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Abstract— In this work we present a framework for kines-
thetic teaching and iterative refinement of whole body motions.
For detection of external forces we apply a momentum based
disturbance observer known from manipulator control to the
floating-base model of a humanoid robot. These external forces
are used as a trigger for implementing a compliant behavior
at the interaction point and are integrated into a predictive
balancing algorithm. For representation of the motion data, a
hidden Markov model is used, which allows for an iterative
update of the discrete motion states as well as a smooth
generation of continuous motion data. Finally, we present an
application of these algorithms on the humanoid robot TORO.

I. INTRODUCTION

Generating whole body motions for humanoid robots
requires the coordination of a large number of degrees of
freedom, while complying with unilateral contact constraints.
Moreover, if such robots are to be used by non-expert users
a demand for intuitive programming interfaces appears.

Bouyarmane and Kheddar [1] presented an optimization
based motion planning framework for generating statically
stable whole body motions involving multiple state depen-
dent contact constraints. More specific optimization criteria
were applied for generating dynamically stable walking [2],
[3] and running motions [4]. While optimization based ap-
proaches can utilize precise model information for generating
dynamically consistent trajectories compatible with unilateral
contact constraint, these methods are mainly used for offline
motion generation and need a stabilizing feedback controller
for online execution.

Generating whole body motions from observation / imi-
tation of human motion was considered in several works in
robotics [5] and computer graphics [6]. Recently, a whole
body motion programming approach based on a sequence of
key frames was presented in [7].

The concept of motion primitives [8] has been introduced
in order to reduce the dimensionality of the action space. It is
expected that out of a limited set of generic primitive motions
more complex actions can be synthesized by combining
and adapting individual motions. Such motion primitives
can be obtained from offline optimization, human motion
observation and imitation, or kinesthetic teaching.

Early works on kinesthetic teaching considered a passive
robot behavior [9], [10] by deactivating the controlled motion
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or setting very low servo gains. However, these approaches
might lead to unsynchronized motions because the teacher
moves motors one by one rather than demonstrating natural
coordinated movements. Recently, the combination between
active impedance control and physical teaching became more
popular. In a recent user study on kinesthetic teaching [11],
the role of kinematic redundancy was identified as one of
the main difficulties for the user.

In [12] kinesthetic teaching of the upper body motion of
a humanoid robot was considered. An interaction control
approach for the upper body motion was combined with
a lower body balancing algorithm based on the reaction
null space approach [13]. External forces from kinesthetic
teaching or from the task execution were considered as
disturbances for the balancer, which employed two strategies,
namely ankle- and hip-strategy.

Ibanez et al. [14] proposed an extension of the ZMP
preview controller for bipedal balancing under the influence
of external forces. In their approach a disturbance model was
integrated into the controller for allowing a prediction of the
external disturbance forces.

In our previous works [15], [16] we proposed a framework
for iterative refinement of learned motion primitives. Therein,
a specialized compliance controller was parameterized ac-
cording to the uncertainty of the learned trajectory. In [15],
[16] we applied this approach to a fixed based humanoid
manipulator system. In the present paper, we extend this
approach towards kinesthetic teaching of a bipedal humanoid
robot. External forces from the human teaching are detected
by a momentum based disturbance observer known from
manipulator control [17]. These external forces are integrated
into the bipedal balancing algorithm acting on the horizontal
motion of the center of mass (COM). Based on the external
force detection, we parameterize the interaction controller
differently depending on the detected contact point and its
null space. The proposed controller can help for a human
subject to teach a full body humanoid robot in a synchronized
and easy way.

II. COMPLIANCE CONTROL FOR KINESTHETIC TEACHING

In this section we present the control methods for phys-
ical interaction with the robot. During kinesthetic teaching,
human interaction forces should allow to correct the motion
without affecting the balancing task of the robot. Section II-
A discusses the problem of detecting external forces. The
result of the force detection can be utilized for influencing
the compliant motion control from section II-B. Moreover,
in section II-C these forces are incorporated into a balancing
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Fig. 1. Overview of the kinesthetic teaching approach.

approach by means of a predictive disturbance model. Figure
1 gives an overview of the main elements in our approach.

