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Abstract— This paper presents an original configuration of
a micro aerial vehicle (MAV), the Omnicopter. Two central
counter-rotating coaxial propellers provide a major part of lift
force, and three perimeter-mounted tiltable ducted fans are
used to supplement the lift force, provide lateral forces and
adjust its attitude. Different from traditional underactuated
MAVs, the presence of the tilt-rotor mechanism, composed of
three ducted fans and three servo motors, on the Omnicopter
makes it over-actuated. The characteristic of over-actuation
enables the Omnicopter’s position dynamics to be decoupled
from its attitude dynamics. Based on a complete description
of its dynamic model derived using the Newton-Euler motion
equations, we propose attitude and position controllers and
control allocation for the Omnicopter MAV. Simulation and
experimental results are shown to demonstrate its performance.

I. INTRODUCTION

In recent years, the applications of multi-rotor unmanned

aerial vehicles (UAVs) have widely diversified. Besides

conventional MAV configurations, like quadrotors and he-

licopters, tilt-rotor type MAVs have been developed. Most

of the famous tilt-rotor type UAVs for military use, like Bell

Boeing V-22 Osprey [1], are mechanically complex since

they employ a swashplate and differential rotor tilting to

control pitch and yaw, respectively. Several research groups

have also developed some tilt-rotor/wing type MAVs with

simpler tilting and actuation designs [2], [3], [4], [5], [6].

In this paper, we introduce an original MAV configuration,

named the Omnicopter MAV, composed of five rotors and

three servo motors (see Fig. 1). The main characteristic of

this configuration is that the attitude and translation dynamics

are decoupled, such that we can design controllers for the

two subsystems individually and fully control its 6 degrees

of freedom (DOF) for more agility. For example, it can

maintain zero roll and pitch attitude during lateral translation

or arbitrarily orient the fuselage during hover.

Comparing with some other over-actuated multicopters in

the literature, the Omnicopter has some potential advantages.

In [7] and [8], the eight-rotor UAV’s control inputs are

linearly related to its motor input signals. However, the

Omnicopter requires only five motors and three force vec-

toring mechanisms to generate desired lateral forces.In [5],

the author proposed a quadrotor with tilting propellers.

But the propellers’ tilting will generate gyroscopic effects,

which makes it more difficult to control. In contrast, the

Omnicopter’s design reduces possible gyroscopic effects.
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Fig. 1. Schematic and free-body diagram for Omnicopter MAV

From our previous work, in [9], we discussed about

the modeling and attitude control of the Omnicopter using

feedback linearization. In [10], we talked about the control

of the Omnicopter under the fixed 90◦ ducted fan angle

configuration. In [11], we designed and simulated control

and control allocation algorithms for the Omnicopter under

both the fixed 90◦ ducted fan angle and variable angle ducted

fan configurations, and implemented these algorithms for the

former configuration. In this paper, we improved the dynamic

model by taking into account the aerodynamic drag effects

due to the ducts and the gyroscopic effects due to the tilting

of the surrounding fans. We also experimentally verified the

lateral translation performance of the Omnicopter.

The outline of this paper is as follows: In Section II

we develop a detailed mathematical nonlinear model of the

Omnicopter. In Section III, for the zero attitude translation

case, we present a backstepping based attitude controller and

a standard PID position controller, and apply a pseudoinverse

based optimization technique to allocate the control signals.

Section IV presents some simulation results to illustrate the

performance of the proposed control and allocation tech-

niques. The platform setup and experiments are described

in Section V, and finally concluding remarks based on all

the presented work are given in Section VI.

II. OMNICOPTER DYNAMIC MODEL

In this section, we apply the Newtonian mechanics to

model the Omnicopter. Let I = Ix, Iy, Iz denote the inertial

frame, and B = Bx, By, Bz the aircraft body frame, with

the z axes pointing downwards, as shown in Fig. 1.

A. Dynamic Model Based on Newton-Euler Equation

Using the Newton-Euler approach [12], we can derive the

dynamics of a rigid body under external forces and torques

applied to the rigid body
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[

mI3×3 0

0 J

] [

v̇B

ω̇

]

+

[

ω ×mvB

ω × Jω

]

=

[

f

τ

]

(1)

where vB = [vx vy vz]T and ω = [ωx ωy ωz]
T are

the linear and angular velocities in the body frame, J =
diag(Ixx, Iyy, Izz) is the inertial matrix and m mass, f =

[fx fy fz]T and τ = [τx τy τz]
T are the force and torque

vectors in the body frame.

