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Abstract— Operating in vegetated environments is a major
challenge for autonomous robots. Obstacle detection based only
on geometric features causes the robot to consider foliage,
for example, small grass tussocks that could be easily driven
through, as obstacles. Classifying vegetation does not solve this
problem since there might be an obstacle hidden behind the
vegetation. In addition, dense vegetation typically needs to be
considered as an obstacle. This paper addresses this problem
by augmenting probabilistic traversability map constructed
from laser data with ultra-wideband radar measurements.
An adaptive detection threshold and a probabilistic sensor
model are developed to convert the radar data to occupancy
probabilities. The resulting map captures the fine resolution
of the laser map but clears areas from the traversability map
that are induced by obstacle-free foliage. Experimental results
validate that this method is able to improve the accuracy of
traversability maps in vegetated environments.

I. INTRODUCTION

Obstacle detection is a critical task for field robots. Most

existing systems rely on geometric representation of the

environment that is most commonly formed either by using

a vision system or a LIDAR. However, when robots are

operating on vegetated terrain, the geometric representation

may not be sufficient for good navigation performance.

Relying solely on geometric representation may force the

robot to circumvent vegetation that could easily be driven

over, which wastes time and energy. For example, the grass

tussocks shown in Fig. 1 could be driven over but LIDAR-

based perception systems see them as obstacles. In densely

vegetated environments it may not even be possible to reach

the goal without traversing through vegetation.

This problem has been partly addressed by classifying

vegetation from other types of obstacles. For example, in [1]

a multispectral camera is utilised for detecting vegetation

based on the fact that chlorophyll strongly absorbs visible

light and reflects near-infrared (NIR) light. In [2] and [3]

a 3D LIDAR is used to classify grass from other obstacles

based on statistical analysis of the 3D data points. However,

these methods do not solve the obstacle detection problem
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Fig. 1: Multiple grass tussocks in front of the vehicle that are usually
seen as obstacles by the LIDAR.

since there might be solid obstacles hidden behind the

vegetation. This poses a great risk if the robot needs to

traverse through this area without any knowledge of what

is behind the vegetation.

Sensors operating at high frequencies of the electromag-

netic (EM) spectrum, e.g., cameras and LIDARs, cannot

provide sufficient information since neither visible light

nor infrared light travel through vegetation. UWB radars

typically operate at relatively low frequencies and therefore

are able to penetrate vegetation [4]. For example, in [5] an

impulse radar of 2.2GHz was used to detect a tree trunk

behind 2.5m of branches and foliage.

In this paper, we propose a method for augmenting

LIDAR-based traversability maps with UWB radar data such

that areas of obstacle-free foliage (an area of vegetation

that could be driven through) can be cleared. The resulting

augmented traversability map captures the best properties of

both sensors by exploiting the fine resolution of the LIDAR

and the penetrability of the UWB radar. We analyse the

foliage penetrability of the radar as well as study what kind

of obstacles the radar is able to detect. We also provide

extensive experimental validation of the proposed method

with two different platforms and environments. To the best of

our knowledge, this is the first paper to propose a method for

refining traversability maps with UWB radar measurements

with a thorough experimental validation on UGV platforms.

The paper is organised as follows. Section II discusses

the related work and Section III describes the proposed

approach for augmenting traversability maps with UWB

radar data. Section IV presents the experimental system used

for validation and outlines implementation details. Section V

provides experimental results of the radar calibration process

and the obstacle detection tests. Finally, Section VI concludes

the paper and discusses future work.
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II. RELATED WORK

Occupancy grids [6] are a popular tool for obstacle de-

tection approaches in robotics. A probabilistic occupancy

grid [7] divides the environment into equally sized grid cells,

whose values are occupancy probabilities. An elevation map

is a 2.5D grid map capable of representing the height of

the cells [8]. LIDARs are popular sensors for constructing

grid maps but any kind of range data can be used [9].

In [10] and [11] millimetre-wave (MMW) radars are used

to construct probabilistic occupancy grids.

