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Abstract— Tendril helical motions and snake robots have a
multitude of potential applications from climbing to anchoring to
complex manipulation in fields such as medical, gas/oil energy,
and manufacturing. Constructing a snake robot from a fluid
driven, fiber reinforced elastomeric enclosure (FREE), complex
helical motions are created in a lightweight, low cost, simple
structure. The snake-like manipulators are created by forming a
hollow cylindrical elastomer that is reinforced with two families of
fibers and one additional fiber. The manipulator is then driven by
changing the volume of fluid contained within, thus forming the
desired helical patterns. The design of this continuum structure
is analyzed for all possible fiber angles and the FREE radius.
The parameters of the resulting helix including pitch and radius
are determined analytically, without the need for finite element
methods. Three prototypes at different points in the design space
are fabricated and tested to verify the analytical model.

I. INTRODUCTION

Continuum elastic structures are utilized in both nature and
engineered solutions, as they provide adaptability to the envi-
ronment, complex shapes and motion patterns, and the ability
to merge structure and actuation functions. The addition of
fluids to these elastic structures can again be seen in nature
from octopus tentacles to round worms [1]. These structures
work by using the contained fluid to transmit and redirect the
forces and displacements via the fluid pressure. The structure
surrounding the fluid is a fiber-reinforced elastomeric enclo-
sure (FREE), which we have previously investigated for one
and two families of fibers [2] [3] [4]. Hirai et al. previously
performed a preliminary analysis of deformable reinforced
elastomeric cylinders [5], which are a small subset of the
full range of FREE structures that we discovered. FREEs use
the fluid in pure compression and the fibers in pure tension
to provide a compliant mechanism for transmitting the fluid
pressure to desired output motions. The advantages of using
FREEs are that they are lightweight, low cost, and are very
high power density force transducers. These attributes have
been advantageously used in McKibben actuators, which
employ symmetrical helical fibers to produce only axial force
and motion. McKibben actuators represent another small
subset of FREEs we discovered, and have been extensivly
studied by Chou et al. [6], Tsagarakis et al. [7], Tondu et al.
[8], and many others. McKibben actuators have been used
in many robotic applications described in review papers by
Trivedi et al. [9] and Webster et al. [10].
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This paper investigates the creation of helical, or snake-
like, shapes using FREEs. Snake robots have advantages in
grasping with distributed force, traversing narrow regions,
climbing, and many other actions. These actions lead to
applications in pipe inspection, mobile robots, medical de-
vices, and a range of other useful areas. The challenge for
snake robots is often the weight, complexity, energy usage,
and cost to create numerous actuated segments in series.
Ample applications do not need the full range of motions,
rather many of the multitudes of motions can be reduced
to a primary single actuated degree of freedom in a helical
spiral pattern or in bending. Using FREEs offers the ability
to create these elaborate single degree of freedom shapes
without using a multitude of joints or actuators, instead
using fluid pressure and fiber reinforced elastomer enclosing
the fluid. This paper explores the use of FREEs with two
families of fibers and an additional single fiber to create
manipulators with this elaborate single degree of freedom,
towards eventually creating full mobile robots.

There have been a substantial number of studies on snake
robots; many are captured in a review by Hirose et al.
[11]. Takayama and Hirose demonstrated some applications
and advantages of a helical snake motion for locomotion
and manipulation, and they addressed the fabrication of a
fluid driven snake [12]. The resulting design, however, was
segmented, complex, heavy, and not continuum. Suzumori
presents multi-segment manipulators with limited helical mo-
tion capabilities [13]. Tanaka presents an underconstrained
fiber-reinforced pneumatic snake design [14]. There have
been other fluid driven cylindrical manipulators that are only
able to obtain bending. Our previous work on FREEs only
considered families of fibers, with many closely packed fibers
of the same angle making up a family. The inclusion of a
single additional fiber to the existing FREE configurations
containing two families of fibers alters the deformation
patterns and assumptions previously used. This produces
either pure bending or in most cases a helical pattern. The
analytical equations of the kinematics that drive this motion
are determined and the design space is mapped.

