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Abstract— In this paper, we consider the problem of evalu-
ating the generic rigidity of an interconnected system in the
plane, without a priori knowledge of the network’s topologi-
cal properties. We propose the decentralization of the pebble
game algorithm of Jacobs et. al., an O(n2) method that deter-
mines the generic rigidity of a planar network. Our decentraliza-
tion is based on asynchronous inter-agent message-passing and a
distributed memory architecture, coupled with consensus-based
auctions for electing leaders in the system. We provide analy-
sis of the asynchronous messaging structure and its interaction
with leader election, and Monte Carlo simulations demonstrat-
ing complexity and correctness. Finally, a novel rigidity evalua-
tion and control scenario in the accompanying media illustrates
the applicability of our proposed algorithm.

I. INTRODUCTION

Interconnected systems of intelligent agents have become
the recent focus of intense investigation, particularly in the con-
text of autonomous collaboration (such as in multi-robot or sen-
sor systems), affording fundamental advantages in adaptability,
scalability, and efficiency compared to classical single-agent
solutions. Various impactful applications of such systems have
been demonstrated, including monitoring [1], target tracking
[2], and dynamic network optimization [3].

Of particular interest in this work is the evaluation of the
rigidity property of an interconnected system of intelligent
agents (e.g. robots, sensors, etc.). A relatively under-explored
topic in the area of multi-agent systems, rigidity has impor-
tant implications particularly for mission objectives requiring
collaboration. For example, rigidity is vital for guaranteeing
stability in controlling formations of mobile vehicles, when
only relative inter-agent information is available [4]–[6]. Fur-
ther, when a global frame of reference is inaccessible, rigidity
becomes a necessary (and under certain conditions sufficient)
condition for localization tasks with distance or bearing-only
measurements [7]–[9].

The general study of rigidity has a rich history in various
contexts of science, mathematics, and engineering [10]–[13].
In [12] combinatorial operations are defined which preserve
rigidity, with works such as [4], [6] extending the ideas to
multi-robot formations. In [14] an algorithm is proposed for
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generating rigid graphs in the plane based on the Henneberg
construction [12], however from a centralized (or all-to-all)
perspective. Similarly, [15] defines decentralized rigid con-
structions that are edge length optimal, however provide no
means of determining an unknown graph’s rigidity properties.
The work [16] defines a rigidity eigenvalue for infinitesimal
rigidity evaluation and control, however such efforts remain
centralized and require continuous communication and com-
putational resources. Finally, in our upcoming work [17], we
explore distributed combinatorial rigidity control, in contrast
by exploiting local rigidity information in a rigidity mainte-
nance task.

As opposed to previous work, we propose a decentralized
method of evaluating combinatorial (or generic) graph rigid-
ity in the plane, without a priori topological information, to
our knowledge the first such effort, particularly in a multi-
agent context. Our motivation in determining combinatorial
rigidity rests on the notion that rigidity is a generic property
of a network topology [18], eliminating the need to examine
all possible realizations (i.e. infinitesimal rigidity). Generic
rigidity has strong implications in localization [7], [9] and for-
mation control [4], while guaranteeing in almost all cases, in-
finitesimal rigidity (having similar applications in multi-robot
coordination). Thus, our proposition is to decentralize in an
asynchronous manner the pebble game proposed by Jacobs and
Hendrickson in [13], an algorithm that determines in O(n2)
time the combinatorial rigidity of a network, and a spanning
edge set defining the minimally rigid subcomponent of the
graph1. Specifically, we propose a leader election procedure
based on maximum consensus auctions that manages the se-
quential nature of the pebble game in a decentralized setting,
together with a distributed memory architecture. Further, an
asynchronous messaging scheme preserves local-only agent
interaction, as well as robustness to delays, failures, etc.

