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Abstract— In this paper, we propose a segment-based object
detection approach using laser range data. Our detection
approach is built up of three stages: First, a hierarchical
segmentation approach generates a hierarchy of coarse-to-fine
segments to reduce the impact of over- and under-segmentation
in later stages. Next, we employ a learned mixture model to
classify all segments. The model combines multiple softmax
regression classifiers learned on specific bag-of-word represen-
tations using different parameterizations of a descriptor. In the
final stage, we filter irrelevant and duplicate detections using a
greedy method in consideration of the segment hierarchy. We
experimentally evaluate our approach on recently published
real-world datasets to detect pedestrians, cars, and cyclists.

I. INTRODUCTION

The detection and recognition of potentially moving ob-

jects is crucial for autonomous systems operating in popu-

lated environments. Especially self-driving cars need to dis-

tinguish reliably between static and dynamic objects, such as

pedestrians, vehicles, and bicyclists, to ensure safe operation

in crowded and even uncooperative inner-city traffic.

Over the last decade a multitude of image-based ap-

proaches for object detection were proposed and achieved

promising results on challenging benchmark datasets [1], [2],

[3]. As fast three-dimensional laser rangefinders emerged,

laser-based object recognition for outdoor applications at-

tracted increasing interest in the robotics community [4],

[5], [6]. Laser range scans are an interesting alternative to

images, as they are invariant to illumination and directly offer

shape information. Furthermore, precise range measurements

to objects in the vicinity are essential for collision-free

maneuvering [7]. Consequently, Velodyne laser sensors are

a de facto standard equipment for self-driving cars [6], [8].

In image-based object recognition, bag-of-word ap-

proaches [2] are a well established concept, but in laser-based

perception rarely applied. This is remarkable, since they offer

by design several properties, which are desirable particularly

in laser-based object recognition: (1) bag-of-words are robust

to partial occlusions, (2) even if we encounter an under-

segmentation, the entries for a certain class should be still

visible in a part of the histogram, (3) point descriptors

can be computed independently, which makes a concurrent

evaluation possible. Thus, bag-of-words extracted from laser

data are a fundamental building block of our approach.

Recent work on object detection [1], [3] suggests that it is

crucial to incorporate intra-class variations of objects. It has

been shown that the performance of an object recognition
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Fig. 1. Overview of our approach. We use a mixture of multiple bag-
of-words classifiers learned with different descriptor parameterizations to
classify segments generated by a hierarchical segmentation approach.

approach [1] can be significantly improved by learning a

mixture of classification models, where specific detectors

learn variations of a class. Felzenswalb et al. [1] use a bound-

ing box criterion to initialize different mixture components

of a class. In our approach, we will use distance, volume, and

the extents of the 3d bounding box as latent variables and

additionally learn every mixture component using different

parameterizations of a histogram descriptor. This choice is

motivated by the distance-dependency of three-dimensional

scans, i.e., we can distinguish fine details at small distances,

but get only a sparse point cloud at far distances.

Overall, our approach is divided in the following three

stages. First, we propose a hierarchical segmentation ap-

proach resulting in coarse-to-fine hierarchies of segments.

Our aim is to reduce the effects of segmentation errors

on later stages in the classification pipeline. We explicitly

include over- and under-segmentations and let the later stages

filter these additional segments.

In the second stage, we employ a mixture of multiple

bag-of-word classifiers to classify all extracted segments

(see figure 1). We use different parameterizations of a local

descriptor for each classifier, which enables the overall ap-

proach to adapt to different aspects of the data. The results of

the specialized classifiers are averaged using mixture weights

jointly learned with the classifiers.

In the final step, we filter duplicated detections. We apply

a greedy breadth-first search strategy to ensure consistent

final detection hypotheses with maximal confidence.

Related work. Segmentation is a basic pre-processing

step applied in many approaches dealing with large-scale 3d

point clouds. The main purpose is the reduction of the overall

number of points by discarding irrelevant segments and thus

a more efficient overall processing.