A. Contact force detection

The dynamical model of a humanoid robot can be de-
scribed by a floating base robot with n degrees of freedom
(DOF) q ∈ Rn, which is interacting with its environment
through contact wrenches F r and F l at the feet and through
a vector of generalized external forces τ ext. Let v be the
body twist describing the generalized velocity of the base
link, then the dynamics can be written as

M

(
v̇
q̈

)
+C

(
v
q̇

)
+ g = Sτ +

∑
i=r/l

JTi F i + τ ext (1)

where M , C, and g are the configuration dependent inertia
matrix, centrifugal and Coriolis matrix, and gravity terms.
The joint torques τ act via the matrix S =

[
06×6 In×n

]T
only on the actuated degrees of freedom, while the configu-
ration dependent Jacobian matrices Jr and J l describe how
the contact wrenches of the feet act onto the system.

In order to estimate the generalized external force τ ext in
(1) we apply a momentum based disturbance observer as it
was proposed in [17]. At first, the change of the generalized
momentum P = M

( v
q̇

)
is calculated by

Ṗ = Sτ +
∑
i=r/l

JTi F i + τ ext +CT

(
v
q̇

)
− g, (2)

wherein the passivity property Ṁ = C + CT has been
used. It is assumed that the values of τ , F i, v, q̇ and g
can be measured or directly derived from measurement in
contrast to τ ext, which is the unknown external torque to be
reconstructed by the observer. Based on an estimate τ obsv

ext

we can compute an estimate of Ṗ :

˙̂
P = Sτ +

∑
i=r/l

JTi F i + τ obsv
ext +CT

(
v
q̇

)
− g, (3)

The derivative ˙̂
P can be integrated over time and compared

to the measured generalized momentum P . The resulting
error is feed back by using a diagonal gain matrix K > 0:

τ obsv
ext = K(P − P̂ ) (4)

= K

[
M

(
v
q̇

)
−
∫ t

0

˙̂
P (t) dt− P̂ (0)

]
. (5)

Using (2) and (3) it can be easily verified that the observed
torque τ obsv

ext resulting from (5) complies with the first order
dynamics τ̇ obsv

ext = K(τ ext − τ obsv
ext ) and thus represents a

filtered estimate of the generalized external torque τ ext [17].
For applying this disturbance observer to the floating-base

model of a humanoid robot the complete body twist related
to the base link is needed. While the angular velocity is
often available from an inertial measurement unit integrated
in the robot, the measurement of the translational velocity is
more problematic. An estimation based on kinematic mea-
surements assumes a well-defined contact state of the lower
limbs. A precise ego-motion detection that is independent on
the contact state usually requires additional instrumentation
like onboard vision or other external sensors [18]. The
experiments reported in section IV are based on a kinematic
estimation.

From the distribution of generalized forces within the
vector τ obsv

ext one can also estimate on which link of the
kinematic structure the external force is acting [17]. If we for
instance assume that the external forces act on both hands,
the external forces can be retrieved from

τ obsv
ext =

∑
i=r/l

JText,iF ext,i =
[
JText,l JText,r

] [F ext,l

F ext,r

]
(6)

by using a pseudo inverse of
[
JT

ext,l J
T
ext,r

]
.

B. Compliance control

In our previous work [15], we proposed a compliance
controller, which allows for kinesthetic refinement of the
robot motion within a tube around the nominal trajectory.
The size of this tube was determined by the uncertainty
of the commanded motion and the approach in [15] did
not use information about the point of interaction. When
teaching the arm motion via the end-effector kinesthetically,
the human teaching force might act as a disturbance for other
parts of the robot. This can lead to an undesired motion
in the null space if the parameters of the refinement tube
are not set carefully. Therefore, we extend this approach in
the following by proposing an alternative teaching mode in
which we separate the control behavior for the compliant
teaching at the interaction point from the control action in
the null space.

The basic control structure resembles a PD+ like tracking
controller [19] in which the proportional control action is
computed based on a nonlinear stiffness term. The shape
of the stiffness term f(·, χ), shown in Fig. 2, includes a
high stiffness around the equilibrium for precise tracking
in free motion and the refinement tube area with constant
force and thus zero stiffness. For kinesthetic teaching in joint
space without utilization of the information about the point
of interaction, the control action from [15] is given by

τ = τff − s(q̃)−Dq̇ , (7)

where τff is a feed forward torque related to the the desired
motion qd(t), D is a positive definite damping matrix, and
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Fig. 2. Nonlinear stiffness term in the compliance controller. The
parameters Fmax, k0, kl, δ are summarized in the vector χ.

the stiffness term s(q̃) is defined by si(q̃i) = f(q̃i, χi) for
q̃ = q − qd.

