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Abstract— We make two contributions toward integrated
monitoring over large spatial scales, with multiple collaborating
vehicles. Our focus is dynamic ocean features such as fronts and
plumes. To support strong networked-control designs, we first
develop a clean linear time-invariant framework for tracking
features, that directly couples the global structure of the process
to vehicle positioning. To address the packet loss inherent
in underwater acoustic communications, we then extend the
synthesis technique of Imer et al. [1] to the case where
measurements and control commands suffer loss with differing
statistics among the multiple channels. Simulations show that
the integrated feedback system achieves good performance in
front tracking.

I. INTRODUCTION

Networks of distributed mobile agents are an attractive

means for tracking and pursuit of dynamic features over

large spatial scales, although wireless communication brings

challenges for control [1]. Dynamic missions of interest in

the ocean include monitoring and following a quickly evolv-

ing plume or other process [2]–[4], but underwater, wireless

communication over distances beyond about one hundred

meters is almost exclusively accomplished via acoustics.

Acoustic communication suffers from frequent packet loss

caused by ambient noise, multipath, and changing environ-

mental conditions, and from long delays and low data rates

[5]. In this paper, we make two connected contributions to-

wards joint estimation and pursuit of dynamic ocean features:

a linear formulation of the integrated observation problem,

and a control design technique that rigorously handles

multiple channels with mixed packet loss probabilities.

Prior work on observation of ocean features tends to em-

phasize single vehicles, or slower timescales when multiple

vehicles are in use. Path-planning with single vehicles is

studied in [6], and experimental approaches specific to front

detection are demonstrated in [7]. Multi-vehicle adaptive

sampling is studied in [8], [9], while coordinated sampling

of ocean features using drifters and vehicles is studied via

an experiment in [10]. A distributed approach for plume and

thermocline tracking is presented in [11]. In the above works,

collaboration between vehicles is limited and communica-

tions occur at low frequencies. In contrast, dynamic feedback

control with acoustic communications has been studied with

formation control problems, e.g., [12].

For tracking truly dynamic features with multiple vehicles,

we propose an integrated closed-loop control method that

provides a decomposition of spatial and temporal variations.
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Fig. 1. Illustration of vehicles positioned to track an ocean front (above),
collaborating via acoustic communications (below).

A front is modeled as a coupled LTI system representing

the short-term evolution of a discrete set of points, each

to be tracked by a vehicle. We use ocean model forecasts

and a system identification procedure to describe the lo-

cally linear behavior of the front. The key idea is that the

physics behind ocean processes introduces global spatial and

dynamic structure to the system, which can be exploited

by a centralized controller—as opposed to vehicles that

make decisions based only on local information. Our LTI

formulation is fundamentally different than most nonlinear or

mode-based models for ocean processes, which have obvious

advantages in descriptive capability but are not suitable for

direct use with dynamic control design.

To handle the stochastic packet loss inherent in acoustic

communications with multiple vehicles, we extend the op-

timal control technique of Imer, Yüksel & Başar [13] to a

multi-channel case. The original paper considers an all-or-

none lossy channel on the controller and sensor sides of a

control loop, which (by the authors’ admission) is a special

case. The approach is inherently constructive, however, pro-

viding a complete dynamic programming (DP) recursion for

control actions based on an estimated state. Schenato et al.

[14] considered a similar problem and showed that the opti-

mal control action is linear in the estimate and that the sepa-

ration principle holds only when acknowledgments of control

packets are available or there is no sensor noise and the

observation matrix is invertible. Other related works include

Garone et al. [15] and Gupta, Hassibi & Murray [16] – all of

whom allow acknowledgments in their treatment of mixed-

loss channels. We view the case of no acknowledgments to be

valuable in underwater acoustic networks, where propagation

delay and interference considerations might make them very

costly in time. An additional advantage of the explicit DP

computation is that it accommodates time-varying systems,

relevant to operations with vehicles moving through space.
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We develop the linearized ocean front model in Section II.

A system identification process is used to determine accurate

low-order linear models for the dynamics of the nominal

front. Initial work with a double gyre model and subspace

system identification is promising; we give a brief description

in Section II-C.1. The mixed-loss control design derivation

is given in Section III. We present simulation results with

a linear demonstration system in Section IV and conclude

the paper in Section V. This work is aimed towards future

experiments with our fielded system [17].

