erasing of data. For Exposure 

Window III, the data is written during motion, but is read and 

erased when the motion is relatively steady-state. Exposure 

Window IV is a fully steady-state. The image acquisition in 

Exposure Window I is very different to the visual process in 

humans. For Exposure Window II, images are blocked in 

visual process of the human which is called saccadic masking 

[22].  Saccadic masking is the phenomenon in the brain where 

the brain blocks images with substantial motion blur in the 

course of the eye motion. Therefore, in this paper, images only 

in Exposure Window III are considered for deblurring. 

B.  Dynamics-based Kernel Estimation 

A spatially-invariant blurred image B can be represented 

by a convolution between a shift-invariant blur kernel K and a 

latent sharp image I plus N: 

NIKB ��                             (2) 

nmu��NI,B, , 
llu��K  

where � is a convolution operator. 
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Figure 4. Visual-motor coordination for a biologically inspired estimation 

of the PSF 

A blur kernel, or a PSF, represents a trajectory of the 

motion with energy levels. In order to perform deblurring, it is 

important to estimate a blur kernel or PSF accurately. To 

perform deblurring, it is important to estimate a blur kernel or 

PSF accurately. In the literature, PSFs are obtained by the 

analysis of a single image, requiring a large calculation time 

[15], [17]. Another approach is to use an additional high-speed 

camera. However, the hardware tends to be bulky [18-19]. This 

paper proposes the estimation of PSFs from the system 

dynamics of the camera orientation system. Excluding the case 

where the system has large external perturbations, the motion 

of a robotic camera positioning system is predictable since the 

dynamics of the systems and actuation commands are known 

and given. This predictability of the system allows for 

sensorless estimation of PSFs. This approach is inspired by 

the observation that the brain seems to use eye movements to 

reduce motion smear [13-14].  

Since the camera positioning mechanism can be modeled 

as a linear, time-invariant second order system, the time 

response of the single degree-of-freedom camera orientation 

system can be given as: 
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where 
iA  is the amplitude of the i

th
 impulsive input, 

it  is the 

time of given i
th
 impulsive input, n is the number of amplitudes 

given to the system, 
nZ  is the natural frequency, and ] is the 

damping coefficient.  

A PSF can be given as 

),(),( yxhyxk                           (4) 

where h is an energy level at the location (x, y) of a pixel.  

The pixel of the kernel (x, y) is 
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where L  is a conversion factor dependent on the size of the 

blur kernel. 

and the energy function is 
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where acqt  is the total time of single image acquisition.  

Thus, the energy is proportional to the time remaining at 

the location (x, y). The PSF is an energy distribution function 

for which the energy conservation constraint must hold:  

³³  1),( dxdyyxk                         (7) 

Given the mechanical properties and control commands of 

the system, therefore, a discretized PSF can be estimated 

without the use of sensors. This results in fast estimation of the 

PSF because it is estimated simultaneously with the image 

acquisition. On the contrary, image-based methods require a 

large amount of computation time for estimation and 

sensor-based methods also require a large amount of 

computational effort to convert data to the path of a camera 

shake. 

C.  Deconvolution 

After estimating the PSF, image deblurring can be achieved 

by means of a deconvolution process. In this paper, a 

widely-used Richardson-Lucy deconvolution method is 

chosen. This method is known to be robust against noise. It 

produces deblurring images with high quality in presence of 

high noise levels. It recovers the latent image iteratively with 

an estimated PSF [23]. For the deconvolution process, 

MATLAB’s deconvlucy.m function can be used 
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where B is the obtained image, K is the blur kernel, K̂  is 

the flipped blur kernel, and 
nI  is the recovered image at n th 

iteration. 

IV. EXPERIMENTAL SETUP 

The PSF can be estimated in an embedded controller, NI 

cRIO-9024, in real-time as shown in Fig. 6. First an image is 

obtained from the Logitech C270 and desired angle is defined 

from the inverse kinematics. Second, open-loop commands are 

generated in the embedded controller and given to the camera 

orientation system. Lastly, the system produces a rapid 

point-to-point motion shown in Figs. 3 and 4. The PSF for 

image deblurring is estimated in the embedded controller in an 

open-loop manner. An image obtained in phase III, discussed 

in the previous section, is used for deconvolution. The images 

are obtained 1280x960 RGB 24 format in DirectShow bus at 

maximum 30 fps via USB 2.0 communication. 