As an alternative teaching mode, which allows to avoid
undesired disturbance of the null space motion, we utilize

τ = τff − JT (sc(x̃) +Dxẋ)−N (s(q̃) +Dq̇) , (8)

where x and J are the Cartesian coordinates and the
Jacobian matrix related to the interaction point and N =
I − JTJ+T is a null space projection matrix. The stiffness
term sc(x̃) is given by sc,i(x̃i) = f(x̃i, χc,i) for x̃ =
x(q) − x(qd). By splitting the control action into one part
for the Cartesian motion and a second part for the null
space motion it is possible to allow teaching of the task
motion (i.e. by choosing a large refinement tube δc) while
avoiding undesired disturbance of the null space motion
during kinesthetic teaching (i.e. by setting a small or zero
tube parameter δ).

The approach described so far implements a basic com-
pliant behavior for teaching and allows several extensions. If
interaction forces are acquired during teaching, these forces
can be implemented during motion generation by simple
addition or via hybrid impedance force control. For a bipedal
humanoid robot, additionally the balancing problem must be
considered. In [20] we presented a force based balancing
algorithm based on an underlying torque controller. This ap-
proach allows to react in a compliant way to external forces.
In the present work, we want to compensate for external
forces resulting from the teaching. While the extension of
[20] in this direction is considered as a future problem, we
describe in the next section an approach based on a simplified
model, which allows to consider a predictive disturbance
model related to external forces. Such predicted force infor-
mation could come from the algorithms described in section
III, but in the present work, we use a simple disturbance
model based on the observed external forces from section
II-A. The balancing approach from the following section
will generate a desired trajectory for the zero moment point
(ZMP), which can be realized by a position based ZMP
controller. While the horizontal motion of the COM is then
required for the realization of the ZMP, the vertical COM
motion and the hip orientation can still be controlled based
on a compliant relation with the stiffness function from Fig. 2
in order to allow for kinesthetic teaching. In case of inverse

kinematics based ZMP control, the compliant relation for the
vertical hip motion hz can be implemented by

ḣz,cmd = ḣz,d + kv(Fz − f(hz − hz,d, χ)) , (9)

with a positive gain kv that controls the convergence to the
steady state stiffness using the vertical force Fz measured by
the force/torque sensors in the feet. Obviously, an analogous
approach can be implemented for the hip orientation.

C. Interaction-aware balancing
Ibanez et al. [14] proposed a preview balancing controller,

which is able to take into account disturbances in form of
an external force acting at the end-effectors of a humanoid
robot. In this section we will consider general wrenches
which are detected by the disturbance observer from section
II-A. These external forces are considered as task related
forces or interaction forces from human upper body teaching
and thus shall be compensated by the balancing algorithm.
Furthermore we will add a terminal constraint to the opti-
mization in order to ensure the asymptotic stability of the
controller and make use of the so called Linear Inverted
Pendulum Model (LIPM) [21] instead of the Cart-Table
Model [22] applied by [14].

The LIPM can be derived from (1) by reducing the system
of multiple rigid bodies to a single point mass, which is
equivalent to the total mass m of the system and located at
its COM c = [ cx cy ]T . Furthermore, it is assumed that τ ext

from (1) is related to a torque τLIP = [ τLIP
x τLIP

y ]T acting
at the ZMP p = [ px py ]T . Neglecting the changes in the
height of the mass above the ground cz the dynamics of the
LIPM can be described by

c̈ = ω2 (c− p) +
1

m · cz

[
0 1
−1 0

]
τLIP (10)

with ω =
√
g/cz and g as gravity acceleration. Equation (10)

is discretized in time using the forward differencing method:
cxcyċx
ċy


k+1︸ ︷︷ ︸

zk+1

=


1 0 T 0
0 1 0 T

ω2T 0 1 0
0 ω2T 0 1


︸ ︷︷ ︸

A

cxcyċx
ċy


k︸ ︷︷ ︸

zk

+


0 0
0 0

−ω2T 0
0 −ω2T


︸ ︷︷ ︸

B

pk +

 0 0
0 0
0 T/(mcz)

−T/(mcz) 0


︸ ︷︷ ︸

E

τk, (11)

where T denotes the length of the time step.
The future states of the system required for the prediction

can be extrapolated by
zk+1

...
zk+N


︸ ︷︷ ︸

ẑ

=


A

...
AN


︸ ︷︷ ︸
Â

zk +


B . . . 0

...
. . .

