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Abstract— This paper studies the stability and control of pas-
sively generated bounding motions for a class of quadrupedal
template models that incorporate compliant elements in their
segmented torso and legs. First, the existence of self-stable cyclic
bounding gaits in the presence of torso flexibility is examined.
Based on numerical studies of the associated Poincaré return
map in a dimensionless context, it is deduced that self-stable
bounding gaits can indeed be generated through appropriate
combinations of the stiffness of the torso and the stiffness of the
legs. Next, the implications of this result to control design are
discussed, and a hybrid controller is proposed that enhances
the stability of the passively generated bounding gaits.

I. INTRODUCTION

A diverse set of robotic quadrupeds has been proposed in

the past as part of an effort to realize the potential of legged

systems in real-world applications. Examples of robots in

this vein include Raibert’s quadrupedal machines [1], Scout

II [2], Tekken [3], HyQ [4], and BigDog [5], which recently

exhibited impressive outdoor mobility. These robots employ

a variety of actuation and control schemes and they all

involve rigid, non-deformable torsos.

By way of contrast, animals owe much of their remarkable

locomotion abilities to their flexible bodies. In fact, research

in the context of biomechanics indicates that torso flexibility

may improve locomotion performance in a number of ways.

Early studies in [6] describe how sagittal-plane oscillations

can increase traveling speed by allowing for more ground

to be covered per stride. Moreover, elastic structures located

in the torso can recycle part of the kinetic energy required

to place the legs in high-speed asymmetric running gaits,

thereby reducing the cost of transport [7]. Finally, torso

bending motions may enhance gait stability through leg angle

and angular velocity adjustments prior to touchdown [8].

Quadrupedal robots specifically designed to run by ex-

ploiting the benefits of an articulated torso first appeared in

the mid-90s with the work of Leeser [9]. Contemporary ex-

amples include Canid [10], and the MIT Cheetah quadruped

[11], which are currently in the process of development.

Recently, Boston Dynamics released a video of their hy-

draulically actuated Cheetah robot galloping at the record

speed of 29 mph [12], demonstrating the potential of realiz-

ing fast quadrupedal running motions through a segmented

torso. However—to the best of the authors’ knowledge—only
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limited information on how torso bending movements affect

locomotion is available in the context of these platforms.

To investigate the influence of spinal flexion and extension

on quadrupedal running, models of varying complexity and

different actuation schemes have been proposed. Early work

in [13] introduced a sagittal-plane quadrupedal model with

a passive flexible torso joint and massless springy legs.

However, the difficulty associated with generating periodic

motions in the context of this passive model lead to the con-

clusion that torso flexibility without actuation may render the

realization of running motions overly complex. Subsequent

efforts in [14] and [15] focused on bounding motions in the

presence of an actuated torso spinal joint using a sagittal-

plane model with compliant legs. In [14] bounding was

generated via PID control loops imposing desired values on

the relative angle between the two segments of the torso.

On the other hand, in [15] open-loop bounding motions

were computed by optimizing actuation profiles. A quasi-

passive model was introduced in [16], in which bounding

was achieved by assuming that the torso joint can be “locked”

when it reaches its maximum flexion and extension.

Motivated by the predictive ability of reduced-order lo-

comotion models like the Spring Loaded Inverted Pendulum

(SLIP) [17], [18], the work in [19] investigated the possibility

of generating bounding motions without actuation, albeit on

a model with a particular geometry and under conditions

of reduced gravity. The model introduced in [20] is similar

to the one in [19], but the analysis focuses on the stance

phase dynamics without considering cyclic motions. Our

recent work in [21] examined the conditions under which

cyclic bounding can be produced naturally, as the response

of the system to suitable initial conditions. Contrary to earlier

findings in [13], we have found that such passively generated

bounding motions exist, despite the presence of a flexible

torso. However, no self-stable motions have been computed

in [21]. Very recently, [22] provided preliminary results

toward the control of bounding with a passive flexible spine.

In the present paper, we turn our attention to the existence

of self-stable bounding motions in the presence of torso flex-

ibility and their implications to controller design. First, we

formulate the model proposed in [21] in a non-dimensional

setting that facilitates the exploration of the space of pos-

sible running solutions. Surprisingly, despite the sensitive

dependence of the motion on the torso’s dorsoventral oscil-

lations, a number of self-stable periodic bounding motions

can be computed through the numerical construction of the

associated Poincaré return map. These self-stable bounding

motions emerge as a consequence of suitable combinations
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of the torso and leg stiffness parameters. The design of

controllers that enlarge the domain of attraction of these self-

stable periodic gaits is discussed next, and a hybrid control

law acting in both continuous and discrete time is proposed.

While the proposed controller uses only a single actuator

located at the torso joint to stabilize the proposed four-

degree-of-freedom (DOF) compliant bounding model, it is

capable of rejecting significantly large disturbances without

excessive effort.

The structure of the paper is as follows. Section II de-

velops a non-dimensional planar model suitable for studying

bounding motions. Section III describes the procedure used

to search for passively stable bounding motions, and the

relation between the leg and torso stiffness that produces

such motions. Section IV proposes a hybrid control law that

enlarges the domain of attraction of the self-stable bounding

motions of Section III. Section V concludes the paper.

II. A NON-DIMENSIONAL PLANAR BOUNDING MODEL

To incorporate sagittal-plane torso bending motions, the

planar model of Fig. 1 was introduced in [21]. The torso

consists of two identical rigid bodies connected through a ro-

tational spring intended to introduce flexibility. The posterior

(back) and anterior (front) virtual legs represent the collective

effect of the posterior and anterior physical leg pairs, and are

assumed to be massless prismatic springs. In this work, we

restrict our attention to the bounding gait of Fig. 2 which,

based on the states of the legs, includes the following phases:

double flight, denoted by “f”, in which both legs are in

the air in an extended or gathered configuration; the stance-

posterior phase, denoted by “sp”, in which the posterior leg

is in contact with the ground; and the stance-anterior phase,

denoted by“sa”, in which the anterior leg is on the ground.