V. RESULTS AND DISCUSSION 

Figure 7 and 8 show the results of the proposed image 

deblurring method. The results are compared with other 
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Figure 5. Deblurring results and comparisons. Images are taken at 25fps. Top row: full image. Bottom row: cropped local image. The cropped region is 

specified in the full blurry image (a) The original blurred input image (b) Xu et al. [24] (c) Goldstein et al. [25] (d) Shan et al. [26] (e) Fergus et al. [15] (f) 

Proposed method 

 

 

Figure 6. Deblurring results and comparisons. Images are taken at 15fps. Top row: full image. Bottom row: cropped local image. The cropped region is 

specified in the full blurry image. Images are taken under low ambient light. (a) The original blurred input image (b) Xu et al. [24] (c) Goldstein et al. [25] 

(d) Shan et al. [26] (e) Fergus et al. [15] (f) Proposed method. The output images of some methods are degraded 

well-known algorithms: methods proposed by Xu et al. [24], 

Goldstein et al. [25], Shan et al. [26], and Fergus et al. [15]. 

The top row shows full images and bottom row shows cropped 

local images to clearly show the results. The blurred images are 

obtained in Exposure Window III. The images in Fig.9 are 

taken at 25 fps similar to a typical frame speed of the human 

eyes [28]. The images in Fig. 10 are taken at 15 fps due to low 

ambient light. The results show an improvement over the input 

blurry images. It can be seen that the results are better than Xu 

et al.’s method, Shan et al.’s method and Fergus et al.’s 

method. The Shan et al. and Fergus et al. results show large 

ringing artifacts. The Xu et al. sharpens the original image but 

there are still residual ringing artifacts. The results of 

Goldstein et al. method are comparable. However, the output 

images from all methods are still locally blurry. The reason is 

that the image blur is introduced due to a rapid motion of the 

camera with short exposure window while the previous studies 

have focused on the image blur caused by long exposures due 

to low light. Also, a spatial-invariant blur kernel is used for 

image restoration. 

TABLE I.  CONDITIONS FOR COMPARISON OF COMPUTATOIN TIME 

 Kernel Size Image Size Software 

Xu et al. [24] 19x19 800x600 
Complied 

Executable* 

Goldstein et al. [25] 21x21 800x600 MATLAB 

Shan et al. [26] 27x27 800x600 
Compiled 

Executable* 

Fergus et al. [15] 21x21 800x600 MATLAB 

Proposed Method 21x21 800x600 MATLAB 

(*: Complied executable files are distributed by the Authors) 

The output images shown in Fig. 8 are deblurred, but 

slightly noisy due to an existence of dark current noise in the 

captured images. It can be seen that the methods of Xu et al., 

Shan et al., and Fergus et al. are not robust to dark current 

noise. Figure 9 shows a comparison of computation times. The 
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Figure 7. Comparison of computation times 

computation times include estimation of a PSF and 

deconvolution. A total of 10 trials are executed for each 

algorithm. The results show that the proposed method is the 

fastest since the PSF is estimated from the embedded motion 

controller in a parallel process while those of others are 

estimated by the analysis of images. The computation time of 

the proposed method could be decreased by using a 

non-iterative deconvolution method. 

VI. CONCLUSION AND FUTURE WORK 

This paper has presented a biologically inspired estimation 

of the spatial-invariant PSF. The PSF is estimated in an 

open-loop manner based on the dynamics of the system with 

no motion sensors. Blurry images were obtained in Exposure 

Window III. The blurry image was restored by the 

deconvolution process in knowledge of the estimated PSF. 

The results show that the proposed method is effective for 

image deblurring caused by fast motion. In addition, the 

computation time is faster than other approaches. Future work 

will involve an estimation of the spatial-variant PSF from 

mechanical properties and control architecture, fast generation 

of panoramic images, and visual servoing by using a multiple 

DOF camera positioner. Once the PSF is estimated, the 

controller should be able to determine an ideal profile to 

position the camera and exposure times to take images in order 

to re-use the estimated PSF. 
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