...
AN−1B . . . B


︸ ︷︷ ︸

B̂


pk

...
pk+N−1


︸ ︷︷ ︸

p̂

+


E . . . 0

...
. . .

...
AN−1E . . . E


︸ ︷︷ ︸

Ê


τLIP

k

...
τLIP

k+N−1


︸ ︷︷ ︸

τ̂LIP

. (12)
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The aim of the controller is to minimize the cost function J ,
which we choose as

J =
1

2
ẑT R̂ẑ +

1

2
p̂T Q̂p̂

+
1

2

(
B̂p̂k + Êτ̂LIPk

)T
P̂
(
B̂p̂k + Êτ̂LIPk

)
, (13)

wherein R̂ > 0, Q̂ > 0 and P̂ > 0 are diagonal
weighting matrices. An error in the state of the system is
weighted by R̂ while the consumption of input signal is
taken into account by Q̂. The additional term depending on(
B̂p̂k + Êτ̂LIPk

)
can be interpreted as a soft constraint,

which demands that the robot shifts its ZMP in a way that
external disturbances are compensated without affecting the
COM. Hence, the matrix P̂ can be used for influencing the
disturbance response of the closed loop system. The optimal
position of the ZMP p̂∗ is provided by the optimization

p̂∗ = argmin
ẑ=Âzk+B̂p̂+Êτ̂LIP

zk+N=zend

J(p̂) (14)

under the constraint of the system dynamics (12) and a
terminal constraint zk+N = zend to enforce closed loop
stability. Besides this we assume that the torque τLIP is
constant over the full length of the horizon, which holds
for slowly changing torques compared to the length of the
horizon. Note that the vector p̂∗ specifies the feedforward
control inputs from the current point in time until the end
of the prediction. In order to get the control law one has to
close the feedback loop by extracting the current input p∗k
from p̂∗ and by recomputing it at each time step:

p∗k =
(
I1×2 01×N−2

)
· p̂∗ (15)

Note that in the absence of additional inequality constraints
the choice of the cost function and of the terminal constraint
results in a linear control law of the form

p̂∗ = Kxzk +Kendzend +Kττ
LIP (16)

with Kx, Kend and Kτ as constant gain matrices, which
allows the optimization to be performed offline.

The asymptotic stability of the controller can be shown by
applying Theorem 6.1 from [23], which requires a terminal
constraint for the optimization process and a feasible solu-
tion. Since there is always a solution to (14) in combination
with the invoked terminal constraint, the presented controller
is asymptotically stable.

In order to obtain the torque τLIPk one can use the result of
the disturbance observer from section II-A. The torque τLIP

acting at the ZMP has to be computed from the wrenches
acting at the arms with

τLIPk =
[
03×3 I3×3

] ∑
i=l/r

AdTi F ext,i, (17)

wherein Adi denotes the corresponding adjoint matrix. Note
that the assumption of τLIP being constant over the full
length of the horizon holds if e.g. the wrenches and the lever
arms are constant, too.

Note that in the derivation of the balancing controller we
assumed a constant height of the COM, while (9) can lead
to a vertical motion of the COM resulting in a disturbance
of (10). For typical human teaching actions the vertical
COM velocity is rather small and this disturbance should
be handled by the robustness properties of the balancing
controller.

III. MOTION REPRESENTATION AND ITERATIVE
LEARNING FOR KINESTHETIC TEACHING

A. Motion representation

HMM-based representation of motion primitives can rep-
resent spatiotemporal variabilities in a stochastic way, and
recognize online motion of different speed due to their
sequence-based nature [24], [25]. Furthermore, recently some
approaches have been proposed to overcome the generation
of stepwise sequences due to the discrete nature of states
in the HMM, by learning the correlation between temporal
and spatial data explicitly [16], [15], [26]. In this work, we
follow the HMM-representation and basic algorithms in [16].