II. FREE: GOVERNING BEHAVIOR

In our previous papers we described cylindrical fiber-
reinforced elastomeric enclosures (FREEs) that have two
families of fibers. A family of fibers is a parallel set of fibers
that are closely packed and aligned at the same angle as each
other. When two families of fibers are wrapped around a
cylindrical volume, the volume enclosed is directly correlated
with the motion at the end of the cylinder. The angles of the

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5021



fibers are described using the fiber helix angles α and β
with respect to the axial direction. A diagram illustrating a
cylinder with two families of fibers and the corresponding
fiber angles is shown in Figure 1. These structures are capa-
ble of producing axial elongation and contraction, clockwise
and counter-clockwise rotation, and screw motions that are
coordinated axial and rotational motions. The motion that
the FREE will produce depends on the helix angles, α and
β.

Fig. 1. Fiber-reinforced elastomeric enclosure (FREE) with 2 families of
helical fibers at angles α and β. β can also be written as (β − 360◦). In
this example α is approximately 45◦ and β is −45◦.

This study expands our prior work by adding a single fiber
to the existing FREE structure. The existing FREE was fully
constrained to one degree of actuation for nearly all α and β
combinations. All of the existing FREE configurations other
than those with axial fibers have a degree of freedom in bend-
ing. The addition of the single fiber will consequently utilize
this degree of freedom and cause a controlled bending when
pressurized. The rotation of the FREE from the two families
of fibers and the angle of the added single fiber, referred to
as γ, will cause the bending direction to spiral around the
FREE. The resulting shape of this new manipulator will be
a helical pattern. Pure bending is still possible, as that is
simply a spiral with a helix angle of zero.

The scope of this study encompasses cylindrical fiber-
reinforced elastomeric enclosures (FREEs) that have two
families of fibers and a single additional fiber. As described
above, these fibers can all be described using the fiber helix
angles α, β, and γ with respect to the axial direction. Figure
2 (a) shows the helical fiber angle notation for an unactuated
FREE with 2 families of fibers and a single fiber. Axial fibers
have an α of 0◦, circumferential are 90◦, and the spirals
are −90◦ < α < 0◦ and 0◦ < α < 90◦. Angles that are
90◦ < α < 270◦ can be written as (α − 180◦) and angles
that are 270◦ ≤ α < 360◦ can be written as (α−360◦). This
allows all fiber to be described using the −90◦ ≤ α ≤ 90◦

notation.
The deformation behavior of FREEs are governed by the

inextensibility of fibers and incompressibility of fluid. Some
simplifying assumptions about the FREE’s geometry and
deformation behavior restrict the analysis and conclusions
to a certain class of cylindrical FREEs. These are:

1) Initial and final cross-sections are circular.
2) The fibers are infinitely small and closely laid with

large volume fractions.
3) Fluid pressure is evenly distributed.
4) The effect of the elastomer that encloses the fluid is

ignored. The elastomer has zero stiffness effect on
the fiber motion and infinite stiffness against bulging
between fibers.

5) The deformed FREE has fiber angles averaged across
each cross-section.

6) All analysis is quasi-static.

The axial and radial deformation of a cylinder are ex-
pressed as stretch ratios λ1 and λ2 respectively. The single
fiber causes bending, with the radius of curvature of the bend
expressed as ρ. An actuated FREE is shown in Figure 2 (b),
with λ1 shown along the axial length, l, and λ2 along the
FREE radius, r. θ is the number of rotations (in radians) that
a fiber will make while spiraling the length of an unactuated
FREE, while θ∗ is the number of rotations for a deformed
FREE. δ is the rotation of one end of a FREE relative to
the other due to the change in volume from the unactuated
state (again in radians). This value can also be seen as
the additional rotation of the fibers from the unactuated to
actuated state. V ∗ is the volume enclosed in the FREE after
the volume change. κ is the inverse of ρ (κ = 1

ρ ). With these
definitions in place, Section II-A will describe the equations
we have previously found for two families of fibers in Eqs.1-
5; the new equations derived from adding the additional
single fiber are presented in the remaining equations.

Fig. 2. (a) Fiber-reinforced elastomeric enclosure (FREE) with 2 families
of helical fibers at angles α and β and a single helical fiber at angle γ. (b)
Pressurized FREE with stretch ratios λ1 and λ2 and bend radius ρ.