Most approaches [9], [10], [6] apply two steps: (1) filtering

of irrelevant ground points and (2) grouping of the remaining

points into coherent and meaningful clusters. A common
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approach for ground point filtering is a height-based filtering

using an elevation map. Petrovskaya and Thrun [11] and also

Himmelsbach et al. [10] exploit that ground points should not

cause large height differences and inspect locally the smooth-

ness in angular sectors. Klasing et al. [12] directly use the

point cloud to determine segments by an efficient distance-

based clustering, where each cluster is defined by points with

a given maximal distance to each other. In contrast to these

approaches, other solutions [13], [14] explicitly exploit the

sensing method to attain real-time capable solutions with

graph-based methods.

All approaches share a non-trivial selection of suitable

parameters, which is usually specific to the task and object

classes of interest [15]. We apply multiple stages of the

elevation-based segmentation and are therefore more inde-

pendent of a specific choice of parameters. Our approach

possibly generates many more segments than really needed,

but we rather filter these irrelevant segments later. Van der

Sande et al. [2] also generate an over-complete hierarchy

of segments in images, but do not exploit the hierarchy to

eliminate duplicate detections.

Segment-based classification of 3d laser range data in

urban environments was mainly investigated for classification

of dynamic objects. Himmelsbach et al. [9] classify segments

represented by a histogram of multiple point-based features

and remission intensities using a SVM. Teichman and Thrun

[6] use tracking information to smooth the segment-based

classification results of an AdaBoost-based approach. The

segments are represented by multiple spin images [16] with

different resolutions and HoG-features calculated on pro-

jections of the point cloud. The feature set is additionally

enriched by holistic features, which represent track-based

properties, and spin images calculated over accumulated and

aligned point clouds from multiple track positions. Himmels-

bach et al. [17] use tracking information to correct under- and

over-segmentations. In contrast to these approaches, we aim

at learning multiple classifiers using a bag-of-words, where

each bag uses a different descriptor parameterization.

In computer vision, several authors investigated ways

to reintroduce spatial information in the bag-of-words ap-

proach [18], [19]. Parizi et al. [19] learn specific bag-of-

words models for image regions. In our approach, we use

a different probabilistic modeling approach and use specific

descriptors per bag-of-word vocabulary.

From the machine learning perspective, our approach is

closely related to mixture-of-experts [20], where multiple

classifiers are jointly learned for parts of the feature space.

II. APPROACH

Our objective is to determine all segments belonging to

the classes pedestrian, car, and bicyclist, using only a single

3d laser range scan. To this end, we view the detection

problem as classification task and learn a classifier to output

a probability distribution P (y|x) for a segment x belonging

to either to the target classes or background. In a post-

processing step, we finally remove segments belonging to

background and also non-maximal detections.

A. Hierarchical Segmentation

Model-free segmentation is usually less involved using

laser range data compared to using solely images. This

is caused by the availability of depth information, which

separates objects from each other and the ground. Hence, in

most cases less complex methods are sufficient to attain very

good results. Despite this advantage, we still have to cope

with under- and over-segmentation – especially in outdoor

environments, where distances to objects range from few me-

ters to more than 20 meters. Hence, the point cloud density

varies drastically leading to difficulties in finding suitable

parameters for distance-based segmentation methods, which

result in coherent segments for different ranges.

In this work, we are not aiming at generating a single

perfect segmentation, but to generate multiple coarse-to-fine

segmentations. Later, we will use the classification results

and a greedy filtering approach to remove irrelevant or

duplicated segments.

Basic building block of the proposed hierarchical segmen-

tation approach is an efficient elevation map-based segmen-

tation [6], [9]. We start with a partitioning of the scan into a

regular grid with grid cell size r0 and record for every grid

cell the smallest and largest height of points. Then, we find

connected components of adjacent cells with point height

differences larger than a threshold η.