In evaluating a network’s rigidity property with leader auc-
tioning, we thus arrive at a decentralized means of identify-
ing edge optimal topologies2 that are rigid, possessing the
guarantees in fundamental multi-agent problems implied by
rigidity. Such topologies could be leveraged in multi-robot
networks to guarantee rigidity through motion control (e.g. by
applying [20]), with auction bidding chosen relative to mis-
sion objectives (e.g. sensing cost). Beyond topology seeking,
our proposed algorithm enables both rigidity maintenance (by
defining the edges to retain), and rigidity evaluation, e.g. for
initiating rigidity recovery in the case that mission objectives
dictate a violation of rigidity. To illustrate our contributions,

1Such an edge set is not obtained by infinitesimal approaches, e.g. [16]
2For example, as in relative sensing networks [19].
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we provide Monte Carlo analysis of our algorithms to check
both correctness and complexity, and describe a novel simu-
lated scenario in the media attachment that encompasses both
rigidity evaluation and control.

II. PRELIMINARIES

A. Agent and Network Model

Consider a system composed of n agents indexed by
I = {1, . . . , n} operating in R2, each possessing compu-
tation and communication capabilities, denoting by (i, j)
a bi-directional communication link between agents i and
j. To describe the interconnected system formally, we de-
fine undirected graph G = (V, E), having vertices (nodes)
V = {v1, . . . , vn} associated with each agent i ∈ I, and
edge set E ⊂ V × V with members (i, j), where by definition
(i, j) ∈ E ⇔ (j, i) ∈ E , ∀ i 6= j ∈ I, excluding the possibility
for self loops, (i, i) /∈ E , ∀ i ∈ I. Agents i and j with an edge
(i, j) ∈ E are referred to as neighbors, where the set of neigh-
bors for the ith agent is given by Ni = {vj ∈ V | (i, j) ∈ E}.
Finally, for our purposes, we assume the network topology G
is connected for all time to guarantee all agents can partici-
pate in rigidity evaluation (Section III). Finally, we make the
following systematic assumptions:

Assumption 1. All communication in our system is asyn-
chronous (no global clock), every agent is uniquely identifiable,
global knowledge of n exists, and O(n) per-agent storage is
available.

B. Rigidity Theory

The primary concern of this work is the rigidity property
of the underlying graph G, specifically as rigid graphs imply
guarantees in both localizability and formation stability of
multi-robot systems [6]. To begin we require the notion of
a graph embedding in the plane, captured by the framework
Fp , (G, p) comprising graph G together with a mapping
p : V → R2, assigning to each node in G, a location in R2. The
infinitesimal motion of Fp can be described by assigning to
the vertices of G, a velocity ṗi ∈ R2 such that edge lengths
(inter-agent distance) are preserved over time (i.e. no edge is
compressed or stretched over time). The framework is said
to undergo a trivial motion upon translations and rotations of
R2 itself. If for Fp all infinitesimal motions are trivial, then
Fp is said to be infinitesimally rigid3 (Fig. 1b). Otherwise, the
framework is called infinitesimally flexible [12] (Fig. 1a, i.e. v1
and v3 can move inward while v2 and v4 move outward).

By definition the infinitesimal rigidity of Fp is tied to the
specific embedding of G in R2, however it has been shown that
the notion of rigidity is a generic property of G, specifically as
almost all realizations of a graph are either infinitesimally rigid
or flexible (i.e. they form a dense open set in R2) [18]. Thus,
we can treat rigidity from the perspective of G, abstracting
away the necessity to check every possible realization, and mo-
tivating directly our contributions in this work. The first such
combinatorial characterization of graph rigidity was described

3Intuitively, if the graph were a bar and joint framework, it would be me-
chanically rigid.
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(a) Non-rigid.
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(b) Generically rigid.

Fig. 1. Graphs demonstrating rigidity. Notice that all solid edges in (a) and
(b) are independent. Adding edge (1, 3) in (b) generates a non-minimally rigid
graph with redundant edge (1, 3).

by Laman in [10], and is summarized as follows (also called
generic rigidity)4:

Theorem 1 (Graph rigidity, [10]). A graph G = (V, E) having
realizations in R2 with n = |V| ≥ 2 nodes is rigid if and only
if there exists a subset Ē ⊆ E consisting of |Ē | = 2n− 3 edges
satisfying the property that for any non-empty subset Ê ⊆ Ē ,
we have |Ê | ≤ 2k − 3, where k is the number of nodes in V
that are endpoints of (i, j) ∈ Ê .