II. LINEARIZED OCEAN FRONT MODEL

A. Overview and variable definitions

The problem we consider involves a group of mobile

agents with scalar measurements following a dynamic field.

The scalar field of interest is denoted by φ(r, t), where

r ∈ R
2 or R3. Predictions of the field can be obtained using

numerical ocean models; however, these estimates are subject

to uncertainty, which is decreased when measurements of the

true field are available, as in adaptive sampling. It is desired

to track the position of a small set of discrete points along an

important set of features, e.g., defining an ocean front, using

one vehicle assigned to each point. We focus on dynamic

perturbations from a nominal frontal contour, defined as the

expected location of the front as predicted by the model.

The key assumptions of our front model are as follows:

• A major computational capability exists at the network

center that can generate the expected evolution of the

front position and gradient, as well as the associated

uncertainty [18]. This expected evolution defines the

“nominal” field φ̄(r, t).
• Points along a nominal frontal contour are picked a

priori. The gradient of the field at the front relates the

measurement of the field of interest to the true position

of the front. A good strategy for high SNR is to choose

points (and place the vehicles) at locations with large

magnitude gradients; little information about the field’s

evolution is obtained by measuring flat areas.

• The position of a given point on the front can be

predicted a short time into the future, and the main

deviations from this trajectory are primarily along the

gradient direction. The gradient is assumed to be slowly

varying; as with all other adaptive observation tech-

niques, frequent corrections to the estimate will help.

• Vehicles drive along a line in the direction of the

nominal gradient at their specified frontal point. The

design variable is a scalar velocity command.

The nominal front, a contour of the nominal scalar field,

is denoted as Θφ0
(t) = {r|φ̄(r, t) = φ0(t)}.1 We discretize

the front into n frontal points, picked by the user in order to

make useful measurements while satisfying vehicle dynamic

constraints. In general, points are spaced along the front.

Thus we have for the nominal trajectory of each point:

p̄
i(t) = {r|φ̄(r, t) = φ0(t), and C}, i = 1, . . . , n, (1)

1For simplicity, the frontal contour is defined here as a specific level set,
however, other criteria could be used to represent the nominal front.

where C represents some rule set shared by all points, to be

clarified later. The nominal gradient at each frontal point is

g
i
0(t) = ∇φ̄(pi(t), t). The gradients are obtained from the

ocean model estimate and represent a local linearization of

the scalar field in the neighborhood of the front.

From here on, with a slight abuse of notation, we define

all variables as scalar perturbations from the nominal front

in the direction of the nominal gradient gi
0(t), and drop the

dependence on t for clarity. The position of vehicle i relative

to the nominal front is qi, the position of the true perturbed

frontal point is pi, and the nominal gradient magnitude is

gi. The true measurement is of the scalar field at the vehicle

location. However, a first-order Taylor expansion gives a

linearized measurement equation based on the gradient:

zifield = φ(qi) ≈ (qi − pi)gi, (2)

where we have set the nominal frontal contour value φ0(t)
to zero without loss of generality. Positioning vehicles such

that they remain close to the front improves estimation as

the linearization accuracy is good, with relative importance

proportional to the gradient. Thus, the control objective is to

minimize zifield over the decision horizon.

B. General LTI system formulation

The aggregate state variables for the frontal point per-

turbations are xp(k), and the state variables for vehicle

perturbations are xq(k). We define n decoupled systems for

vehicle dynamics, modeling low-level closed-loop control.

The dynamics matrix Ap is block diagonal, the control input

matrix is Bq , and the output matrix is Cq .

Models for ocean processes can be obtained via system

identification applied to ensembles of ocean model simu-

lations, as we describe in Section II-C.1, or alternatively

through linearization of a PDE [19]. The positions of the

n frontal points are described by a coupled system with

dynamics Aq and output matrix Cq . A key aspect of this

system is that the spatial coupling is represented implicitly

in the structure of the Ap; the eigenvectors will not be sparse.

We use a discrete-time description so that the system is

suitable for packet loss robust control design. The combined

state space system in general form is:
{

xp(k + 1)
xq(k + 1)

}

=

[

Ap(k) 0
0 Aq(k)

]{

xp(k)
xq(k)

}

+

[

0
Bq(k)

]

u(k) +

{

wp(k)
wq(k)

}

,

(3)

where the vehicle process noise wq has covariance Qq , and

the ocean model process noise wp has covariance Qp.