We can expand (1) to obtain 6 independent equations of

motion as the following
m(v̇x − vyωz + vzωy + gsθ) = fx
m(v̇y − vzωx + vxωz − gcθsφ) = fy
m(v̇z − vxωy + vyωx − gcθcφ) = fz
Ixxω̇x − (Iyy − Izz)ωyωz = τx
Iyyω̇y − (Izz − Ixx)ωxωz = τy
Izzω̇z − (Ixx − Iyy)ωxωy = τz

(2)

where φ and θ stand for roll and pitch angles.

This is the dynamic model in the body coordinate frame.

We can find that the translational equations of motion

expressed in the body-fixed coordinate frame are pretty

complex. Therefore, we prefer to express them in the inertial

frame, while the rotational equations are expressed in the

body-fixed frame. Finally, the full set of equations of motion

are then obtained as the following

ξ̇ = vI

mv̇I = mge3 +Rf

Ṙ = Rω×

Jω̇ = −ω×Jω + τ

(3)

where vI is the velocity in the inertial frame, e3 = [0 0 1]T ,

the rotational matrix

R =





cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− sφcψ
−sθ cθsφ cθcφ





(4)
where c = cos, s = sin and ψ is the yaw angle, and

ω× =





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



 (5)

B. External Forces and Torques

In the following, we derive the external forces and torques

(f and τ ) exerted on the Omnicopter. For convenience’s

sake, we attach three additional coordinate frames to the

ducted fans of the Omnicopter, D1 = D1x, D1y, D1z ,

D2 = D2x, D2y, D2z and D3 = D3x, D3y, D3z . There-

fore, the orientation of the ducted fans D1, D2 and D3 with

respect to the body frame, B, can be defined by the rotational

matrices R1, R2 and R3, respectively, by

R1 = R
−(π

2
−β1)

D1y
=





sβ1 0 −cβ1
0 1 0
cβ1 0 sβ1





R2 = R
−2π

3

D2z
R

−(π

2
−β2)

D2y
=







− 1
2sβ2

√
3
2

1
2cβ2

−
√
3
2 sβ2 − 1

2

√
3
2 cβ2

cβ2 0 sβ2







R3 = R
2π

3

D3z
R

−(π

2
−β3)

D3y
=







− 1
2sβ3 −

√
3
2

1
2cβ3√

3
2 sβ3 − 1

2 −
√
3
2 cβ3

cβ3 0 sβ3







(6)

where Ry
x: x is the rotation axis and y the rotation angle.

1) Thrust Forces: The thrusts generated by the five rotors,

T1 to T5, can be expressed in the body-fixed frame and the

ducted-fan fixed frames as the following

TB
1 = [0 0 T1]

T , TB
2 = [0 0 T2]

T ;

TD1

3 = [0 0 T3]
T , TD2

4 = [0 0 T4]
T , TD3

5 = [0 0 T5]
T .

(7)
where Ti is the thrust that rotor i produces, which can be

modeled as the following

T1 = −kT1
ω2
1 , T2 = −kT2

ω2
2 ;

T3 = −kT3
ω2
3 , T4 = −kT3

ω2
4 , T5 = −kT3

ω2
5 .

(8)

where kT1
and kT2

are thrust factors of propeller 1 and 2, kT3

is that of ducted fans, which depend on the blade geometry

and can be experimentally tested. Thus, the thrust vector, ft,

expressed in the body frame is given by

ft = TB
1 + TB

2 +R1T
D1

3 +R2T
D2

4 +R3T
D3

5

=





kT3
(ω2

3cβ1 − 1
2 (ω

2
4cβ2 + ω2

5cβ3))√
3
2 kT3

(ω2
5cβ3 − ω2

4cβ2)
−kT1

ω2
1 − kT2

ω2
2 − kT3

(ω2
3sβ1 + ω2

4sβ2 + ω2
5sβ3)





(9)
2) Ram Drag Forces: The presence of the ducted fans

also introduce aerodynamic drag effects. Ram drag is the

result of the ducts and rotors changing the direction, and thus

momentum, of the free-stream air. From [13], the induced

air velocity inside each of the rotors is given by

Vi =
√

−Ti/(2ρS) (10)

where S is the area of the rotor disk and ρ the air density.

In the inertial frame, neglecting the presence of wind, the

ram drag can be approximated as

fr = −(ρSpV1 +
∑5
i=3 ρSdVi)





ξ̇1
ξ̇2
0



 (11)

where the subscripts p and d represent propeller and ducted

fan, respectively.