From Theorem 1 it follows that every rigid graph in the plane
must then have |E| ≥ 2n− 3 edges, with equality holding for
minimally rigid graphs. The impact of each edge on the rigidity
of G is captured in the notion of edge independence, a direct
consequence of Theorem 1:

Definition 1 (Edge independence, [13]). Edges (i, j) ∈ E of
a graph G = (V, E) are independent in R2 if and only if no
subgraph Ḡ = (V̄, Ē) has |Ē | > 2|V̄| − 3. A set of independent
edges will be denoted by E∗.

The above conditions imply that all rigid graphs have
|E∗| = 2n − 3 independent edges, where edges that do not
meet the conditions of Definition 1 are called redundant (see
Fig. 1 for a depiction of graph rigidity). Thus, in determining
the rigidity of G, we can verify the conditions of Definition 1
to discover a suitable set of independent edges E∗.

C. The Pebble Game

To lessen the exponential complexity of the conditions of
Theorem 1 (i.e. evaluating every subgraph of G), we consider
the pebble game proposed by Jacobs and Hendrickson in [13],
which admits a natural form in the context of interconnected
systems. A brief overview of the centralized pebble game
will be given here, beginning with a useful consequence of
Theorem 1 and Definition 1:

Lemma 1 (Edge quadrupling, [13]). Given an independent
edge set E∗, an edge (i, j) /∈ E∗ is independent of E∗ if and
only if the graph formed by quadrupling (i, j), i.e. adding 4
copies of (i, j) to E∗, has no subgraph Ḡ = (V̄, Ē) in which
|Ē | > 2|V̄|.

4The extension of Laman’s conditions to higher dimensions is at present an
unresolved problem in rigidity theory.

5094



Fig. 2. An example of the pebble game for a rigid graph with n = 3 with progression from left to right. Pebbles are given by black dots, quadrupled edges by
thick links (blue), pebble shifts by dashed arrows, and local pebble assignment by black arrows. We have here |E∗| = 3.

The generic rigidity test of [13] thus operates by applying
Lemma 1 to grow members of E∗ incrementally, terminating
when |E∗| = 2n − 3. In growing E∗ it can be shown that
every independence check of (i, j) /∈ E∗ requires only O(n)
operations (as there are at most 2n− 3 members of E∗) [13],
and thus the exponential testing of subgraphs has been reduced
to simply quadrupling every new edge and checking that the
induced subgraphs have a cardinality respecting Lemma 1. A
natural simplification to this process is found in the following
pebble game:

Definition 2 (The pebble game, [13]). Considering a graph
G = (V, E), give to each agent associated with vi ∈ V two
pebbles, each of which can be assigned to an edge in G. Our
goal in the pebble game is to assign the pebbles in G such
that all edges are covered, i.e. a pebble covering. In finding
a pebble covering, we allow the assignment of pebbles by
agent i only to edges incident to vi in G. Further we allow
pebbles to be rearranged only by removing pebbles from edges
which have an adjacent vertex with a free pebble, such that
the free pebble is shifted to the assigned pebble, freeing the
assigned pebble for assignment elsewhere. Thus, if we consider
pebble assignments as directed edges exiting from an assigning
agent i, when a pebble is needed in the network to cover an
edge (i, j), a pebble search over a directed network occurs.
If a free (unassigned) pebble is found, the local assignment
and rearrangement rules then dictate the pebble’s return and
assignment to (i, j).