Traversability maps quantify the difficulty a robot would

encounter traversing through a particular region and are

typically platform dependent [12]. In [13] a traversability

index for each grid cell in an elevation map is calculated

using the terrain slope and roughness. In [14] a machine

learning method was used to learn the traversability of a

road ahead using data from LIDAR, camera, and inertial

measurement unit (IMU). However, these methods rely on

range data from sensors that are not capable of penetrating

foliage and therefore see vegetation as obstacles.

Only a few studies use UWB radar for detecting obstacles

in vegetated areas. In [15] a ground penetration radar is used

to detect obstacles within vegetation as well as underground.

In [16] a UWB radar is used to build maps in vegetated en-

vironments. In [17] a custom radar array is built to study the

possibility to detect obstacles through vegetation. However,

this study concentrate only on UWB radar-based obstacle

detection and does not address the terrain traversability. In

iRobot’s DareDevil project [18] a UWB radar is used in

parallel with a LIDAR to study all-weather operations. The

authors also discuss obstacle detection within vegetation but

do not show any experimental results.

The method proposed in this paper utilises a UWB radar

to gain more information about the laser-obstacles (obsta-

cles seen by a LIDAR) in vegetated environments. The

goal of this study is to be able to reduce the number of

laser-obstacles originating from obstacle-free foliage from a

LIDAR-based traversability map. This will enable the robot

to safely operate in vegetated environments where LIDAR-

based obstacle detection is not sufficient.

III. APPROACH

Pulsed UWB radars operate by transmitting and receiving

very short duration UWB pulses. These radars return a

vector of power measurements of the radar cross-sections

(RCS) of targets within the field of view (FOV) [10]. The

elements in the vector are range bins. UWB radars typically

operate at relatively low frequencies and are therefore able

to penetrate some amount of vegetation. The low frequency

results in large beamwidth [4], which makes it difficult to

capture the real dimensions of obstacles. However, by using

an appropriate sensor model and computing a probabilistic

occupancy grid, this problem can be mitigated if obstacles

are seen from different angles.

The proposed approach of augmenting traversability maps

with UWB radar data consists of three separate phases.

Firstly, a grid-based traversability map, Tm, is built using

LIDAR data. Each cell of this map contains a value of

traversability, which quantifies the difficulty of a robot to

traverse through that area. Secondly, the traversability map

and radar returns are used to compute the adaptive detection

thresholds. Finally, a refined grid-based traversability map is

computed by fusing UWB radar data with the traversability

map.

A. Target Detection Using UWB Radar

UWB radar return vectors can be very noisy, therefore,

a detection filter is needed. The popular constant false

alarm rate (CFAR) [19] method does not perform well in

environments with frequent obstacles or with radars that

return short measurement vector. The thresholds presented

in [11] cannot be adopted to UWB radars due to different

noise characteristics [4].

The detection thresholds utilised in this study are deter-

mined by measuring returns from the radar when the whole

FOV is traversable according to the Tm. This approach

enables adaptation to different kind of surfaces. The area is

sampled with the radar and the detection thresholds for each

range bin are calculated as the mean of measurements for

that range bin. The corresponding detection threshold vector

is denoted by Td.

The ground clutter generates multiple returns exceeding

Td, which is undesirable since clutter measurements should

be ignored. On the other hand, sometimes the returns from

obstacles can be below Td. Therefore, also minimum and

maximum intensity of the ground returns are calculated

for each range bin and used in the sensor model to take

account of returns near Td. This will be discussed below. The

minimum and maximum thresholds are denoted by Tmin and

Tmax respectively. The thresholds are illustrated in Fig. 2(a).

Tmax is always set to be greater than Td, such that

the occasional clutter measurements do not generate false

positives on the map, i.e.,

Tmax = Td + cth, if Tmax − Td < cth, (1)

where cth is experimentally defined constant. cth = 3 is used

in this study.

In addition to the thresholds, also the shape of the return

is exploited. The energy reflected back to the receiver from

objects results in peaks in the received signal [20]. Objects

with large RCS span multiple range bins exceeding the

Td causing uncertainty in the range of the detection. For

example, in 2(a) all the three targets span at least three

range bins. Therefore, peaks are also detected from the return

vector. For each range bin exceeding Td, the number of range

bins to the closest peak is calculated and the value is used

in the sensor model to refine the detection. This will be

discussed below.