The dynamics of the frontal perturbations and vehicles

are decoupled, giving the block-diagonal structure in the A
matrix. However, since the frontal positions pi cannot be

observed directly, the output equation consists of the scalar

field measurements as well as vehicle positions: z(k) =
[zfield(k)

T , zq(k)
T ]T . This couples vehicle and process dy-

namics. Various choices exist for navigation measurements;

we choose vehicle position as a common example. Thus,
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expressed in terms of state variables and with noise defined

below, the output equation in vector form is:

z(k) =

[

−GCp GCq

0 Cq

]{

xp(k)
xq(k)

}

+

[

I G
0 I

]{

νφ(k)
νq(k)

}

where G(k) = diag(ḡ1(k), . . . , ḡn(k)) and I represents a

suitably sized identity matrix. The scalar field measurement

noise is νφ(k), with covariance Reφ. Representing naviga-

tional uncertainty, vehicle measurement noise is νq , with

covariance Req .2

C. Specific ocean process and vehicle models

First, we briefly present a case that directly involves

stochastic fluid mechanics, and then we show a more in-

structive example of a coupled mass-spring system.

1) Double Gyre Ocean Model: We consider a stochastic

double gyre model, simulated using a finite-volume Navier-

Stokes solver [21]. This canonical fluid mechanics problem

is highly nonlinear and can go unstable. That makes it a

challenging test case for our methodology. On the other hand,

it is a generic scenario with few physical parameters that may

be useful for benchmarking.

The nominal front is taken as a section of a given

vorticity contour of the mean field of 25 stochastic en-

semble members. Seven frontal points are initially picked

with equal spacing along this contour, and we track the

evolution of these points by finding the intersection of the

nominal gradient at a point with the nominal contour at

the next time step. Perturbations for each realization in

the ensemble are determined by finding the intersection of

the nominal gradient at each point with the contour in the

specific realization at a given time step. We then pass the

perturbations into a MIMO subspace system identification

procedure, N4SID [22], which outputs the frontal system

matrices Ap and Cp, along with the identified noise model.

Comparative results with independent data and simulated

packet losses are given in Figure 2, along with a brief

description of the controllers (discussed in more detail in

Section IV). The “Loners” method, that uses local informa-

tion at each vehicle, gives the best vehicle positioning (upper

plot). However, by not communicating, the global estimate

of the front suffers. In the lower plot, we see that the “Mixed

loss” and “All or none” methods reduce the estimation error

relative to the lower bound by about 75%. Better positioning

results in more accurate estimation for the methods that

communicate, as they use the same coupled model. These

initial results with a physics-based model are encouraging

for our approach.

2) “Chained-mass” Linear Demonstration System: In this

example, the perturbation of the front is approximated as

a chained mass-spring-damper construction with n masses.

The inertia of point i is mi, ki,i and bi,i are the stiffness and

damping respectively between realized frontal point i and the

nominal front, and ki,j and bi,j are the stiffness and damping

2We assume relatively accurate navigation, see [20] for a recent discussion
of underwater vehicle navigation.
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Fig. 2. Control results for the double gyre example. The “Non-reacting”
controller places vehicles at the nominal front, while the “Loners” use local
models to act on local information only; vehicles do not communicate.
The “Lower Bound” uses the coupled model with perfect communication.
The rest of the methods use the coupled model with lossy communication
between vehicles. “Naı̈ve” applies standard LQR gains to the case of lossy
communications, the “All or none” method applies the algorithm of Imer et

al. [13], and “Mixed” uses our mixed-loss algorithm developed in Section
III. The latter four methods are discussed in more detail in Section IV.

respectively between points i and j. Thus, the equation of

motion for frontal point i is given as:

p̈ i = wi
p+

1

mi

(

− ki,ip
i − bi,iṗ

i

+ ki,i−1(p
i−1 − pi) + bi,i−1(ṗ

i−1 − ṗi)

+ ki,i+1(p
i+1 − pi) + bi,i+1(ṗ

i+1 − ṗi)
)

,

(4)

where pi is the deflection of point i from the straight-chain

configuration at the origin of the coordinate system.