It can be shown that if there exists a pebble covering for an
independent edge set E∗ with a quadrupled edge (i, j) /∈ E∗,
there is no subgraph violating the conditions of Lemma 15.
Thus, the rigidity evaluation pebble game of [13] operates as
follows: every edge e ∈ E is quadrupled, and an attempt to
expand the current pebble covering for E∗ to each copy of e is
made, with success resulting in E∗ ← E∗ ∪ e and termination
coming when |E∗| = 2n− 3. The centralized pebble game of
Jacobs is depicted in Algorithm 1, with an illustration of the
quadrupling and pebble search procedure depicted in Fig. 2.
Our contribution in this work will be the decentralization of the
described pebble game for generic rigidity evaluation, specifi-
cally an asynchronous treatment of pebble searching, shifting,
and assignment in determining a network’s independent edge
set.

5Intuitively, an agent’s pebbles represent its possible commitments to the
network’s subgraphs, while maintaining the conditions of Lemma 1.

Algorithm 1 The centralized pebble game [13].
1: procedure PEBBLEGAME(G = (V, E))
2: Assign each vi two pebbles, ∀ i ∈ I
3: E∗ ← ∅
4: for all (i, j) ∈ E do
5: Quadruple (i, j) over E∗
6: Search for 4 free pebbles, starting from vi and vj
7: if found then
8: Rearrange pebbles to cover quadrupled (i, j)
9: . Expand independent set, check rigidity:

10: E∗ ← E∗ ∪ (i, j)
11: if |E∗| = 2|V| − 3 then . Check rigidity
12: return E∗
13: end if
14: end if
15: end for
16: end procedure

III. AN ASYNCHRONOUS DECENTRALIZED PEBBLE GAME

The primary considerations in decentralizing the pebble
game of [13] lie in the sequential nature of edge quadrupling,
the storage of E∗ and associated pebble assignments over a
distributed network, and the search and rearrangement of peb-
bles under the asynchronicity of realistic interacting systems.
Our proposition in this work is to handle such issues through
the election of leaders in the network (Section III-A), each
expanding E∗ by examining their incident edges, querying the
network for free pebbles, and then exchanging leadership when
their local neighborhood has been evaluated. The independent
edges and pebble assignments are thus localized to each agent,
distributing network storage and relying on inter-agent messag-
ing to support pebble searching under asynchronicity (Section
III-C). In this way, our contributions in decentralization will be
not only the leader election procedure, but the logic by which
each leader must operate to accommodate asynchronicity, and
the structure of the pebble game over distributed interacting
agents.

Specifically, each agent i ∈ I possesses pebble assignment
set Pi having at most two edges {(i, j) ∈ E | j ∈ Ni}, that
is incident edges (i, j) to which a pebble is associated. Let
pi = 2 − |Pi| ∈ {0, 1, 2} denote agent i’s free pebble count,
and use shorthand notation Pi(k, l) for the lth element of the
kth edge in Pi, with k, l ∈ {1, 2}. Local independent edge
storage is denoted by E∗i = {(i, j) ∈ E | j ∈ Ni}, containing
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edges for which quadrupling and pebble covering succeeds,
where by construction E∗ =

⋃
i E∗i .

A. Leader Election

An execution of the decentralized pebble game begins with
an agent that initiates the algorithm in response to network
conditions or mission objectives (e.g. verifying link deletion
in G with respect to rigidity). The initiating agent begins by
triggering an auction for electing an agent in the network to
become the lead agent, where to each agent i ∈ I we associate
a bid ri = [i, bi] with bi ∈ R≥0 indicating the agent’s fitness
in becoming the new leader, with bi = 0 if i has already been
leader, and bi ∈ R+ otherwise. Denoting the local bid set by
Ri = {rj | j ∈ Ni∪{i}}, the leadership auction then operates
according the the following auction process:

ri(t
+) = argmax

rj∈Ri

(bj) (1)

where the notation t+ indicates a transition in ri after all neigh-
boring bids have been collected through asynchronous mes-
saging. As G is assumed connected for all time, the auction
(1) converges in at most n − 1 steps uniformly to the largest
leadership bid ri = argmaxrj(0)

(bj(0)), ∀ i, j ∈ I [21]. After
convergence of (1) the winning agent then takes on the lead-
ership role, with the previous leader relinquishing its status.
The proposed auction mechanism allows us to decentralize
the sequential nature of the pebble game by assigning to each
leader the responsibility of locally expanding the independent
edge set, noting that previous leaders are never reelected in a
given execution due to bi = 0 for such agents6. Additionally,
as there is only one leader at a time in the network, there is no
contention in pebble searching.