B. Sensor model

The sensor model converts the radar returns to a probabil-

ity of individual cells in the FOV of the radar being occupied.

An inverse sensor model is used in this study due to computa-

tional efficiency. The proposed sensor model is adapted from
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the prior work done with narrowband radars ([10] and [11])

for UWB radars. The noise characteristics of UWB radars

differ from those of narrowband radars and the beamwidth

is typically significantly larger [4]. Therefore, we present

a probabilistic sensor model specially designed for UWB

radars, which also considers the wide FOV and the UWB

radar noise.

Given a radar measurement vector, first we limit the

measurements that are usable. The maximum measurement

range, Rmax, was determined through extensive testing with

a variety of object such that these objects were no longer

reliably detectable beyond Rmax. Due to substantial noise

that typically occurs at close range with UWB radars, a

minimum distance, Rmin, is also determined. In this study

Rmax = 10m and Rmin = 3.5m are used. Only cells

between Rmin and Rmax are updated.

The transmitted signal attenuates as a function of distance

but also from the objects in the FOV that reflect a variable

amount of energy back to the receiver. Therefore, it is less

probable to correctly detect free space after the first detected

object than before. To account for this attenuation, the FOV

of the radar is divided into three regions by range where

measurement probabilities are calculated differently. These

regions are illustrated in Fig. 2.

Every range bin where the measured intensity exceeds

Td is considered a detection. These cells corresponding to

detections are members of region r1. Range bins where

the measured intensity is below Td, are considered to be

free of obstacles. These cells corresponding to areas free of

obstacles are members of regions r2 or r3.

The limiting factor between r2 and r3 is the first r1 region

that exceeds Tmax. The reason for using Tmax instead of

Td is that ground clutter often exceeds Td but does not

affect the signal attenuation significantly. In addition, real

obstacles that cause the intensity to be below Tmax have

small RCS and do not attenuate the signal much. Cells behind

the furthest echo are not updated since the last object could

be occluding the signal completely.

The measurement likelihood, P (z|occ), of cells belonging

to r1 are updated with

P (z|occ) = Gθ(α) ∗Gpw(z(b)) ∗Gpk(d) ∗ PO, (2)

where z is the radar return vector. Gθ is an angle scaler,

which models the antenna gain pattern. α is the angle

between the beam axis and the centroid of the cell in

question. Gpw is a power scaler, which takes into account

the intensity of particular range bin b. Gpk is a peak scaler,

which refines the range measurement based on the shape of

the return. d is the number of bins between the nearest peak

and b. It is assumed that these scalers are independent, thus

multiplication rule is used to calculate the overall probability.

The scalers are discussed in detail below. PO is a constant

that limits the maximum probability. PO = 0.8 is used in this

study to account for errors in the model and reduce the effect

of transient noise in the measurements. Hence, P (z|occ) is

bounded between 0.5 and 0.8.
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(a) Radar return
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Fig. 2: (a): A radar return with three targets in the FOV, drawn
in red. Detection Td, minimum Tmin, and maximum thresholds
Tmax are illustrated with green, blue, and magenta dashed lines
respectively. (b): Corresponding occupancy probabilities calculated
with the sensor model. θ is the beamwidth, Rmin and Rmax are
the minimum and maximum detection range respectively.

The region r2 is the space clear of obstacles before the

first detection exceeding Tmax. The emptiness, P (z|¬occ),
for each cell of this region are calculated with

P (z|¬occ) = Gθ(α) ∗Gpw(z(b)) ∗Gd(r) ∗ (1− PC2), (3)

where Gd is a distance scaler and r is the measured range.

PC2 = 0.2 is a constant that limits the maximum value

of P (z|¬occ) such that it is bounded between 0.5 and 0.8.

Selection of PO and PC2 is discussed in V-B.

The region r3 is clear of obstacles after the first detection

exceeding Tmax but in front of the last detection exceeding

Td. P (z|¬occ) for each cell of this region are calculated

with Eq. (3) except that PC2 is replaced with PC3 such that

PC2 < PC3. Experimentally defined PC3 = 0.3 is used in

this study.