For every segment, we further apply this height-based

segmentation, but now with a smaller resolution ri+1 < ri
until we reach the desired depth. Thus, we get a smaller grid

and consequently can subdivide a segment into smaller sub-

segments, if necessary. We get multiple trees containing at

every level a finer segmentation of the original point cloud.

B. Learning a mixture of bag-of-words

Given the segment trees, we determine multiple bag-of-

word representations using only points from each segment.

In particular, we learn multiple vocabularies on subsets of

the training data using differently parameterized descriptors.

We are interested in a discriminative classification ap-

proach P (y|x), and for our purposes we introduce a latent

variable h:

P (y|x) =
∑

h

P (y, h|x) (1)

=
∑

h

P (h|x)P (y|h,x) (2)

The value of the hidden variable h ∈ {1, . . . ,M} depends on

the segment x and for each hidden variable we learn a sepa-

rate multi-class classifier P (y|h,x), where y ∈ {1, . . . ,K}.

We learn for both models P (h|x) and P (y|h,x) a softmax

regression model [21]:

P (h = j|x) =
exp(wT

j · x)
∑

k exp(w
T
k · x)

(3)

P (y = k|h,x) =
exp(wT

k,h · x)
∑

l exp(w
T
l,h · x)

(4)
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Here wh and wy,h represent the weight vectors for every

latent variable h and class y, respectively. In the following,

we summarize these parameter vectors of all models by θt =
(w1, . . . ,wM ,w1,1, . . . ,wK,1, . . . ,w1,M , . . . ,wK,M ),
where t denotes the iteration in the optimization process.

We jointly estimate the parameters of P (y|x, h) and

P (h|x) using Expectation Maximization [21]. In the E-step,

we estimate the distributions qh(xi, yi) for every training

instance (xi, yi) by P (h|xi, yi) using the parameters θt−1

from the last iteration t− 1:

qh(xi, yi) = P (h|xi, yi) (5)

=
P (yi|h,xi)P (h|xi)∑
k P (yi|xi, k)P (k|xi)

(6)

The log-likelihood L(θ) in the M-Step is given by

L(θt) =
∑

i

∑

h

qh(xi, yi) log [P (h|xi)P (yi|h,xi)] (7)

Hence, the gradients in respect to the parameters wj and

wk,h are given by:

∂L

∂wj

=
∑

i

∑

h

qj(xi, yi) [1{h = j} − P (j|xi)]xi (8)

∂L

∂wk,h

=
∑

i

qh(xi, yi) [1{yi = k} − P (k|h,xi)]xi, (9)

where 1{·} denotes the indicator function returning 1, if the

condition is true, and 0 otherwise.

In summary, the complete training of the mixture compo-

nents involves the following steps:

1) Estimate qh(xi, yi) for every labeled segment (xi, yi)
using eq. (6) and the parameters θt−1 from last itera-

tion t− 1.

2) Re-learn vocabularies Vk over subset Xk =
{xi|qk(xi, yi) ≥ qh(xi, yi)}.

3) Maximize eq. (7) with respect to θ after encoding ev-

ery segment using the newly learned vocabularies Vk.

C. Hierarchical Non-maximum Suppression

Using the learned mixture model, we classify every seg-

ment in all hierarchies and for every segment get P (y|x). As

we now might have contradicting classification in a hierarchy,

we have to determine which of the segments are likely to be

a correct hypothesis and suppress non-maximal detections.

For this purpose, we use a greedy algorithm starting at

the root of every hierarchy and descend the tree in breadth-

first order. Background segments are not reported. We mark

a segment for the final set of reported segments, when the

overlap with non-background parent nodes is smaller than

than a threshold γ. In this case, we assume that we found a

smaller segment, which is for itself a valid detection, such

as a person standing by a car. If the overlap between a node

and an ancestral node is larger than γ, we suppress the

non-maximal detection, i.e., the hypothesis where P (y|x)
is smaller. Thus, if an ancestral node classifies a segment

differently at a coarser level, we only report the detection

with larger confidence.