It is important to note that the order of leader election (and
thus bid selection) is relevant:

Proposition 1 (Initial leader edges). All incident edges
{(i, j) ∈ E | j ∈ Ni} belonging to an initial leader i are
members of the independent set (i, j) ∈ E∗.

Proof. For each edge, a new node j 6= i must be considered
as no two edges of i can have the same endpoint and E∗ is
empty due to i being the initial leader. Therefore, every sub-
graph containing the edges and nodes incident to i must have
|Es| ≤ 2|Vs| − 3 edges, where Vs are the nodes of the con-
sidered subgraph and |Es| = |Vs| − 1 due to the subgraph’s
implicit tree structure. Thus, as there exists no subgraph violat-
ing Definition 1, the result follows.

The above reasoning can be extended to subsequent leaders
as well, specifically when incident nodes are not endpoints of
(i, j) ∈ E∗, independence is clearly implied. It then follows
that leader ordering is closely related to the composition of E∗
and thus the informed selection of bids bi can regulate directly
the resultant rigid subgraph. For example in a sensing regime,
bids could reflect the aggregate information value of an agent’s
incident edges (e.g. [19]), thereby selecting a rigid spanning
subgraph with maximal value. The proposed auction technique

6Further, the condition bi = 0, ∀ i ∈ I allows termination of the algorithm.

therefore affords us control over E∗ that goes beyond simply
discovering the network’s rigidity property7.

The elected leader maintains the following variables for man-
aging the local expansion of E∗i : Ei = {(i, j) ∈ E | j ∈ Ni}
contains the incident edges for quadrupling consideration and
ei ∈ Ei is the current edge being quadrupled. After winning
auction (1), the new leader i performs initialization

Ei ← {(i, j) ∈ E | j ∈ Ni ∧ ¬beenLeader(j)} (2)

where incident edges (i, j) are considered only when the neigh-
bor j ∈ Ni has not yet been a leader, as edges incident to a
previous leader j have already been checked. Also, note that
each leader receives the current size of the independent edge
set |E∗(t)| in initialization8, allowing termination when 2n− 3
independent edges are identified.

B. The Leader Algorithm

After election and initialization, the task of the leader i is
to continue the expansion of E∗ by evaluating the indepen-
dence of each (i, j) ∈ Ei. The leader executes the procedure
LEADERRUN depicted in Algorithm 2 to accomplish this task,
where we assume such execution occurs relative to the leader’s
local clock, facilitating edge evaluation. First, recall that in
checking independence a pebble covering for each quadrupled
edge ei ∈ Ei must be determined. As the pebble assignment in-
formation is distributed across the network, the lead agent must
therefore request pebbles through messaging in an attempt to
assign pebbles to ei (messaging is treated in Section III-C). In
making such requests, the lead agent waits idly until a response
is received, allowing the agent to sequentially handle pebble
responses; a technique often referred to as blocking, applied
here to ensure correctness under network asynchronicity.

When there exists no unfulfilled pebble request, the lead
agent resumes the quadrupling procedure on the current in-
cident edge ei ∈ Ei, in hopes of identifying a pebble cover-
ing and establishing the independence of ei. For each step
of the quadrupling (lines 6-14), the leader searches for a
pebble to cover ei, first by looking locally for free peb-
bles, assigning ei to Pi if found. If no local pebbles are
available, pi = 0 ∧ |Pi| = 2, the agent then sends a
PEBBLEREQUESTMSG to agent Pi(1, 2), along the first edge
to which a pebble is assigned, requesting a free pebble. Note
that in sending requests only along (i, j) ∈ Pi, we properly
evaluate independence with respect to E∗, as each (i, j) ∈ E∗
must have an assigned pebble from previous coverings.