A. Kinematic Equations

Our previous work [4] determined five important equations
that describe the deformation of FREEs. Eq. 1 is the equation
describing the inextensibility of a fiber. λ1, λ2, α, and the
ratio θ∗

θ must hold the relationship shown in Eq. 1 such that
the fiber does not extend. Eq. 2 is the equation describing
the volume after deformation. This shows that the volume
is found from the stretch ratios and the unactuated volume
(unactuated volume V = πr2l). Eq. 3 shows the equation
for the number of rotations that a fiber will make spiraling
the length of an unactuated FREE. Eq. 4 shows how λ2 (the
radial expansion) is a function of the angles α and β and the
axial expansion λ1. Eq. 5 shows how δ (the rotation caused
by actuation) is a function of α, β, and λ1, as well as the
length and radius of the manipulator. These equations are
necessary for derivation and understanding of the kinematics
of the snake manipulator that is formed when the single fiber
is added.
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Fig. 3. Derivation of the effect of a single fiber on bend radius ρ (a)
The two families of the fibers of the fiber-reinforced elastomeric enclosure
(FREE) determine stretch ratios λ1, λ2, and rotation δ. (b) The resulting
free body diagram of a small section when a single fiber is applied to the
two family FREE. (c) Diagram of a length normalized section of the FREE,
showing the relationship between ρ and change in displacement in the axial
direction.

As described previously, the addition of the single fiber
causes a FREE with two families of fibers to bend due to the
additional constraint imposed by the single fiber. Since this
is a single fiber, rather than a family of fibers, the equation
for the inextensibility of the fiber will be different from the
one shown in Eq. 1 due to the FREE’s ability to bend toward
the fiber constraint. Figure 3 shows how the axial extension
component of the fiber length constraint is modified when
there is a single fiber added. The two families of FREEs will
determine λ1, λ2, and δ, seen in Figure 3 (a). The addition of
the single fiber will interact at a single point, shown in Figure
3 (b) as point ”S”. λ1, λ2, and δ combine with the bend

radius (ρ), as shown in Figure 3 (c), to determine the length
normalized axial extension at the single fiber. Equation 6 is
the fiber inextensibility equation for the single fiber. It is
derived in the same manner as Eq. 1, by setting the length
before and after deformation to be equal. Equation 7 is Eq. 6
rewritten with ρ as the dependent variable, and α, β, γ, λ1,
λ2, and δ as the independent variables. Equation 8 further
refines ρ to an expression that is only dependent on the
parameters of α and β, and the operational variable of λ1.
This simplification is done using the equations for λ2 and δ
(Eqs. 4 and 5 respectively). Equation 9 shows curvature, κ,
which is the inverse of ρ. With these equations in place, it
is now understood how α and β will affect the relationship
between axial expansion and bending.
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The relationship between the expansion and the volume
contained is determined, as the controlled variable is volume,
not λ1. Eq. 10 shows λ1 as a function of λ2, which is derived
by rewriting Eq. 4. Equation 11 is an implicit function
defining the relationship between λ1 and the volume of the
FREE. This is derived by substituting the value of λ2 into Eq.
10. λ2 is found by rewriting Eq. 2 as λ22 = V

λ1πrl
. Equation

11 can be solved explicitly for λ1 as a function of volume,
and the resulting equation is too long to display in this paper.
The explicit form of Eq. 11 can be substituted into Eq. 8 to
derive ρ as a function of volume; the resulting equation is
again too large to display in this paper.
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α+β − λ42 S

2
α−β

2Cα Cβλ2
(10)

−4V cos(β)2 cos(α)2

πr2l
λ31 − sin(α+ β)2λ21 + ...

2V (cos(α)2 + cos(β)2)

πr2l
λ1 −

V 2 sin(α− β)2

π2r4l2
= 0 (11)

The deformed shape of the FREE is a helix, and the two
key parameters of the helix for many applications are the
helix angle, φ, and the helix radius, R. Equation 12 defines
φ in terms of the rotation caused by the two families of fibers
(δ), the number of rotations of the single fiber (θ), the bend
radius (ρ), and the axial length of the FREE (l). Equation
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13 defines R using these same variables. Equation 14 shows
how θ is derived, and is the same form as Eq. 3. Equation
15 shows φ as a function of parameters α, β, and γ and
variable λ1. φ can be further modified to be a function of α,
β, and γ and the control variable, volume, by substituting in
Eq. 11 and Eq. 8 into Eq. 15. The detailed equation for R
is computed in a similar manner, but these equations are too
large to display in this paper.
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III. DESIGN SPACE

There are three main design variables of the snake contin-
uum robots: α, β, and γ, and one operational variable of
normalized volume (normalized to the unactuated volume).
The axial length of the FREE does not affect the helix angle
or helix radius. Radius of the FREE does not affect the
helix angle and is linearly proportional to the helix radius.
Material and geometric properties determine stiffness, which
likely have some effect on the motion, but are outside the
scope of this study, per the simplifying assumptions. While
it is difficult to simultaneously visualize the effect of four
independent variables on the output values, plots have been
created to illustrate various sections of the design space.