The scalers in Eq. (2) and Eq. (3) are discussed below:

1) Angle Scaler: The beam pattern is modelled with

an inverse parabola which approximates the beam pattern

well [10]. Hence, the angle scaler, Gθ, is
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Gθ(α) = 1− 2α2

θ2
, (4)

where α is the angle between beam axis and the centre of

the current cell and θ is the beamwidth.

2) Power Scaler: A sigmoid function is used to approxi-

mate a probability function

Gpw(z(b)) =
1

1− e−
c
d
z(b)

, (5)

where c is a scaling constant, d is the difference between

Td and Tmax or Td and Tmin, and z(b) is the measured

intensity of range bin b. The sigmoid function is scaled such

that probability at Tmin is 0.0067 and at Tmax 0.9526 which

yields the values of the scaling constant c = 5 and c = 3
respectively. These values were determined experimentally.

3) Peak Scaler: A peak scaler lowers the probability of

measurements that exceed Td but are not peaks in order

to refine the detection. This is modelled with a Normal

distribution

Gpkpdf
(d) =

1√
2πσ

e
(−d−µ)2

2σ2 , (6)

where the mean, µ, is the range bin of nearest observed peak,

σ is the standard deviation, and d is the number of range

bins from the nearest peak to the current range bin. In our

implementation we use σ = 4, which yields that peak scaler

completely eliminates measurements that are more than four

range bins away from the nearest peak. The peak scaler, Gpk,

is obtained by scaling the probability of the mean to one.

4) Distance Scaler: The distance scaler Gd is used when

calculating measurement probabilities of r2 and r3. It models

the fact that it is less probable to correctly measure free space

as the detection range increases. It scales the distance linearly

according to

Gd(r) =
Rmax +Rmin − r

2Rmax

+ 0.5, (7)

where r is the Euclidean distance from the centroid of the

current cell to the radar.

C. Data Fusion

The augmented traversability map, Tma, is initialized with

the values from Tm. Only when there is untraversable area

in the FOV of the radar according to Tm, the corresponding

cells in Tma are updated with radar measurements using

the sensor model with Bayes’ formula assuming static world

and conditional independence [6]. Traversable areas are not

updates, since the LIDAR data are less noisy than UWB

radar data.

Using this approach, each cell that gets updated with the

radar measurements is initialized with high prior probability.

This way if the radar does not provide sufficient evidence

to clear or confirm the LIDAR observation, the cell remains

untraversable.

IV. SYSTEM DESCRIPTION

This section presents the experimental system used for

validation and discusses the implementation of the proposed

approach.

A. UWB radar

The UWB radar used in this study is called Radar De-

veloper’s Kit Lite (RaDeKL) and it is manufactured by

Multi Spectral Solutions Inc (MSSI). The radar performance

characteristics are presented in Table I.

TABLE I: Technical specifications of RaDeKL UWB radar

RF Characteristics

Centre Frequency 6.35 GHz
Bandwidth 400 Mhz (-3 dB)
Peak Power 50 mW EIRP
Antenna gain 12 dBi w/4x4 Array
Antenna FOV 40 deg AZ x 40 deg EL

System Performance

Range Extent 256 range bins w/variable offsets
Range resolution 30 cm

Parameters

Transmit Attenuation (Tx) 0 dB
Receive Attenuation (Rx) 0 dB

B. Measurement platforms

The measurement platforms, Shrimp and Argo, can be

seen in Fig. 3. Shrimp is based on Segway’s Robotic Mobile

Platform RMP-400 and Argo is an 8 wheel skid-steering

vehicle. Both platforms are equipped with a Novatel SPAN

System (Synchronized Position Attitude and Navigation)

with a Honeywell IMU positioning system, which usually

provides 2cm-accuracy localisation estimates. In addition to

the UWB radar and the positioning system, the SICK LMS

291 LIDARs indicated in Fig. 3 are used in this study.

C. Implementation

A traversability map, Tm, required by the proposed ap-

proach is calculated with the method in [13]. First, an ele-

vation map is calculated from LIDAR returns. Traversability

index, τ , is then calculated for each cell using the slope and

roughness of the terrain.