For any edge ei with a pebble covering, obtained through a
combination of local assignment and pebble responses (more
on this later), the following actions are taken (lines 16-27).
First, we return 3 pebbles to the endpoints of ei leaving a single
pebble on ei to establish independence, and then add ei to E∗i .
If in adding ei, 2n− 3 independent edges have been identified,
the leader sends a simple message to the network indicating

7In this paper, we concentrate on the construction of a decentralized peb-
ble game. Our future work focuses on bid selection and related optimality
properties.

8We can simply embed |E∗(t)| in the leadership auction to facilitate this
transfer.
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Algorithm 2 Leader execution logic.
1: procedure LEADERRUN(i)
2: if No Response then . Wait for pebble response
3: return
4: end if
5: while ei , (i, j) do . Continue pebble covering
6: while Quadrupled Copies ≤ 4 do
7: if pi > 0 then . Assign local pebble
8: Pi ← Pi ∪ ei
9: pi ← pi − 1

10: else . Request pebble along first edge
11: PEBBLEREQUESTMSG(i, Pi(1, 2))
12: return
13: end if
14: end while
15: . Quadrupling success, return 3 pebbles:
16: Pi ← ∅
17: pi ← 2
18: Return 1 pebble to vj
19: . Add independent edge and check rigidity:
20: E∗i ← E∗i ∪ ei
21: if |E∗| = 2n− 3 then
22: Send network rigidity notification
23: return
24: end if
25: . Go to next incident edge:
26: Ei ← Ei − ei
27: ei ← (i, j) ∈ Ei
28: end while
29: . All local edges checked:
30: Initiate leadership transfer auction
31: end procedure

that the graph is rigid, and the algorithm terminates. Otherwise,
the leader moves to the next member (i, j) , ei of Ei. When all
members of Ei have been evaluated, the current leader initiates
the leadership auction (1), embedding |E∗| in the auction for
the next elected leader. The process of local edge quadrupling,
pebble requests and covering, and independence expansion
then continues from leader to leader until either the network is
found to be rigid, or every agent i has been a leader, indicating
non-rigidity. The described formulation guarantees the entire
network is evaluated for rigidity, with no edge reconsideration
(i.e. no edge is checked by multiple agents):

Proposition 2 (Edge consideration). Disregarding termina-
tion when |E∗| = 2n − 3, every (i, j) ∈ E is eligible to be
considered for independence. Further, E∗i ∩ E∗j = ∅ holds for
all i 6= j ∈ I.

Proof. These results are a simple consequence of the
guaranteed convergence of auction (1), bi = 0 for all
beenLeader(i) = 1 (guaranteeing no reelection), and the ini-
tialization of Ei with edges not shared with previous leaders as
in (2).

Algorithm 3 Pebble request handler for agent i.
1: procedure HANDLEPEBBLEREQUEST(from, i)
2: if Request Not Unique then . Already requested
3: PEBBLENOTFOUNDMSG(i, from)
4: return
5: end if
6: if pi > 0 then . Local pebble available
7: Pi ← Pi ∪ (i, from) . Shift free pebble
8: pi ← pi − 1
9: PEBBLEFOUNDMSG(i, from)

10: else . Request along first assigned edge
11: PEBBLEREQUESTMSG(i, Pi(1, 2))
12: requester(i)← from
13: end if
14: end procedure

C. Inter-Agent Messaging

As each leader attempts to expand E∗i through quadrupling,
free pebbles are needed to establish a pebble covering, imply-
ing edge independence. We accommodate the pebble search by
defining asynchronous message PEBBLEREQUESTMSG, ac-
companied by response messages PEBBLEFOUNDMSG and
PEBBLENOTFOUNDMSG, indicating the existence of free peb-
bles.