For i = 1 and i = n, the springs and dampers that do

not connect to a neighbor are set to zero (other boundary

conditions could be modeled as well). In our application ki,i
equals zero, since the position of the true front is not coupled

to the nominal (expected) front.

3) Vehicle model: Conventionally, vehicles are operated

with waypoint control using low-level onboard autonomy.

We use velocity as the control input here, however, because

the control design assumes zero control when a command

packet is lost (zero-output decoder on the control channel).

If position control were used, the vehicles would attempt to

drive back to the nominal front whenever a command packet

is lost; intuitively, since the front has a random walk mode,

it makes more sense for the vehicles to stay where they are

if the command is not received.

For the purposes of the chained-mass example in this

paper, each vehicle is modeled with a first order system

relating the velocity command to vehicle velocity, plus an

integrator to give vehicle position: xv/u = 1/s(τs + 1).
Heterogeneous vehicles could be easily modeled, although

within a linear framework speed saturation and waypoint

control cannot.
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III. MIXED LOSS CONTROL DESIGN

A. Problem Statement

Building on the approach of Imer et al. [13], we consider

LQR-type optimal control in both the TCP-like (acknowl-

edgments) and UDP-like (no acknowledgments) cases. We

extend the previous work to the case with multiple channels

on each side, each with unique statistics. We first list the

major assumptions:

• There is a centralized architecture for estimation and

control, as the coupled models described in Section

II-C leverage the global structure of ocean processes.

Additionally, data assimilation often makes use of out-

side information such as remote sensing and involves

considerable computation [23].

• The discrete-time system operates at a single rate. This

scenario is justified by multiple-access methods such

as frequency- or code-division multiplexing that are

common in wireless RF and possible for low numbers of

vehicles with acoustics [24]. There are limits, however,

and we recognize that multirate control schemes [25]

are also needed.

• Packet loss statistics are stationary and uncorrelated

with state. In principle it would be possible to allow

them to vary with the time step.

The linear time-invariant, stochastic system that we will

use in our derivations is xk+1 = Axk+Bαkuk+wk, where

xk is the state at time step k, uk is the control action,

and wk is a stochastic noise source. The size n diagonal

matrix αk describes control packet success and is taken as

the realization at step k of either a Bernoulli random scalar or

a diagonal matrix with independent Bernoulli entries taking

values zero or one. Scalar αk is one with probability ᾱ, so

that E{αk} = ᾱ. The matrix generalization is direct, where

we consider all αk and ᾱ diagonal matrices.

The quadratic cost function is

E

{

xT
NQNxN +

N−1
∑

k=0

[

xT
kQxk + uT

k αkRαkuk

]

}

, (5)

where N is the finite-time decision horizon.

B. First Backward Step

With a slight abuse of notation, we assume u is the optimal

control based on IN−1, the information available to the

controller at step N − 1. Using the standard DP equation

[26], the cost-to-go is

JN−1(IN−1) = min
uN−1

E
{

xT
NQNxN +

xT
N−1QxN−1 + uT

N−1αN−1RαN−1uN−1

}

= min
uN−1

E
{

x′

N−1(A
′QNA+Q)xN−1+

uT
N−1αN−1(R+BTQNB)αN−1uN−1 +

2uT
N−1αN−1B

TQNAxN−1 + (6)

wT
N−1QNwN−1 | IN−1

}

.

We set the derivative with respect to uN−1 to zero, with

expected values taken for appropriate terms. Letting x̂k =
E{xk | Ik} we have

u∗

N−1 = −
[

E{αN−1(R+BTQNB)αN−1 | IN−1}
]−1

× ᾱBTQNAx̂N−1 (7)

=̇−M−1
N−1 × ᾱBTQNAx̂N−1

Inserting this control back into JN−1 gives

JN−1(IN−1) =E
{

xT
N−1(A

TQNA+Q)xN−1 +

wT
N−1QNwN−1 | IN−1

}

− (8)

x̂T
N−1PN−1x̂N−1

with PN−1=̇ATQNBᾱM−1
N−1ᾱB

TQNA.