Because the central propellers provide approximately 60%

of total lift force and ducted fans 40% at hover (i.e., T1 =
− 3

10mg and Ti = − 2
15mg, i = 3, 4, 5), using (10), it can be

expressed as the following

fr = −λ[ ξ̇1 ξ̇2 0 ]T (12)

where λ =
√

0.15ρSpmg +
√
0.6ρSdmg is constant.

The force vector, f , in the body frame, is a combination

of the thrusts and the drag forces, and can be expressed as

f = ft +RTfr (13)

where the right-hand side can be replaced by equations (9)

and (12).

3) Thrust Imbalance and Counter Torques: From Fig., the

distance from the gravity center to the ducted fan center is l.

We can define distance vectors for the ducted fans, OD1 =

[−l 0 0]T , OD2 = [
√
3
2 l

1
2 l 0]

T and OD3 = [
√
3
2 l − 1

2 l 0]
T ,

in the body frame. Then, the torque vector exerted by ducted

fan thrusts on the airframe is

τt = R1T
D1

3 ×OD1 +R2T
D2

4 ×OD2 +R3T
D3

5 ×OD3

=





√
3l
2 kT3

(ω2
5sβ3 − ω2

4sβ2)
l
2kT3

(ω2
4sβ2 + ω2

5sβ3)− lkT3
ω2
3sβ1

0





(14)
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For the central propellers, as they rotate, they are subject

to drag forces which produce counter drag torques around

the Bz axis. For the ducted fans, the counter torques are

eliminated due to the fins in their housings. The counter

torque vector generated by the central propellers is

τc =





0
0

kQ1
ω2
1 − kQ2

ω2
2



 (15)

where kQ1
and kQ2

are drag factors.

4) Gyroscopic Torques: Since the servos rotate at a rel-

atively low speed and due to the limited size of the ducts,

we ignore the inertial effect introduced by the rotation of the

ducted fans by the servos. As for the fast spinning ducted

fan rotors, tilting the ducted fans around axes D1y , D2y and

D3y creates gyroscopic torques which are perpendicular to

these axes and to the spin axes D1z , D2z and D3z . They are

expressed in the ducted-fan fixed frames as

τD1

g = −Idβ̇1ω3D1x

τD2

g = −Idβ̇2ω4D2x

τD3

g = −Idβ̇3ω5D3x

(16)

where Id is the inertia of ducted fans.

These torques can be transformed into the body frame

by multiplying the above equations by R1, R2 and R3.

Therefore, the gyroscopic torque vector in the body frame is

τg = R1τ
D1

g +R2τ
D2

g +R3τ
D3

g

= Id





−β̇1ω3sβ1 +
1
2 β̇2ω4sβ2 +

1
2 β̇3ω5sβ3√

3
2 β̇2ω4sβ2 −

√
3
2 β̇3ω5sβ3

−β̇1ω3cβ1 − β̇2ω4cβ2 − β̇3ω5cβ3





(17)

The complete expression of the external torque vector τ

with respect to the body frame B is

τ = τt + τc + τg (18)

where the right-hand side can be replaced and explicitly

expressed by equations (14), (15) and (17).

III. CONTROL DESIGN FOR ZERO ATTITUDE

TRANSLATION

In this paper, we consider the case of zero attitude trans-

lation, and design and implement a position and attitude

control system in a linear form. The original nonlinear model

consisting of equations (3), (13) and (18) is very complex.

In order to simplify the model for control design purpose,

we neglect the gyroscopic torque, τg , which is reasonable

considering the counter rotating central propellers and the

ducted-fan blades with light inertia. Therefore, the external

torques can be simplified into

τ̃ =





τ̃x
τ̃y
τ̃z



 =





√
3l
2 kT3

(ω2
5sβ3 − ω2

4sβ2)
l
2kT3

(ω2
4sβ2 + ω2

5sβ3)− lkT3
ω2
3sβ1

kQ1
ω2
1 − kQ2

ω2
2





(19)
We can apply the small angle approximation, φ ≈ 0 and θ

≈ 0, the relation between Euler angles’ derivatives and body

angular speeds can be simplified to be




φ̇

θ̇

ψ̇



 =





ωx
ωy
ωz



 (20)

The angular speed dynamics from (2) can be rewritten as

ω̇x =
Iyy−Izz
Ixx

ωyωz +
1
Ixx

τ̃x
ω̇y = Izz−Ixx

Iyy

ωxωz +
1
Iyy

τ̃y

ω̇z =
Ixx−Iyy

Izz
ωxωy +

1
Izz
τ̃z

(21)