The reception of a PEBBLEREQUESTMSG initiates the han-
dler HANDLEPEBBLEREQUEST depicted in Algorithm 3. We
assume that each pebble request is marked with a unique identi-
fier originating from the lead agent, defining the pebble search
to which the request is a member (lines 2-5). This allows
for any given agent to participate simultaneously in multiple
searches9, and guarantees that each search does not revisit
nodes, guaranteeing termination (i.e. the leader will receive a
response). For unique requests, the agent first attempts to as-
sign local pebbles to the edge connecting the pebble requester,
sending a PEBBLEFOUNDMSG in response, allowing the re-
quester to free an assigned pebble for either local assignment
(a leader) or to itself respond to a pebble request (non-leader).
If pi = 0 (lines 10-13) the agent forwards the request to agent
Pi(1, 2), the first agent to which a pebble is assigned, record-
ing the requester such that pebble responses can be properly
returned.

Remark 1 (Implicit routing). Notice that as opposed to ex-
plicit message routing, the local nature of agent interaction
is preserved by tracking requesters in the above manner. In
particular, routing is exactly dictated by the directed graph
associated with local pebble assignments in G.

When the response PEBBLEFOUNDMSG to a pebble request
is received it triggers the handler HANDLEPEBBLEFOUND de-
picted in Algorithm 4. Congruent to the shifting action of
HANDLEPEBBLEREQUEST, the agent first frees the local peb-
ble assigned to the edge connecting the responder (line 2),
and applies the pebble relative to leader status. If receiving

9In this work, we do not explicitly investigate such a possibility. This is the
focus of future work.
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Algorithm 4 Pebble found handler for agent i.
1: procedure HANDLEPEBBLEFOUND(from, i)
2: Pi ← Pi − (i, from) . Free local pebble
3: if isLeader(i) then
4: Pi ← Pi ∪ ei . Expand covering
5: else . Give free pebble to requester
6: Pi ← Pi ∪ (i, requester(i))
7: PEBBLEFOUNDMSG(i, requester(i))
8: end if
9: end procedure

Algorithm 5 Pebble not found handler for agent i.
1: procedure HANDLEPEBBLENOTFOUND(from, i)
2: if Paths Searched < 2 then . Search other path
3: PEBBLEREQUESTMSG(i, Pi(2, 2))
4: else . Search failed, no free pebbles
5: if isLeader(i) then . ei is redundant
6: Return pebbles assigned to ei
7: . Go to next incident edge:
8: Ei ← Ei − ei
9: ei ← (i, j) ∈ Ei

10: else
11: PEBBLENOTFOUNDMSG(i, requester(i))
12: end if
13: end if
14: end procedure

agent i is the current leader (lines 3-4), the freed pebble is
assigned locally to ei, continuing the edge quadrupling process
and relieving the request blocking condition. Otherwise, the
non-lead agent performs a pebble shift to again free a peb-
ble for the requesting agent, indicating the shift by returning
a PEBBLEFOUNDMSG to its original pebble requester (lines
5-8).

Finally, the response PEBBLENOTFOUNDMSG to a pebble
request initiates the handler HANDLEPEBBLENOTFOUND de-
picted in Algorithm 5. For both leaders and non-leaders the
non-existence of a free pebble initiates a further search in the
network, along Pi(2, 2) (lines 2-4), i.e. the second edge to
which a pebble is assigned. However, if both available search
paths are exhausted (lines 5-13), the leadership status of the
receiver dictates the action taken. In the simple case of a non-
leader (line 11) the response is simply returned to the original
requester in order to initiate further search. For the leader, the
lack of free pebbles in the network indicates precisely that the
conditions of Lemma 1 do not hold, implying the currently
considered edge ei is redundant. The edge ei is removed from
consideration by returning all pebbles assigned during the cov-
ering attempt to the endpoints of ei, and the process is moved
to the next incident edge (lines 6-9).

Remark 2 (Pebble search). The pebble request and response
messaging constructs an event-driven, depth-first traversal of
the network, specifically abiding by the rules set forth by Ja-
cobs in [13] (see Fig. 3 for an example of such messaging).

v1

v2

v3

v4

(a) First edge of quadrupling.

v2

v1

v4

v3

(b) Second edge of quadrupling.