Define ek = xk − x̂k. Since

−x̂T
N−1(·)x̂N−1 =

E{eTN−1(·)eN−1 − xT
N−1(·)xN−1 | IN−1},

we have

JN−1(IN−1) =E
{

xT
N−1KN−1xN−1 + eTN−1PN−1eN−1 +

wT
N−1QNwN−1 | IN−1

}

(9)

with KN−1=̇ATQNA+Q− PN−1.

We go to the next backward step in the DP, again assuming

the information up to step k is available to design uk:

JN−2(IN−2) = min
uN−2

E
{

xT
N−2(Q+ATKN−1A)xN−2 +

uT
N−2αN−2(R+BTKN−1B)αN−2uN−2 +

2uT
N−2αN−2B

TKN−1AxN−2 +

eTN−1PN−1eN−1 +

wT
N−2KN−1wN−2 + (10)

wT
N−1QNwN−1 | IN−2

}

C. Second Backward Step for TCP

For TCP, eN−1 is not dependent on uN−2. Straightforward

manipulations give

u∗

N−2 = −M−1
N−2ᾱB

TKN−1Ax̂N−2

with MN−2 = E{αN−2(R + BTKN−1B)αN−2 | IN−2}.

The resulting cost-to-go is

JN−2(IN−2) = E
{

xT
N−2KN−2xN−2 +

eTN−2PN−2eN−2 +

eTN−1PN−1eN−1 +

wT
N−2KN−1wN−2 +

wT
N−1QNwN−1 | IN−2

}

(11)

with KN−2 = Q + ATKN−1A − PN−2 and PN−2 =
ATKN−1BᾱM−1

N−2ᾱB
TKN−1A.

The only difference between this recursion and the scalar

form is that the control and PN−2 use ᾱM−1
N−2ᾱ instead

of ᾱ(R+BTKN−1B)−1. As noted in the Introduction, our

focus is on the UDP-like case, so we will not pursue the

TCP-like case further.
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D. Second Backward Step for UDP

eN−1 above is going to be a function of uN−2 if there

are no control acknowledgments, because when the sensor

packet comes through, the estimator can only use a ᾱ-

scaled version of the command, i.e., the expected value of

αN−2. This is the so-called dual effect, and eN−1 has to be

expanded out. The estimator model from Imer et al. is:

x̂k = βkxk + (1− βk)(Ax̂k−1 +Bᾱuk−1) (12)

where βk is a Bernoulli random variable with P (βk = 0) =
β and P (βk = 1) = β̄. As with α, we take on a diagonal

matrix βk to allow for losses in different sensor channels.

Expanding the term from JN−2 above involving

eTN−1PN−1eN−1 and taking expectations implicitly across

the u terms, we have

x̂T
N−1PN−1x̂N−1 =

E
{

xT
N−2A

TY a
N−1AxN−2 + x̂T

N−2A
TY b

N−1Ax̂N−2 +

2xT
N−2A

TY c
N−1Ax̂N−2 | IN−2

}

+

uT
N−2

[

E{αN−2B
TY a

N−1BαN−2 | IN−2} + (13)

ᾱBT (Ŷ b
N−1 + Ŷ c

N−1 + Ŷ d
N−1)Bᾱ

]

uN−2 +

2uN−2ᾱB
T (Ŷ a

N−1 + Ŷ b
N−1 + Ŷ c

N−1 + Ŷ d
N−1)Ax̂N−2

where Y a
k = βkPkβk, Y b

k = (I − βk)Pk(I − βk)

Y c
k = βkPk(I − βk), Y d

k = (Y c
k )

T

and Ŷ
(·)
k indicates the expected value across βk. Note that

Pk = Y a
k + Y b

k + Y c
k + Y d

k . The summed first three terms

above factor into

E
{

eTN−2A
T (Y a

N−1 − PN−1)AeN−2 +

xT
N−2A

TPN−1AxN−2 | IN−2

}

,

and we can now assemble the recursion. Define

TN−2 = E
{

αN−2(R+BT [KN−1 + PN−1 − Y a
N−1]

B)αN−2 | IN−2

}

− ᾱBT (PN−1 − Ŷ a
N−1)Bᾱ

SN−2 = ᾱBTKN−1A.

It follows that

u∗

N−2 = −T−1
N−2SN−2x̂N−2, (14)

and JN−2 =E
{

xT
N−2KN−2xN−2 +

eTN−2PN−2eN−2 +

wT
N−2KN−1wN−2 +

wT
N−1QNwN−1 | IN−2

}

.