Figure 4 explores how the helix angle, φ, is effected by the
parameters α and β and the operational variable of volume.
This is done by fixing the remaining variable, γ, at a value
of 10◦. The volume is set at five different volumes, and α
and β are plotted over their entire range. The plot shows
α and β on the X and Y axes and the resulting φ on the
Z axis. This is done for the five different volumes, shown
in different colors. Figure 5 explores how the helix radius,
R, depends on the same independent variables (α, β, and
volume). The helix radius has been normalized for FREE
radius in the plot. The single fiber angle, γ, is set at 7◦.

Figures 4 and 5 show the wide range of helix angles
and radii that are possible, even without changing the angle
of the single fiber. With an increased volume, the helix
angle in Figure 4 ranges from π

2 to −π
2 depending only

on the angles of the families of fibers. Some regions, such
as those seen for α and β both greater than zero will
have a helix angle that is highly sensitive to volume, while
other regions with have minimal sensitivity. The helix radius
exhibits similar properties with the α and β both greater than

Fig. 4. The effect of percent volume increase and fiber angles α and β
(in degrees) on the device’s helix angle, φ (in radians). The single fiber, γ,
is set at 10◦, and the radius of the device is set at 0.2. Five volume change
values: +5%, +10%, +15%, +20%, and +25% are set and the resulting φ as
a function of α and β is plotted.

Fig. 5. The effect of percent volume increase and fiber angles α and β (in
degrees) on the device’s helix radius (relative to the radius of the FREE),
R/r (normalized radius). The single fiber, γ, is set at 7◦, and the radius
of the device is set at 0.2. Five volume change values: +5%, +10%, +15%,
+20%, and +25% are set and the resulting R/r as a function of α and β
is plotted. Plot clipped above at 50.

zero regions showing high sensitivity to volume changes.
The dependence on volume is highly non-linear, with some
regions expanding in helix radius, and then contracting as
the volume is increased.

Figure 6 illustrates the effects of the fiber angles β and
γ on φ. To do this, α (one of the two families of fibers) is
fixed at 65 degrees and volume increase is fixed at 10%. The
resulting contour plot shows the values of φ over β on the
X axis and γ on the Y axis. The large range of possible φ
values, even with both α and volume fixed can be seen in the
plot. The sensitivity of the snake configuration to changes in
fiber angle can also be readily understood. Small errors are
seen in the region with β between 0◦ and 5◦, as the single
fiber passes through the axial configuration.
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Fig. 6. Helix angle, φ, across fiber angles β and γ (in degrees). One of
the families of fibers, α, is set at 65◦, volume change is set at +10%, and
the radius of the device is set at 0.2.

IV. EXPERIMENTAL VALIDATION

To verify the accuracy of the model in predicting the kine-
matics of the snake-like manipulators, multiple prototypes
were fabricated and analyzed. These prototypes were con-
structed across a diverse selection of α, β, and γ. The helix
radius was determined through measurement, while the helix
angle was determined by combining this radius with the pitch
of the helix. The first prototype snake tested has dimensions
α = −70◦, β = −30◦, and γ = 1◦. The snake prototype
has a FREE radius of 5.5 mm and was inflated to a volume
increase of 35% ( Vfinal

Vinitial
= 1.35). The analytical models

predict this configuration and inflation to have a snake helix
angle of 73.1◦, and coil with a radius of 4.46 mm. The
resulting snake is shown in Figure 7. The measured snake
helix angle of the prototype is 59.4◦. The radius is 9.3 mm.
The helix angle has an error of 18.7%.

Fig. 7. Snake with α = −70◦, β = −30◦, and γ = 1◦. The snake
prototype has a body radius of 5.5 mm and was inflated to a volume increase
of 35%. The image is the inflated snake (image rotated 90 degrees, gravity
going right).

The second prototype has dimensions α = 88◦, β = −60◦,
γ = 10◦, FREE radius of 5.5 mm, and was inflated to a
volume increase of 30%. The analytical models predict this
configuration and inflation to have a snake helix angle of
60.94◦, and coil with a radius of 5.74 mm. The resulting
snake is shown in Figure 8. The measured snake helix angle
of the prototype is 55.7◦. The radius is 11.43 mm. The helix
angle has an error of 8.6%.