Fig. 3. Illustration of the first two pebble covering attempts for a quadrupling
on edge (3, 4). Agents v1 and v2 have previously been a leader, while agent v3
(blue) is the current leader. Pebbles are depicted by solid black dots, requests
by inter-agent arrows, and responses and shifts by dashed arrows.

Intuitively, we have illustrated in the context of rigidity evalua-
tion, an asynchronous and distributed graph search, iteratively
rooted at each lead agent.

Remark 3 (Complexity). As the pebble game exhibits O(n2)
complexity [13], our pebble messaging scales like O(n2). In
applying leader auction (1) we incur O(n2) as we expend O(n)
auction messaging for O(n) leaders. The per-agent storage
complexity scales like O(n), the maximal cardinality of Ni.

Remark 4 (Failures). If pebble responses are not received in
a timely manner, the connecting path can simply be removed
from consideration, allowing the algorithm to progress as nor-
mal. If a leader experiences failure, a similar reasoning can be
applied to initiate the election of a new leader.

IV. SIMULATION RESULTS

In this section, we present simulation results of our proposed
decentralized pebble game algorithm. First, for illustration pur-
poses, we applied our algorithm over the network in Fig. 4a,
resulting in the identified independent edge set depicted in
Fig. 4b, with the cardinality of the local independent edge
sets indicated, together with the leadership transitions. As sug-
gested by Proposition 1, E∗ grows largest with the initial leader,
while the edges added by each subsequent leader diminishes
as |E∗| grows towards 2n− 3.

Next, to examine correctness and complexity, we gener-
ated 1000 rigid graphs with n ∈ [4, 50] uniformly. For each
graph we compiled communication and storage complexity
statistics, as depicted in Fig. 5. The top graph illustrates how
the message complexity scales in n, detailing the maximum,
minimum, and average per-agent message burden. The bot-
tom graph shows the storage complexity scaling, measured by
|E∗i |. In our testing, the maximum message burden scaled like
O(n1.231) (black fit, top), while the maximum independent
edge storage scaled like O(n0.5646) (black fit, bottom).

Remark 5 (Applications). The above Monte Carlo results in-
dicate our decentralization has remained faithful to the original
pebble game in terms of complexity, and further illustrates scal-
ing that is amenable to realistic implementation, our ultimate
goal in pursuing decentralized rigidity evaluation. As rigidity
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(b) Computed Laman subgraph.

Fig. 4. Decentralized pebble game simulation with n = 10 and |E| = 27:
(a) original non-minimally rigid graph; (b) computed Laman subgraph with
leader progression indicated by dashed arrows, and |E∗

i | denoted.
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Fig. 5. Monte Carlo simulations over 1000 rigid graphs demonstrating the
communication complexity (top) and storage complexity (bottom) of our
proposed decentralized pebble game algorithm.

has far reaching implications in multi-robot objectives such as
network localization and formation stability, our results here
present an opportunity to exploit rigidity theory in real-world
robotic systems.

Remark 6 (Media attachment). We direct the reader to the
media attachment, illustrating our methods in a novel rigidity
evaluation scenario, where we exploit our results here and a
topology control framework [20] to yield a dynamic rigidity
control and recovery objective.

V. CONCLUSIONS AND FUTURE WORK

In this paper we considered the problem of evaluating the
generic rigidity of an interconnected system in the plane, with-
out a priori topological knowledge. The pebble game algo-
rithm for rigidity evaluation was decentralized by means of
asynchronous inter-agent message-passing and a distributed
memory architecture, coupled with an auction-based leader

election procedure. Such auctions allowed the sequential na-
ture of the original pebble game to extend to a decentralized
context. Finally Monte Carlo simulations and a novel rigid-
ity evaluation and control scenario in the media attachment
demonstrated the promising complexity and applicability of
our proposed algorithm.

Directions for future work include parallelization through
simultaneous leadership and investigating bid selections for
computing optimal minimally rigid spanning graphs with guar-
antees.
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