(15)

with PN−2 = ST
N−2T

−1
N−2SN−2+

AT (PN−1 − Ŷ a
N−1)A

KN−2 = Q+AT (KN−1 + PN−1

− Ŷ a
N−1)A− PN−2.

From this point on, one uses the usual DP recursion [26].

E. Correlations

Correlations between channels within α and β, and indeed

between α and β, are critical for wireless applications since

both the control and the sensor messages use the same

medium and often the same hardware. There are three

distinct cases for the expectations we have employed.

1. All channels independent. For the TCP-like model, the

major new requirement is calculating Mk; it will be different

at each time step (since it has Kk+1 inside), but is easy:

E{αZα} =

{

ᾱZᾱ for the off-diagonal elements

ᾱZ for the diagonal elements,
(16)

where Z represents a symmetric matrix.

For the UDP-like model, the Ŷ a terms present a similar

computation since we have Bernoulli β. TN−2 involves an

expectation over both αT
N−2(·)αN−2 and Y a

N−1, but if α and

β are independent this can be computed in sequence, i.e., the

inner part and then the outer part.

2. α’s correlated with each other and β’s correlated with

each other. Let Σβ = E{(~β − ~̄β)(~β − ~̄β)}T be the covari-

ance matrix of the vector ~β. It can be easily shown that

E{βZβ} = Z ∗ Σβ , where ∗ indicates pointwise matrix

multiplication. Again an inner and an outer part can be

computed separately for TN−2.

3. α’s and β’s correlated (general case). The first term in

TN−2 now has terms quartic in [α, α, β, β]. For this, define

the four-dimensional array Lijkl = E{αiαjβkβl}. Working

through the algebra we obtain the m×m symmetric matrix

E{αBTβPβBα}(i, j) =
∑

p

Bpi

∑

q

BqiPqpLijqp (17)

F. Kalman Filter

Although a standard Kalman filter (KF) – which would

accommodate sensor noise and incomplete measurement –

has no guarantees for the lossy channel problem, several

simple modifications pointed out in prior papers, e.g. Garone

et al. [15], make the KF very reasonable. First, the state

estimate prior reflects the fact that the control is uncertain:

x̂k+1 = Ax̂k +Bᾱkuk.

The covariance prior has an added component for the same

reason: with q = uku
T
k , we have

P e
k+1 =AP e

k AT +Q e+

B(E{αkqαk}+ q − ᾱkq − qᾱk)B
T ,

(18)

where Q e is the process noise covariance. The Kalman Gain

depends on βk (known at the estimator) and is updated using

the methods in [27].

IV. SIMULATION RESULTS

We show simulation results for the chained-mass example

developed in Section II-C.2. While many parameters affect

performance, we analyze one representative test case in

detail for a clean comparison of methods. We choose n =
15 frontal points equally spaced along the nominal front;

snapshots of the front during a brief segment of one trial
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are shown in Figure 3. The parameters describing the ocean

process are: dt = 1, mi = 1, ki,i+1 = ki,i−1 = 0.3,

bi,i+1 = bi,i−1 = 0.2, and bi,i = 0.05. All gradients gi are

set to one. The initial condition for p is one period of a sine

wave of amplitude 10, and all vehicles (and state estimates)

start at zero.3 The simulation length is 300 steps, and vehicles

have a time constant τ equal to 1/10 of the time step.

We implement a KF in place of the simple noiseless

estimator, as described above. Each vehicle measures the true

scalar field at its location, φ(q, t), plus noise. Vehicle position

measurements come from onboard navigation, also subject

to noise. Correlations may exist between all combinations

of measurement and process noises. For example, process

noise for an ocean model describing diffusion (e.g. chemical,

biological) may only be loosely correlated with currents

(vehicle process noise), while advecting processes (salinity,

temperature) are obviously strongly correlated with currents.

The shared physical domain between vehicles can introduce

correlations as well. All of these models, however, can

be handled within the KF framework. In this example we

consider all noise to be independent, with Qp = 0.25I ,

Qq = 0.01I , Req = 0.01I and Reφ = 0.25I .

We show comparisons of four different scenarios; these

methods are the latter four described in Figure 2. For each,

the true frontal evolution is the same, the same process and

measurement noise realizations are used, and the same packet

loss realizations are used (for Cases 1-3).