III. EXPERIMENTS

In this section, we experimentally evaluate segmentation

and detection on challenging real-world datasets. First, we

compare the proposed hierarchical segmentation with a sin-

gle layer height-based segmentation. Then, we will use the

hierarchical segmentation to extract segments and classify

these segments either with a single bag-of-words or the

proposed mixture of bag-of-words. Lastly, we compare the

single bow and mixture of bow model on pre-segmented data.

Datasets. For evaluation of the complete pipeline, we use

the recently published KITTI Vision Benchmark Dataset [8].

We additionally used the Stanford Track Collection (STC) [6]

for experiments using the classification model only. All data

was recorded using a car equipped with common sensors

used in autonomous driving, including a Velodyne laser

rangefinder and an inertial navigation system for odometry

information. In both datasets, we have to classify cars,

cyclists, and pedestrians in everyday traffic situations.

The KITTI dataset contains 7,481 annotated images with

additional Velodyne scans and appropriate calibration infor-

mation. Additionally 7,518 unlabeled test images with laser

range scans are provided, where we have to annotate the

image with bounding boxes. We have to emphasize that we

solely use the laser scans in the following experiments and

therefore project scan points using the provided calibration

into the image to estimate an image-based bounding box.

The detections are evaluated and scored following common

image-based detection metrics [22] and must be send to a

server-side evaluation script. Thus, we present here results

for different parameter values using the training set only

and will report results on the testset for a specific parameter

setting later. All bounding boxes are annotated with a class

label, an occlusion ratio and a truncation value. Depending

on these values, bounding box difficulties1 were defined

by Geiger et al. [8], which we will use in the following

discussion.

The STC dataset contains roughly 14,000 tracks with

segments extracted by a height-based segmentation and

83.3% of all segments are background. Note that we get

pre-segmented laser scans and therefore evaluate here only

the classification model, either using a single vocabulary or

the proposed mixture of multiple vocabularies. We report the

classification accuracy of the classifiers.

All reported timings were measured on a system equipped

with an Intel Xeon X5550 with 2.67GHz and 12GB memory

using a single thread implementation.

Implementation details. We calculated spin images [16],

since these showed good results for point-wise classification

in earlier experiments [23] and are relatively fast to compute.

All descriptors are calculated using a global reference frame,

i.e., we use the z-axis to determine the bin in the histogram.

We used for all spin images 5 bins per dimension and per-

formed a bilinear interpolation to calculate the contributions

1Bounding boxes are classified into three categories: (1) easy: > 40 pixel
height, fully visible, < 15% truncation, (2) moderate: > 25 pixel height,
at least partial visible, < 30% truncation, (3) hard: > 25 pixels height, at
most difficult to see, < 0.5 truncation
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Fig. 2. Overlap with ground truth annotations. Shown is the overlap of
the single layer segmentation for ’easy’ segments and ’moderate’ segments.
We get different optimal grid resolutions depending on class and distance.

of every neighboring point. Every descriptor vector is finally

normalized using the maximum norm L∞.

We learn the vocabularies using off-the-shelf k-means

clustering [24] and encode the descriptors using a hard

quantization, i.e., we search in a kD-tree [25] for the nearest

cluster center. Finally, we normalize the resulting bag-of-

words vector using the L1 norm.

A. Bounding box overlap

In the first experiment, we investigate the performance of

the proposed hierarchical segmentation. For this purpose, we

generate segments for all provided training data using either

a single layer, two-layer, or three-layer hierarchy. The laser

points extracted by these approaches are then projected into

the image and an image-based bounding box is determined.

For all approaches, we used a minimum height η = 0.3 and

discarded segments with fewer than 50 laser points.

Next, we determine the maximal overlap oi between

annotated bounding boxes Ai and generated bounding boxes

Bj using oi = maxj Area(Ai ∩ Bj)/Area(Ai ∪ Bj) [22].