In order to further simplify the analysis, we neglect the

high-order Coriolis terms in (21), and linearize it about the

hovering operating point as the following

ω̇x = 1
Ixx

τ̃x
ω̇y = 1

Iyy

τ̃y
ω̇z =

1
Izz
τ̃z

(22)

A. Attitude Control

This section describes the development of an integral back-

stepping (IB) controller, which is similar to that described in

[14] and [15]. The IB controller is composed of an outer

attitude regulator and an inner angular velocity regulator,

and implemented on the Omnicopter as discussed later in

Sect. V-B. We start with roll by considering the tracking

error eφ = φdes − φ and its dynamics

ėφ = φ̇des − ωx (23)

where the superscript, des, indicates the desired value, and

the angular velocity ωx is considered as a virtual control and

designed to be

ωdesx = k1eφ + φ̇des + k2
∫

eφdt (24)

The above virtual control introduces the integral terms into

the backstepping design, with k1 and k2 positive constants.

The angular velocity tracking error is defined by

eωx
= ωdesx − ωx (25)

Using (24) and (25) we can obtain the derivative of eωx

ėωx
= ω̇desx − φ̈ = k1ėφ + φ̈des + k2eφ − φ̈ (26)

and rewrite the roll tracking error dynamics (23)

ėφ = −k1eφ − k2
∫

eφdt+ ωdesx − (ωdesx − eωx
)

= −k1eφ − k2
∫

eφdt+ eωx

(27)

Replacing φ̈ in (26) by its linearized attitude dynamics

(20) and (22), finally the control input, τx, appears in (28)

ėωx
= k1ėφ + φ̈des + k2eφ − 1

Ixx

τ̃x (28)

The desired dynamics of the angular velocity tracking

error is
ėωx

= −k3eωx
− k4eφ (29)

which is obtained if the control input is designed to be

τ̃x = Ixx((k4 − k21 + k2)eφ + (k1 + k3)eωx

−k1k2
∫

eφdt+ φ̈des)
(30)

where k3 > 0 determines the convergence speed of the

angular velocity loop and k4 > 0.

Using (27) the above control law (30) can be transformed

to be of a standard PID form
τ̃x = Ixx((k1k3 + k2 + k4)eφ + (k1 + k3)ėφ

+k2k3
∫

eφdt+ φ̈des)
(31)

Following the same way, the controllers for pitch and yaw

can be derived as

τ̃y = Iyy((k5k7 + k6 + k8)eθ + (k5 + k7)ėθ
+k6k7

∫

eθdt+ θ̈des)
(32)
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Fig. 2. Block diagram of integral backstepping controller

TABLE I

MODEL PARAMETERS

Parameter Value Parameter Value

m 1.49 kg kT1
5.89×10

−8 N

rpm2

l ∗ 0.201 m kT2
5.30×10

−8 N

rpm2

Ixx 0.095 kg·m2
kT3

3.63×10
−9 N

rpm2

Iyy 0.082 kg·m2
kQ1

1.45×10
−9 N·m

rpm2

Izz 0.147 kg·m2
kQ2

1.45×10
−9 N·m

rpm2

∗ Distance from ducted-fan center to propeller center

τ̃z = Izz((k9k11 + k10 + k12)eψ + (k9 + k11)ėψ
+k10k11

∫

eψdt+ ψ̈des)
(33)

As we can see from the derivation of the IB controller,

it is essentially a cascaded PID controller, i.e., an outer-

loop PI controller for attitude control and an inner-loop PI

controller for angular velocity control. The block diagram of

the controller is shown in Fig. 2.

B. Position Control

The translational dynamics in (3) can be expanded as

mξ̈1 + λξ̇1 = f̃xcθcψ + f̃y(cψsθsφ− cφsψ)

+f̃z(sφsψ + cφcψsθ)

mξ̈2 + λξ̇2 = f̃xcθsψ + f̃y(sψsθsφ+ cφcψ)

+f̃z(cφsψsθ − sφcψ)

mξ̈3 = mg − f̃xsθ + f̃ycθsφ+ f̃zcθcφ

(34)

where ft = [f̃x f̃y f̃z]
T = f −RTfr.

Using the attitude controller derived above and choosing

proper gains, the closed-loop attitude dynamics will converge

faster than the closed-loop translational dynamics. Because

we are treating the zero attitude translation case, we can

consider the attitude angles, ψ ≈ 0, θ ≈ 0 and φ ≈ 0.