1) “Lower Bound”: Communication is assumed ideal (no

packet losses) for both controller design as well as

simulation. The standard LQG solution is applied,

with LQR controller gains and a conventional KF for

estimation. Noisy measurements of the scalar field and

vehicle position are available; p and ṗ are still not

directly observed.

2) “Naı̈ve”: The standard LQR controller gains (same

as above) are used. True (mixed-loss) realizations for

control and sensor packet losses are used in simulation.

The KF is the standard missed-measurement form

(with no adjustment to priors), using βk.

3) “All or none”: The control design procedure of Imer

et al. is used, where all control packets have the same

success probability, and all sensor packets have the

same success probability. The scalar values of ᾱ and

β̄ are taken as the mean values across all channels.

In simulation, realizations of the packet loss process

use the true (mixed) probabilities. The KF detailed

above is used for estimation, with the modification that

the mean value of ᾱ is used for the adjustment to the

priors. The KF uses βk, the true (mixed-loss) sensor

packet successes.

4) “Mixed loss”: The mixed-loss control design detailed

above is used to generate feedback gains. The KF

detailed above is used for estimation (the full vector ᾱ
is used to adjust priors).

3The estimator converges quickly at startup with this scenario; practically,
transients from initial conditions are an important robustness aspect to
consider.
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Fig. 3. Snapshots of front evolution (all sites) every two time steps near
the end of the trial shown in Figure 4. The nominal front at each step is the
thin horizontal dotted black line and the true front is the blue line. Frontal
points pi are open blue circles.

LQR with output weighting is used for controller design.

The LQR weighting parameters for states, Q̄lqr, R̄lqr and

N̄lqr, are set following:

[

Q̄lqr N̄lqr

N̄T
lqr R̄lqr

]

=

[

CT 0
DT I

] [

Qlqr Nlqr

NT
lqr Rlqr

] [

C D
0 I

]

,

where Qlqr, Nlqr and Rlqr are the weighting matrices for the

output. In our case, C = [−GCp, GCq], and D = 0 (Nlqr is

infrequently used). The parameters used for controller design

are: Q
zfield

lqr = 100I , Qq
lqr = 0.01I , Rlqr = I , and a horizon

of sixty steps. For the mixed-loss and all-or-none methods,

we implement static gains taken as the first step of the finite-

horizon gains (the final state penalty matrix is set as Qf =
1000Q in order to ensure convergence of the backwards gain

recursion). The controller gains at each time step are a n×4n
matrix. With n = 15, the mixed-loss recursion for the sixty-

step horizon takes roughly 0.05 seconds in Matlab, making

this design method suitable for real-time implementation as

time-varying parameters change.

Packet losses are simulated using independent success

probabilities β̄ and ᾱ. The packet success probability vectors

ᾱ and β̄ are randomly generated for each trial based on

a uniform distribution between 0.25 and one. In many

operational scenarios, all measurements from a single vehicle

are packaged into a single packet, that is successful with

probability β̄i
v . Separate navigation and scalar field measure-

ment packets could alternatively be modeled. For purposes

of the “Mixed loss” control algorithm (formulated based on

full state observations), we consider the former case and

construct the full matrix of measurement success probabili-

ties β̄ with β̄i
v repeated on the diagonal in appropriate order

(measurements from vehicle i matched to the corresponding

vehicle and process states at point i).
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Mixed loss, ᾱi = 0.4 β̄i = 0.5
D

is
ta

n
ce

βk

αk

True pi

Estimated pi

qi

60 80 100 120 140 160

60 80 100 120 140 160

-30

-20

-10

0

10

20

30

40

-3

-2

-1

0

1

2
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Fig. 4. A segment of simulation results for a single site/vehicle in one realization with different control methods, ᾱi = 0.4 and β̄i = 0.5 in this case.
The left plots show the “Mixed loss” control design (Case 4). The RMS of zi

field
is 2.5 and the RMS error of (p̂− p) is 1.3. The right plots show the

“Naı̈ve” method with standard LQR control design under simulated packet loss (Case 2). The RMS of zi
field

is 5.0 and the RMS error of (p̂− p) is 7.3.