(a) Shrimp (b) Argo

Fig. 3: The measurement platforms used for validation. Exterocep-
tive sensors used in this study are marked on the pictures.
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The resulting Tm is converted to occupancy values by

dividing the τ of each cell by a platform-specific un-

traversability constant, Ti = 40. Every cell with a τ above Ti

is considered untraversable and the values below are scaled

between 0 and 1.

V. EXPERIMENTAL RESULTS

The Subsection V-A shows the RCS of different obstacles

as seen by the UWB radar. It also shows the attenuation of

the signal with different amount of vegetation in front of a

target. Subsection V-B demonstrates the performance of the

overall algorithm proposed in this study in three different

field trials.

A. Obstacle Detection with UWB Radar

First, we tested the detectability of various objects without

vegetation. Metal, plastic, wood, and stone obstacles were

placed 10m in front of the radar and the reflectivity of these

obstacles can be seen in Fig. 4. The thresholds Tm, Tmin,

and Tmax are also illustrated in the figure and P (z|occ) for

each target is calculated using these thresholds and the sensor

model assuming that the targets are in the middle of the

FOV. P (z|occ) along with the dimensions and the RCS of

each target are presented in Table II. The RCS values are

estimated based on calculated RCS of the radar reflectors

using the method in [10].

TABLE II: Properties of different targets

Obstacle RCS Dimensions P (z|occ)
Metal Jerry 8.6 m2 34 x 45 x 13 cm 0.8000

Large reflector 7.3 m2 25 x 25 x 25 cm 0.8000

Plastic Jerry 2.6 m2 32 x 45 x 14 cm 0.7999

Plywood 2.3 m2 34 x 36 x 2 cm 0.7996

3 bricks 1.5 m2 23 x 33 x 7 cm 0.7950

2 bricks 0.2 m2 29 x 17 x 7 cm 0.5346

Stone 0.1 m2 40 x 20 x 30 cm 0.4606
Cardboard box N/A 28 x 23 x 24 cm 0.4606

The cardboard box and the stone could not be detected

10m away from the radar. Hence, the P (z|occ) for these

targets is below 0.5. On the other hand, the RCS of cardboard

box could not be estimated since the box does not reflect

anything back to the radar. The RCS of the stone was

estimated using data from closer range. The column of two

bricks is detected 10m away from the radar, but the return is

weak, which results in small P (z|occ). All the other targets

are detected clearly and the corresponding P (z|occ) is large.

In the second experiment, the effects of vegetation were

tested by progressively placing branches of an Ash tree

(Fraxinus Excelsior) and Eucalyptus (Eucalyptus obliqua)

in front of a column of three bricks. The radar signal

penetrability is illustrated in Fig. 6 with Tm, Tmin, and

Tmax. The intensities are not directly comparable to those

in Fig. 4 since different radar parameters were used. The

column of three bricks was placed 9m in front of the radar

and vegetation was added 1m in front of the bricks layer by

layer. In Fig. 5(b) two layers of vegetation can be seen with
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Fig. 4: Reflectivity of different obstacles.

(a) (b)

Fig. 5: (a) A column of three bricks. (b) two layers of vegetation
in front of the bricks.

a column of three bricks behind the foliage. Each layer adds

approximately 10cm of foliage.

From the Fig. 6 it is clear that the return signal attenuates

as vegetation is added. Four or more layers of vegetation are

dense enough to reflect the signal back to the radar such that

the vegetation is considered as an obstacle. However, with

four layers some amount of the radiation still penetrates the

vegetation and the bricks are detected. With five layers of

vegetation the bricks are no longer detected. The measured

intensity of the vegetation is smaller than with four layer due

to scattering of the signal.

B. Field Trials

Three field trials were conducted; the first two in a

controlled environment on relatively flat lawn and the third

in a rural environment with numerous grass tussocks on the

test area. The test sites are shown in Fig. 7.

Four different experiments were performed in the Trial 1.