Each motion primitive is represented as a left-right
type HMM with N states. HMM parameters consist of
the initial state probability (πi, the probability for the
initial state to be i-th state), the state transition probability
(aij , the probability to transit from state i to state j ),
and the observation probability distribution (bi(o), the
probability density function for the output of a vector
o at state i). Herein, a Gaussian distribution is used:
bi(o) = N (o|µi,Σi). The vector µi and matrix Σij are
the mean vector and the covariance matrix for the Gaussian
in state i,

µi =

[
tµi
sµi

]
, Σi =

[
ttΣi

tsΣi
stΣi

ssΣi

]
where the symbol tsΣi is the covariance vector between
temporal and spatial data of the Gaussian at state i.

The spatial data can be in joint coordinates and/or Carte-
sian coordinates. In the experiments, Cartesian movements of
the end-effectors, force/torque at the end-effectors, and joint
configurations are used. As the temporal data, a normalized
time variable is introduced in each state. This variable is
0 when entering a state, 1 when leaving the state, and
linearly interpolated during the stay at the state. This relative
temporal representation allows to handle data sequences of
different speed, even whose speed is time-varying within a
motion primitive. Note that a preprocessing of observation
(e.g., scaling in time) for learning and recognition is not
necessary.

B. Iterative Learning

The incremental learning method herein is a variation of
the EM algorithm for multiple observations [27]. In our
approach no additional information (e.g., memory of all
previous training data, posterior probabilities or the number
of all previous training data) rather than the current model
parameters and new incoming data is required.
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Before the training procedure starts, the initial HMM
parameters are set randomly. When the first training data
sO1 = {so(t)} enters, HMM parameters are trained via an
EM algorithm [28]. Here, sOe (e = 1 · · ·E) denotes the e-
th sequence of spatial data of training data at each training
step. From the second motion sequence, the training data
consists of two motion sequences (E = 2): a new incoming
observation and a generated motion pattern from a motion
primitive (Section III-C).

A forgetting factor is used which leads to exponential
forgetting of previous data. This allows to correct the models
efficiently and to avoid insensitivity to new incoming data for
a large training set. The weighting factor for each sequence
(sOe) is given as we. At initial update of HMM, w1 is
equal to 1 since there is one motion sequence. Afterwards,
for the new incoming motion sequence, we becomes the
forgetting factor we = η. For the generated motion sequence,
the weighting factor becomes 1 − η, so that

∑E
e=1w

e = 1.
In the M-step, new parameters λ̄ = {π̄, ā, µ̄, Σ̄} for the
HMM are estimated by using the old HMM parameters
λ = {π,a,µ,Σ} and the two training data. For the detailed
update rules, see [16].

So far, a time series of spatial data is used for training.
Thereafter λ = {π,a,s µ,ss Σ} has been learned. Then, the
corresponding state sequence for the spatial data sequence
sO is calculated via the Viterbi algorithm [28]. From this
state sequence, the relative temporal sequence tO = {to(t)}
within each state is calculated; to(t) is 0 when entering a
state, 1 when leaving the state. Therefore, the mean of the
temporal data of each state is always the same, which is 0.5.
Then, from tO and sO, the covariance tsΣ for each state is
calculated.

C. Motion Generation - Trajectory and Tube

The motion generation is a stochastic process, consisting
of state transition generation and motion output generation
from the state transition. First, a general state sequence
Q = {q(t)} is generated from the initial state probability
distribution π and the state transition probability a. From the
state sequence Q, the relative temporal sequence tO within
each state is calculated. Given the state sequence Q and
relative temporal sequence tO, a sequence of spatial data
is generated using Gaussian regression [29]. For each time
step t, a mixture of Gaussians in the corresponding state q(t)
is considered. Given to(t), the conditional expectation so(t)
is

so(t) =

N∑
i=1

ζi(t) {sµi +
stΣi

ttΣi
(to(t)− tµi)} (18)

by considering the responsibility ζi(t) of each state for to(t).
The conditional variance of so(t) is estimated as

s|tΣ =

N∑
i=1

ζi(t)
2 {ssΣi −

stΣi
tsΣi

ttΣi
} . (19)

Fig. 3. Left: Humanoid robot TORO (TOrque controller RObot). Right:
Experimental setup for testing the balancing during physical interaction.