The third prototype snake tested has dimensions α = 65◦,
β = −80◦, and γ = 5◦, FREE radius of 5.5 mm, and was
inflated to a volume increase of 15%. The analytical models

Fig. 8. Snake with α = 88◦, β = −60◦, and γ = 10◦. The snake
prototype has a body radius of 5.5 mm and was inflated to a volume increase
of 30%. Top image is the full snake (image rotated 90 degrees, gravity going
right), and the bottom image compares the snake to a measuring device.

predict this configuration and inflation to have a snake helix
angle of 8.13◦, and coil with a radius of 31.9 mm. The
resulting snake is shown in Figure 9. The measured snake
helix angle of the prototype is 9.1◦. The radius is 50.8 mm.
The helix radius has an error of 11.9% or 0.97◦.

Fig. 9. Snake with α = 65◦, β = −80◦, and γ = 5◦. The snake prototype
has a body radius of 5.5 mm and was inflated to a volume increase of 15%.
The image is the inflated snake (image rotated 90 degrees, gravity going
right).

These dimensions are highly sensitive to manufacturing
and material assumptions, such as inextensibility of the
fibers and exact fiber angles, thus providing opportunities
for deviations from values derived from the model. While
the helix angles matched rather closely, the helix radius
had larger errors. This is likely caused by the single fiber
not having an infinite stiffness as the model assumes, thus
allowing axial extension without bending. This would result
in a larger helix radius than the predicted one, which is seen
in all three prototypes.

V. CONCLUSIONS

This paper illustrated a kinematics approach to determining
the deformation pattern of continuum snake-like helical
manipulators that use volume increase in a fiber reinforced
elastomeric enclosure (FREE). The motion of the snake
mechanism was solved as a function of the contained volume
for any given fiber angle α, β, and γ, as well as for FREE
radius. Visual representations of portions of the design space
are shown, and three test cases were fabricated and actuated
to show their fit with the analytical model. The primary
contributions of this paper are
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1) Determination of the kinematic deformation patterns
for FREEs with two families of fibers and an additional
single fiber.

2) Creation of simple equations that can be used to both
analyze and synthesize snake like pneumatic manipu-
lators.

3) Enabling applications that were previously inaccessible
due to a lack of lightweight, simple, low cost, high
power density snake robots.

One possible application is distributed force grasping, seen
in Figure 10. These snakes can grasp and hold weights that
are at least 100 times their own weight. With grasping,
climbing will be a clear next step for the technology. The
snakes can also grasp the inside of a pipe when inflated, thus
opening up pipe inspection, anchoring, and various medical
applications. This pipe anchoring can be seen in Figure
11. The helical motion can also be used for manipulation
in complex environments, with numerous manufacturing,
medical, and inspection based applications. Many of these
applications require a lightweight, high power density snake,
with simplicity and low cost being additional benefits. Nearly
all of the applications will require an understanding of how
the design parameters of α, β, γ, and FREE radius, as well as
the operational parameter of volume affect the deformation
patterns.

Fig. 10. Snake with α = 88◦, β = −60◦, and γ = 10◦ grasping a metal
rod. The snake can hold 100s of times its weight in this grasping motion.

Fig. 11. Snake anchoring to the inside of a clear tube using the kinematics
of its body deformation under volumetric expansion.

A. Future Work

The model presented was able to capture the motion
characteristics of the verification prototypes, yet there was
still a residual error. Future work will refine the model in two
key ways to more accurately predict the deformation. The
first refinement is to add a material model. The simplifying
assumption removed any consideration of material to allow
for an easy analytical solution, rather than a computational
finite element based one. This will have the added benefit
of allowing the snakes to be pressure controlled, rather
than volume controlled, as the material stiffness will link
the pressure to the volume. The second refinement is to
consider the change in the fiber angles of the two families
of fibers as the snake deforms. The model currently assumes

that the deformation is small enough to not substantially
change the fiber angle of the families of fibers (α and
β), using a linear model of their deformation. Additionally,
as the snake bends due to the single fiber, the change in
fiber angle of the families of fibers due to this bend is not
considered. Both of these assumptions are made to form
a simple analytical function that can quickly map a large
design space (computing approximately 100,000 helix angles
and snake radius values per second on a desktop computer
in Matlab). A full non-linear model would, however, likely
increase the accuracy of the results. The other main areas for
future work are to combine these actuators in parallel and
focus on practical applications.
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