The overall overlap score is then averaged over all N scans:

O = N−1
∑

i oi.
Figure 2 depicts the class-wise performance of the sin-

gle layer segmentation with different grid resolutions. As

motivated in the beginning, we can see that a generic

choice of the resolution parameter is difficult. While for

pedestrians a smaller grid is optimal to reduce over- or under-

segmentation, the resolution should be larger for cars and

cyclists. But also for different distances, we can observe

a dependence: nearby objects are better segmented using

a smaller resolution, while objects at larger distances are

better segmented using a larger resolution. This dependence

is hardly surprising, since laser points show a larger sparsity

and distance to each other at large distances.

Table I shows the best results of a single, two- and three-

layer segmentations, where we selected the best configuration

for each segmentation approach using the moderate overall

overlap. As can be seen from these results, the proposed

multi-layer segmentation approaches clearly outperform the

single-layer approach. Especially, the results for pedestrian

resolutions all car pedestrian cyclist

(0.7) 0.53/0.45 0.62/0.46 0.33/0.30 0.47/0.43
(1.0, 0.5) 0.60/0.49 0.68/0.50 0.43/0.37 0.53/0.45
(1.0, 0.5, 0.2) 0.69/0.51 0.73/0.52 0.58/0.49 0.61/0.47

TABLE I

OVERLAP RESULTS FOR HIERARCHICAL SEGMENTATION

(EASY/MODERATE BOUNDING BOXES).

pedestrian car cyclist background

training 2090/1140 5400/8844 584/401 152158/23827
validation 220/119 571/895 70/43 n/a

TABLE II

SEGMENTS PER CLASS (EASY/MODERATE BOUNDING BOXES)

(increase of up to 0.25 overlap) and cyclist (increase of up

to 0.14 overlap) are noteworthy.

Despite the significant performance gain, we still have

only a maximal average overlap of 0.7 between image-

based and laser-based bounding boxes. A major drawback of

laser rangefinders is that black objects can not be detected.

Therefore a lot of black cars, which can be easily marked

in an image, are simply invisible in the laser range data

or only represented by non-black parts in the point cloud.

Furthermore, glass is often not sensed by the laser sensor

either and hence we get very few points on car windows.

Thus, segments of cars at larger distance usually do not

include the roof part and overlap consequently only partly the

annotation in the image, which includes also the windows.

B. Detection performance

As introduced earlier, the results presented in this section

are generated using a randomly selected validation set. For

this purpose, we selected 10% of the training laser scans uni-

formly at random (see Table II). For training and validation

set, we applied the three-layered hierarchical segmentation

with r0 = 1.0, r1 = 0.5, and r2 = 0.2 and ignored segments

with less than 50 points and width or length larger than 6m.

In the training data, background segments were discarded

if the image-based overlap to ground truth annotation was

larger than 0.2. We used γ = 0.5 for the hierarchical non-

maximum suppression.

The performance of bag-of-words approaches is primarily

influenced by the size of the vocabulary and the choice of

the descriptor. Figure 3 shows the influence of the size of the

vocabulary and the results for different support radii of the

spin images (0.5, 1.0 and 2.0m radius) with 5 bins in each

dimension. The smallest spin image with a support radius of

0.5m clearly outperforms the larger spin images with larger

support radii for the detection of pedestrians. Fine details

are more important for the distinction between background

and pedestrian. The performance of the other classes is less

effected by a specific choice of the radius.

In line with earlier studies on bag-of-words in image-based

classification [26], [27], we can also conclude that a larger

vocabulary size is beneficial in our application. Especially, in
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Fig. 3. Influence of the codebook size on single-layer bow with different parameterizations of spin images and the proposed mixture of bag-of-words.
The upper row depicts the results for ’easy’ bounding boxes, and the lower row shows the results for ’moderate’ bounding boxes.

approach car pedestrian cyclist

LSVM-MDPM-sv [28] 0.68/0.56 0.47/0.39 0.38/0.29
LSVM-MDPM-us [1] 0.66/0.55 0.45/0.38 0.35/0.27
Mixture bow 0.36/0.23 0.44/0.31 0.28/0.21

TABLE III

RESULTS ON THE KITTI TESTSET (EASY/MODERATE).

case of cyclists and pedestrians we see a significant increase

in performance with more words.