Therefore, the above equations reduce to

mξ̈1 + λξ̇1 = f̃x
mξ̈2 + λξ̇2 = f̃y
mξ̈3 = mg + f̃z

(35)

Then, the position controllers, f̃x, f̃y and f̃z , can be

designed using classical PID control

f̃x = kPx
(ξd1 − ξ1) + kDx

(ξ̇d1 − ξ̇1) + kIx
∫ t

0
(ξd1 − ξ1)dτ

f̃y = kPy
(ξd2 − ξ2) + kDy

(ξ̇d2 − ξ̇2) + kIy
∫ t

0
(ξd2 − ξ2)dτ

f̃z = kPz
(ξd3 − ξ3) + kDz

(ξ̇d3 − ξ̇3)

+kIz
∫ t

0
(ξd3 − ξ3)dτ −mg

(36)

C. Control Allocation

a∗ = argmin
a

{J |ũ = Ba} (37)

where J = ‖Wa‖22 =
∑8
i=1Wia

2
i , with a diagonal weight-

ing matrix W composing of positive elements.

For the variable ducted fan configuration, 5 motor speeds

(ω1 to ω5) and 3 servo angles (β1 to β3) need to be

(2)
(3)

(4)

(5)

(6)

(2) (3) (4) (5) (6)

Start

(1)

(1)

Fig. 3. 3D square path tracking (left) and ducted-fan servo angles using
control allocation (right)

(2) (3) (4) (5) (6)(1)

Fig. 4. Position and attitude performance for 3D square path tracking

computed. The mapping equations between the actuator input

a = [ω2
1 ω

2
2 ω

2
3 ω

2
4 ω

2
5 β1 β2 β3]

T and the virtual input

u = [f̃x f̃y f̃z τ̃x τ̃y τ̃z]
T are shown in (9), (14) and (15).

Solving the actuator mapping equations for a, while

considering actuator constraints, amounts to performing con-

strained nonlinear programming. Since control allocation is

to be performed in real-time, this may not be computationally

feasible. One way to resolve this problem is to linearize the

mapping locally around a0. Then we can arrive at

u(a) = u(a0) +
∂u

∂a
|a0

(a− a0) (38)

which leads to the linear control allocation problem

ũ = Ba (39)

where ũ = u(a)−u(a0)+Ba0 and the effectiveness matrix

B = ∂u
∂a

|a0
, a0 is picked as the previously applied control

input, a(t− δ), with δ as the step size.

The linearized mapping between the motor input, a, and

the control input, ũ, is underdetermined, so we need to make

a decision on how to achieve the forces and moments on the

system. Here we choose an optimal actuator input a∗ which

achieves the desired control input ũ while minimizing the

cost function, J
Then pseudoinverse based methods can be applied to solve

the problem. After algebraic manipulation we get [16]

a = W−1(BW−1)†ũ = W−2BT (BW−2BT )−1ũ

(40)
where † denotes the Moore-Penrose inverse.

Note that actuator constraints are not explicitly taken

into account in the control allocation design. Instead, we

truncate (40) by clipping those components that violate

some constraints. However, in order to find an optimal

solution, these constraints are needed to be considered. So

we can formulate the control allocation problem as a linearly

constrained quadratic programming problem [17], which is

a topic of our future work.
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Fig. 7. Attitude control in the fixed 90◦ ducted fan angle configuration
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Fig. 8. Zero pitch translation in the variable angle ducted fan configuration

we can see that the Omnicopter can maintain almost zero

pitch angle when translating horizontally. In addition, we

qualitatively observed that in the variable angle ducted fan

configuration, we can arrive at faster forward and backward

flight comparing with the fixed 90◦ ducted fan configuration.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the modeling and control

of a novel multirotor aircraft, the Omnicopter. Its special

actuation makes it possible to generate lateral forces and gain

full controllability over its 6 DOF. Based on the complete

dynamic model derived by applying Newton-Euler equations

and multi-body system modeling, we presented control and

optimization algorithms for zero attitude lateral translation.

The proposed algorithms are verified and implemented by

simulations and experiments on the prototype.

Having learned from our first prototype presented in this

paper, we are developing the second generation prototype.

Instead of making the frame using thin carbon fiber rods,

we are going to simplify and 3D print the frame and as

many parts as possible, to increase stiffness, robustness and

manufacturability. We will also introduce a motion capture

system for position control, and implement the control sys-

tem using ROS (robot operating system). In this way, we can

implement an adaptive backstepping based control algorithm

[18] to achieve the proposed non-zero attitude hover and

arbitrary trajectory tracking.
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