In experiment a, the area was clear of obstacles, then, in ex-

periment b, obstacles were added (small reflector, stone, two-

brick column and three-bricks column). For experiment c,

branches of an ash tree were added in front of the obstacles

and on a clear spot on the lawn such that it was hardly

possible to see anything visually behind the foliage. In the

experiment d the obstacles were completely covered with

the branches, i.e., not detectable behind vegetation by the

the human eye.
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Fig. 6: Radar returns from 3 bricks 9m away from the radar with
different amount of vegetation 1m in front of them.

In the Trial 2, a total of six different experiments were

performed. In experiment a, the lawn was clear of obstacles

and three obstacles (i.e., 2 bricks, 3 bricks, and a stone) were

added for the experiment b. Then, branches of Eucalyptus

tree were added layer by layer in front of the obstacles as

well as on two clear spots on the lawn for experiments c, d, e,

and f . One layers was added before each experiment, every

layer adding approximately 10cm of foliage.

Examples of the resulting Tm from Trials 1 and 2 are

shown in Fig. 8(a) and 8(d). The locations of the obstacles

are indicated in the figures. Corresponding Tma are shown

in Fig. 8(c) and Fig. 8(f). Fig. 8(b) and 8(e) indicate how

long each cell that was updated with the radar data spent in

the FOV of the radar during the experiment.

Table III summarises the results from the first two trials.

The same numbers cannot be calculated for the third trial

since the ground truth is not known. The most important

numbers in this case are false negative rate (FNR) and true

negative rate (TNR), since we are interested in clearing areas

from Tm. TNR is the proportion of cleared obstacle-free

foliage cells of all obstalce-free foliage cells. FNR is the

proportion of falsely cleared obstacle cells of all obstacle

cells. In addition, true negatives (TN), false negatives (FN),

true positives (FP), and false positives (FP) are presented.

A good description of these terms can be found in [21].

(a) Test site of Trials 1 and 2 (b) Test site of Trial 3

Fig. 7: Photographs from the test sites. The temporary fence seen
in Fig. 7(a) was removed in Trial 2.
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TABLE III: Cleared cells from Trials 1 and 2

Foliage Obstacles

TN FP TNR FN TP FNR

Trial 1
a) Empty 0 0 N/A 40 556 6.71 %
b) Obstacles 0 0 N/A 125 1398 8.21 %
c) sparse 105 11 90.52 % 312 2928 9.63 %
d) dense 128 20 86.49 % 126 1203 9.48 %
Trial 2
a) Empty 0 0 N/A 141 1931 6.81 %
b) Obstacles 0 0 N/A 304 1668 15.42 %
c) 1 layer 105 13 88.98 % 182 1936 8.59 %
d) 2 layers 123 16 88.49 % 356 1667 17.60 %
e) 3 layers 117 39 75.00 % 236 1466 13.87 %
f) 4 layers 134 70 65.69 % 208 1797 10.37 %

These values are calculated based on hand labelling foliage

and obstacles on the Tm using information of the obstacle

locations and size without the foliage. Only the set of cells

that have been in the radar FOV more than 2s are accounted

for in the calculations.

The parameters used in these calculations are PO = 0.8,

PC2 = 0.2, and PC3 = 0.3. Fig. 9 demonstrates the effects

of these parameters in Trial 1c. It can be seen that TNR

and FNR are strongly correlated, which makes selecting the

parameters a trade-off between effective foliage clearance

and conservative approach. The selected parameters give a

good compromise such that more than 90% percent of foliage

and only around 10% of the obstacles are cleared.

In Trial 1c, the area of obstacle-free foliage was cleared

completely but in Trial 1d a small fraction still remains on the

Tma. In every experiment some amount of the foliage around

the obstacles was not cleared due to range inaccuracies in

the radar measurements. All obstacles were visible on Tma

in each experiment. In Trial 2, the column of two bricks

or the stone was falsely cleared in experiments b, d, and e,

which can be seen in the larger FNR values. This is due

to the small RCS of these targets and the slightly different

trajectories between experiments.

The TNR values are near 90% in most of the experiments.