The mixture of bag-of-words combines all three descriptor

radii and in the first iteration of the EM algorithm we split

the training data depending on the distance of the bounding

box into three subsets. However, the hidden variable model

P (h|x) is learned using distance, volume, and the extent of

the 3d bounding box. The mixture of bag-of-words improves

the results especially with smaller vocabularies.

Table III finally shows the average precision of our

approach compared to image-based approaches on the testset.

We choose a vocabulary size of 800 as this showed the best

performance in the experiments on the validation set. The

other image-based approaches use a latent variable model of

Felzenswalb et al. [1] and an extension of this approach by

Geiger et al. [28]. We have to emphasize again that we solely

use laser range information and compare all approaches with

image-based overlap metrics. Thus, the extracted segments

and consequently the bounding boxes are affected by the

insufficiencies of the laser rangefinder discussed earlier.

We often see false positive detections of cars in areas

with vegetation and pedestrians are often confused with pole-

like structures or small bushes. Another reason for wrong

detections are mismatches between the annotated image-

based bounding box and the bounding boxes generated from

the laser data. Particularly, the car detections are strongly

affected by too low overlap values, as we need at least

0.7 overlap between ground truth annotation and detections

instead of 0.5 overlap for the other classes.

The complete classification of a single frontal laser range

approach car pedestrian cyclist overall

AdaBoost [6] 95.8% 98.3% 98.4% 93.1%
Mixture bow 95.0% 98.3% 98.4% 92.3%
single bow (1.0m) 91.6% 97.8% 97.7% 87.8%
single bow (2.0m) 91.7% 97.5% 96.8% 86.7%
single bow (0.5m) 89.4% 97.8% 96.3% 83.8%

TABLE IV

CLASSIFICATION ACCURACY FOR THE STC DATASET.

scan currently needs 2.53 s on average, where almost all

time (2.46 s) is needed to calculate the bag-of-words. The

hierarchical segmentation using three layers needs 15.7ms

on average.

C. Classification performance

Table IV show the results on the STC dataset in compari-

son to an AdaBoost-based approach presented by Teichman

et al. [6]. In these experiments, we used the provided seg-

mentations and applied our classification model with a single

bag-of-words and the mixture of multiple bag-of-words. In

contrast to the previous experiments, we used 1,600 words

for each bag-of-words vocabulary, but the other parameters

remained unchanged. The presented results clearly show the

advantage of the mixture of multiple vocabularies over a

single vocabulary and comparable performance to the state-

of-the-art.

IV. CONCLUSION AND FUTURE WORK

In this paper we introduced an approach for segment-based

classification using a mixture of different bag-of-words vo-

cabularies. For segmentation, we proposed a new hierarchical

combination of coarse-to-fine segmentations, which allowed

us to extract more reliably suitable segments. We have shown

that a mixture of bag-of-word classifiers outperforms a single

vocabulary bag-of-words approach on challenging real-world

datasets. Finally, we presented a greedy non-maximum sup-

pression considering the hierarchy of segments.
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Fig. 4. KITTI detection results of the mixture of bag-of-words for cars (red), pedestrian (blue), and cyclists (green). We show the convex hulls of the
projected laser range points.

Based on these promising results, we will investigate more

efficient ways of computing the bag-of-word representation

– either using sub-sampling or a concurrent computation.

Furthermore, we plan to investigate other methods for vocab-

ulary learning and encoding [26], [27], which could further

improve the classification results. Using other type of side

information, e.g. images or map data, could be exploited to

detect black objects or might be used to filter false positives.

Integration of tracking information to smooth classification

results [6] or fix segmentation errors [17] is also a promising

avenue for future research.
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