IV. EXPERIMENTS

In order to test the effectiveness of the proposed algo-
rithms, we performed a series of experiments using the
humanoid robot TORO (Fig. 3). In the current version TORO
has 25 degrees of freedom in the legs (6 DOF), arms (6
DOF), and torso (1 DOF) with a total weight of about
75kg and a total height of about 160cm. All the joints of
this robot (except for the fingers which are not used in
the reported experiments) are based on the drive units from
the DLR-KUKA-Lightweight-Arm-III [30] and thus provide
joint torque sensing, which is needed for the disturbance
observer from section II-A.

A. Evaluation of the balancing controller

For evaluating the balancing controller, we performed an
experiment in which external forces are generated onto the
robot. For this experiment, the upper body was controlled by
a Cartesian impedance controller with a translational stiffness
of 1000N/m implemented in a sampling time of T = 1ms. In
order to ensure a deterministic force generation, TORO was
placed in front of a table and programmed to push against it
by moving both arms 9cm to the front, hold it for 5 seconds,
and then move back (see Fig. 3). This experiment was
done once with the balance-controller taking into account
the external forces resulting from the contact between the
arms and the desk (K̂τ 6= 0) and once without taking into
account the disturbances (K̂τ = 0). The controller design
was computed without end point constraint resulting in the
gains listed in Tab. I. Figure 4 shows the corresponding
results for the position of the COM, the ZMP and the sum
of the forces at the end-effectors only in the direction of
x since the other directions do not matter for this particular
scenario. One can see that the deviation of the ZMP is higher
for K̂τ 6= 0 than for K̂τ = 0, which is consistent with the
observation that the contact force is higher too, since the
force resulting from the position of the ZMP relative to the
COM must be at an equilibrium with the contact force. The
most important fact is that the COM moves about 1.5cm to
the front if K̂τ 6= 0 instead of about 3 cm to the back if
K̂τ = 0. That means that by taking the disturbances into
account the influence to the COM can be reduced largely.
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Parameter Value
N 300

P̂ diag(. . . diag(0.3, 0.3, 0.3, 0.3) . . .)

Q̂ diag(. . . diag(1, 1) . . .)

R̂ diag(. . . diag(8.25, 8.25, 0.0075, 0.0075) . . .)

Gains Value

Kx
[
2.4187 0 0.4106 0

0 2.4187 0 0.4106

]
Kτ

[
0 0 0.0013 0
0 −0.0013 0 0

]
TABLE I

PARAMETRIZATION OF THE BALANCING CONTROLLER
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Fig. 4. Experimental results for the balancing controller - dashed line:
without taking into account disturbances (K̂τ = 0), solid line: with taking
into account disturbances (K̂τ 6= 0).

B. Application - Learning a bi-manual lifting task

For kinesthetic teaching, the robot uses the proposed com-
pliance controller from Section II-B based on the interaction
force detection. During the kinesthetic demonstrations, the
position, orientation (quaternion), force and torque of the
robot’s both hands as well as the joint configuration are
measured. Here, force and torque at the hands are estimated
from Section II-A, since the robot is not equipped with
force/torque sensors at the wrists, but joint torque sensors. A
human demonstrator showed how to lift a box via physical
interaction as shown in Fig. 7 (top). By the iterative learning
algorithm in Section III-B, the robot learned and performed
the lifting task, shown in Fig. 7 (middle). During the task
execution, an impedance controller and a force control action
are used together (see [31] for imitation learning of force
data). Demonstration trajectories and the learned trajectory of
a right hand motion are depicted in Fig. 5. Three dimensional
trajectories of both hands are given in Fig. 6. In order to show
the generalization of the learned behavior, we put a new box
whose width is half size of the original box for lifting. Since
force/torque data are learned together with movement data,
the robot performed the lifting task successfully, as shown
in Fig. 7 (bottom).
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Fig. 5. Demonstrated trajectories (black dashed) during kinesthetic teaching
and the learned trajectory (red solid), sampling: 1 frame per 60ms. Three
motion sequences are demonstrated via kinesthetic teaching for a box lifting
task. The 3D translational motion of the right hand is depicted.
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Fig. 6. 3D translational motion of the both hands. Demonstrated trajectories
(black) during kinesthetic teaching and the learned trajectory of right hand
(red) and the left hand (green).