The lower plots show the control (commanded vehicle velocity); when αk = 0 (lost control packet), the control applied on the vehicle (red trace) is zero.
Packet loss and noise sequences are the same for both simulations; the red and blue vertical bars at the top and bottom of the plots show successful control
and measurement packets, respectively.

Results from computational experiments are given in Table

I. We run ensembles of 100 trials and present the mini-

mum, mean and maximum values of RMS(zfield) for each

method. For each method, the RMS of zifield for each vehicle

is computed over time, and then the average is taken across

vehicles to give RMS(zfield). We note that since the packet

success probabilities are randomly generated for each trial,

certain combinations of ᾱ and β̄ result in a system that cannot

be stabilized; we have observed trials where Cases 2-4 are

all unable to stabilize the system.

TABLE I

SIMULATION RESULTS (ONLY STABLE TRIALS ARE REPORTED).

RMS(zfield) MIN MEAN MAX

1) Lower bound 0.74 0.76 0.78
2) Naı̈ve 2.4 18 270
3) All or none 6.3 48 450
4) Mixed loss 2.1 3.6 11

The results from the chained-mass example highlight the

value of the mixed-loss design, which consistently gave a

lower RMS(zfield), and went unstable less frequently than

the naı̈ve and all-or-none methods. In particular, we have

noticed that when there is a large spread in the packet loss

probabilities of the different communication channels, the

all-or-none approach performs badly as some gains are not

matched appropriately to the losses experienced on those

channels. Additionally, the control effort required with the

mixed-loss gains is significantly lower than that required by

the naı̈ve or all-or-none gains, even though the Q and R
penalties are the same. It is interesting that the naı̈ve method

often outperforms the all-or-none design, which is in contrast

to the preliminary double gyre results shown in Figure 2.

Figure 4 shows an example of the evolution of one site

in one realization using the mixed-loss design and the same

site in the same realization using the naı̈ve LQR design. The

naı̈ve controller performs comparably to or slightly better

than the mixed-loss design at times (for example, near step

75), although as shown near steps 100-150, when there are

big bursts of α and β losses close in time, the naı̈ve method

suffers dramatically. This behavior has also been observed

in trials with the all-or-none method. While this plot only

shows performance of a single site, the coupling in the model

means that the estimation difficulties of this vehicle hurt the

estimation of the other points as well (and vice-versa). As

the mixed-loss design accounts for the probability of packet

success in each individual channel, it does not suffer from

periods of extremely poor performance.

Finally, we note that in these simulations, the true sim-

ulated system is perfectly linear, and the gradients are per-

fectly known. This is in contrast to the stochastic, nonlinear

fluid dynamics in the double gyre example described in

Section II-C.1. We have run preliminary tests examining the

robustness to imperfectly known gradients in the chained-

mass example. When actual gradients are smaller than ex-

pected, the performance of all methods becomes sluggish

due to gain reduction. However, when actual gradients are

larger, the mixed-loss control scheme is able to maintain an

upwards gain margin of rougly two, while the all-or-none and

naı̈ve methods can be very sensitive and often go unstable.

The upwards gain margin of two is consistent with LQR/KF

controllers, for which the mixed-loss method is making the

best approximation under packet loss conditions.
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V. CONCLUSION

Our new concept is that locally linear behavior of an ocean

process admits powerful network-based control techniques

on short time scales. Using a coupled model of the process,

multiple cooperating vehicles can decompose spatial and

temporal variations to track a dynamic feature of interest. The

controllers can incorporate in a rigorous way the limitations

of acoustic communications. This integrated approach to

dynamic ocean monitoring appears to be successful in two

preliminary examples.

Practical implementation of these techniques will require

careful attention in picking the locations of each nominal pi,
in both two and three dimensions; one can think of various

optimization approaches for adaptively designing trajectories

as the front evolves. A related goal will be to minimize the

field estimation error directly, instead of the proxy zfield.

More detailed performance analysis can investigate factors

such as the dynamics of the specific ocean process studied,

packet loss distributions, and noise compared to gradient

magnitudes. As our preliminary tests show, robustness to

unavoidable errors in gradient prediction is important and can

be analyzed further using techniques such as gain margins.

Finally, our approach relies on a centralized controller that

leverages the global structure of the ocean process. This

limits development towards decentralized schemes, making

efficient network scheduling and multirate control design

especially important.
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