However, when the amount of vegetation increases, the TNR

starts to drop, which is logical since the radar is no longer

able to distinguish between foliage and obstacles.
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(a) LIDAR Traversability map (Tm) (b) Updated cells in radar FOV (c) Augmented traversability map (Tma)

(d) LIDAR Traversability map (Tm) (e) Updated cells in radar FOV (f) Augmented traversability map (Tma)

Fig. 8: Trial 1d on top row and Trial 2c on the bottom row. (a) and (d) show the LIDAR traversability maps, coloured by traversability value
(red means obstacle); (b) and (e) show the cells that were actually observed by the radar as well, with an intensity of grey proportional
to the time spent by the cell in the radar FOV (darker means longer time); (c) and (f) show the augmented occupancy map, coloured by
probability values, (blue for 0, red for 1). The size of the test area is around 30× 30m

2.

The FNR values are typically below 10%. There are three

reasons that increase the FNR values. Firstly, the range

resolution of the radar is 30cm and it is not always able

to capture the real dimensions of objects, thus some pixels

on the edges of obstacles are falsely cleared. Secondly, the

annotation is based on traversability map which sometimes

exaggerates the size of the objects. Finally, the RCS of some

of the obstacles is too small for the radar to detect them

reliably and in some experiments they are falsely cleared.

The Trial 3 was conducted in a rural environment with

multiple grass tufts and three brick piles (heights: 2, 3, and

4 bricks) on the test area. In addition, there was a small ditch

and a car on the area. Maps of Trial 3 can be seen in Fig. 10.

Trial 3 demonstrates that the algorithm works well in

a rural environment with numerous grass tussocks in the

area. Most of the obstacle-free foliage is cleared from the

augmented map along the vehicle trajectory. For example,

based on the Tm in Fig. 10(a), it is not possible to plan a

route from point A to point B indicated in the map. However,

using the corresponding Tma, planning a route between these

points is feasible.

VI. CONCLUSIONS

A method for augmenting traversability maps with UWB

radar data has been proposed in this paper for generating

more realistic traversability maps in vegetated environments.

A probabilistic sensor model was developed to convert the

radar measurements to occupancy probabilities of individ-

ual cells. It was shown that by augmenting LIDAR-based

traversability maps with UWB radar data, it is possible to

clear obstacle-free foliage from the traversability map. This

is especially important in densely vegetated environments

where it may be impossible to operate safely without sen-

sors that are able to penetrate foliage. The results from

Trials 1 and 2 show that around 90% of the foliage can

be cleared in most of the experiments. When the amount

of foliage increases, it becomes more difficult to clear the

false positives. The results from Trial 3 demonstrate that the

presented algorithm works well also in rural environments

where LIDAR-based obstacle detection is not sufficient.

However, the radar signal is too noisy to reliably distin-

guish targets with small RCS from foliage. The RCS of the

column of two bricks and the stone proved to be too small for

the radar to detect them reliably. Therefore, these obstacles

were falsely cleared in some of the experiments.

The radar has relatively high centre frequency and it is

not able to penetrate dense vegetation. This is acceptable

for smaller vehicles that should not travel through dense

vegetation. However, if the algorithm is to be applied to

larger vehicles, a radar with lower centre frequency needs

to be utilised. In addition, the beamwidth of the radar is

large for mapping purposes, which means that multiple

observations of the same locations from different point of

views are highly recommended. In our current experimental

set-up, i.e., with one radar mounted in a fixed position,

this requires the robot to effectively scan the environment.

Therefore, mounting the radar on a pan-tilt unit or using an

array of radars would enhance the accuracy of the approach.
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(a) LIDAR Traversability map (Tm) (b) Updated cells in radar FOV (c) Augmented traversability map (Tma)

Fig. 10: Trial 3: (a) shows the LIDAR traversability map, coloured by traversability value (red means obstacle); (b) shows the cells that
were actually observed by the radar as well, with an intensity of grey proportional to the time spent by the cell in the radar FOV (darker
means longer time); (c) shows the augmented occupancy map, coloured by probability values, (blue for 0, red for 1). The size of the test
area is around 50× 50m

2.

The current implementation of the proposed algorithm

does not work in real time. However, no heavy computations

are involved and by using 3D LIDAR data, implementing a

real-time version of the algorithm should be possible and

will be considered in future work.
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