V. SUMMARY

In this paper we describe a framework for kinesthetic
teaching of humanoid robots. For detecting external forces,
we utilize a momentum based disturbance observer, which is
widely used in manipulator control. The detection of external
forces allows to estimate the point of interaction and thus
can be used for triggering different impedance behaviors
for kinesthetic teaching in which undesired disturbances in
the null space can be reduced. Moreover, the detection of
external forces allows to improve the balancing behavior.
We propose a new cost function for design of a ZMP
based balancing controller, which allows to influence the
disturbance response of the controller. We implemented and
evaluated the interaction-aware balancer and its application
in a kinesthetic teaching task using the robot TORO.

While our current approach is general enough to be imple-
mented on many humanoid robots, we would like to mention
two possible limitations. First, the disturbance observer from
section II-A requires a measurement of the joint torques,
which can be difficult in case of highly geared drive units
without explicit torque sensors. In such a case, a disturbance
detection based on artificial skin might be more effective.
The second limitation in our current implementation lies in
the fact that the predictive balancing algorithm utilizes a
position based ZMP controller. While this allows to apply
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Fig. 7. Snapshots of demonstration (top), learned lifting motion (middle)
and generalized behaviors with a new object (bottom).

the approach to any position controlled humanoid, it implies
a separate treatment of the upper and lower body motion
control. In the future we aim at incorporating such predicted
force data also in the torque based balancer from [20].
Moreover, we plan to utilize also learned force data from the
human demonstrations in the predictive balancing algorithm.
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[17] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, “Colli-
sion detection and safe reaction with the dlr-iii lightweight manipulator
arm,” in IEEE/RSJ Int. Conference on Intelligent Robots and Systems,
2006, pp. 1623–1630.

[18] K. Schmid and H. Hirschmüller, “Stereo vision and imu based real-
time ego-motion and depth image computation on a handheld device,”
in IEEE Int. Conf. on Robotics and Automation, 2013.

[19] B. Paden and R. Panja, “Globally asymptotically stable ’pd+’ con-
troller for robot manipulators,” International Journal of Control,
vol. 47, no. 6, pp. 1697–1712, 1988.

[20] C. Ott, M. A. Roa, and G. Hirzinger, “Posture and balance control
for biped robots based on contact force optimization,” in IEEE-RAS
International Conference on Humanoid Robots, 2011, pp. 26–33.

[21] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: A simple modeling for a biped
walking pattern generation,” in IEEE Int. Conf. on Robotics and
Automation, 2001, pp. 239–246.

[22] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE Int. Conf. on Robotics and
Automation, 2003, pp. 1620–1626.

[23] J. M. Maciejowski, Predictive Control with Constraints. Prentice
Hall, 2002.

[24] T. Inamura, Y. Nakamura, and I. Toshima, “Embodied symbol emer-
gence based on mimesis theory,” Int. Journal of Robotics Research,
vol. 23, no. 4, pp. 363–377, 2004.

[25] D. Lee, C. Ott, and Y. Nakamura, “Mimetic communication model
with compliant physical contact in human-humanoid interaction,” Int.
Journal of Robotics Research, vol. 29, no. 13, p. 16841704, 2010.

[26] S. Calinon, F. D’halluin, E. Sauser, D. Caldwell, and A. G. Billard,
“Learning and reproduction of gestures by imitation: An approach
based on hidden markov model and gaussian mixture regression,”
IEEE Robotics and Automation Magazine, vol. 17, no. 2, pp. 44–54,
2010.

[27] J. A. Blimes, “A gentle tutorial of the em algorithm and its application
to parameter estimation for gaussian mixture and hidden markov
models,” University of Berkeley, Tech. Rep. ICSI-TR-97-021, 1997.

[28] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proc. IEEE, vol. 77(2), pp. 257–
286, 1989.

[29] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of Artificial Intelligence Research, vol. 4,
p. 129145, 1996.

[30] A. Albu-Schaeffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimboeck,
and G. Hirzinger, “The dlr lightweight robot - design and control
concepts in human environments,” Industrial Robot: An International
Journal, vol. 34, no. 5, pp. 376 – 385, 2007.

[31] A. Schmidts, D. Lee, and A. Peer, “Imitation learning of human
grasping skills from motion and force data,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2011, pp. 1002– 1007.

4621