A. Continuous-time Dynamics in Non-dimensional Form

To derive the dynamics of the model of Fig. 1 we assume

that both segments of the torso have mass m and moment of

inertia J about their center of mass (COM), and that the hip-

to-COM distance is L. The stiffness of the rotational spring

connecting the two parts of the torso is denoted by ktorso and

the stiffness of the virtual legs by kleg. The contact of the

legs with the ground is modeled as an unactuated, frictionless

pin joint. Through the method of Lagrange, the equations of

motion can be written in state-space form as

ẋi = fi(xi), (1)

(m, J)

θp
θa

ϕp

γp

(xp, yp)

L

ϕa

γalp, kleg

la, kleg

ktorso

Fig. 1. A sagittal-plane bounding model with a segmented torso.
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Fig. 2. Bounding phases and events.

evolving in TQi := {xi := (q′i, q̇
′

i)
′ | qi ∈ Qi, q̇i ∈ R

4}
for i ∈ {f, sp, sa}. The configuration space Qf of the

extended and gathered flight phases is parameterized through

the cartesian coordinates (xp, yp) ∈ R
2 of the COM of the

posterior part of the torso, its pitch angle θp ∈ S
1, and the

pitch angle θa ∈ S
1 of the anterior part of the torso, i.e.,

qf = (xp, yp, θp, θa)
′. (2)

The configuration spaces Qi, i ∈ {sp, sa}, of the posterior

and anterior leg stance phases are parameterized by the

length li ∈ R of the leg in contact with the ground and

its relative angle ϕi ∈ S
1 with respect to the torso, together

with the pitch angles θp ∈ S
1 and θa ∈ S

1, i.e.,

qi =

{

(lp, ϕp, θp, θa)
′ i = sp,

(la, ϕa, θp, θa)
′ i = sa.

(3)

It is important to note that the equations of motion depend

on the following six physical parameters

{m,J, l0, L, ktorso, kleg}, (4)

which capture the effects of the geometry and the inertia and

stiffness properties of the system. In (4), l0 is the natural

length of the legs corresponding to an uncompressed spring;

the rest of the parameters have been defined above.

Next, we apply dimensional analysis to transform the

dynamics of the system in non-dimensional form. In this

form, the parameters (4) that characterize the solutions of

(1) reduce to a smaller number of dimensionless quantities,

allowing us to explore efficiently a large fraction of the

solution space. This will be crucial in computing self-stable

bounding motions as will be seen in Section III below.

By defining the characteristic time scale τ as

τ :=

√

l0
g
, (5)

where g is the gravitational acceleration, the configuration

variables in (1) and their time derivatives obtain the form

x∗

p := xp/l0, ẋ∗

p := τẋp/l0, ẍ∗

p := τ2ẍp/l0, (6)
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y∗p := yp/l0, ẏ∗p := τ ẏp/l0, ÿ∗p := τ2ÿp/l0, (7)

l∗a,p := la,p/l0, l̇∗a,p := τ l̇a,p/l0, l̈∗a,p := τ2 l̈a,p/l0, (8)

ϕ∗

a,p := ϕa,p, ϕ̇∗

a,p := τϕ̇a,p, ϕ̈∗

a,p := τ2ϕ̈a,p, (9)

θ∗a,p := θa,p, θ̇∗a,p := τ θ̇a,p, θ̈∗a,p := τ2θ̈a,p, (10)

where the superscript “ * ” denotes a dimensionless quantity.

Substitution of (6)–(10) to (1) for i ∈ {f, sp, sa} reduces the

six parameters in (4) to the following four dimensionless

parameter groups.

• Relative moment of inertia:

I :=
J

mL2
. (11)

• Relative hip-to-COM distance:

d :=
L

l0
. (12)

• Relative leg stiffness:

κleg :=
klegl0
mg

. (13)

• Relative torso stiffness:

κtorso :=
ktorso
mgl0

. (14)

B. Event-based Transitions in Non-dimensional Form

Transitions from one phase to the next follow Fig. 2,

and are modeled through suitable threshold functions that

describe the conditions for leg touchdown and liftoff. Details

can be found in [21, Section II-B]; here we provide the

corresponding equations in non-dimensional form.

1) Flight-to-stance Transitions: Switching from flight to

stance-posterior occurs when the posterior leg touches the

ground. This condition is captured by the zeroing of the

threshold function

Hf→sp(x
∗

f , γ
td∗
p ) = y∗p − d sin θ∗p − cos γtd∗

p . (15)

Similarly, switching from flight to stance-anterior is given by

Hf→sa(x
∗

f , γ
td∗
a ) = y∗p+d sin θ∗p+2d sin θ∗a−cos γtd∗

a , (16)

at its zero crossing. In (15) and (16), γtd∗
p and γtd∗

a are

absolute angles of the legs with respect to the vertical prior

to touchdown, respectively; see Fig. 1.

2) Stance-to-flight Transitions: Switching from stance-

anterior and stance-posterior to flight occurs when the cor-

responding stance leg obtains its natural length. In non-

dimensional form the conditions can be captured by the zero

crossing of

Hsa→f(x
∗

sa) = l∗a − 1, l̇∗a > 0 (17)

and

Hsp→f(x
∗

sp) = l∗p − 1, l̇∗p > 0, (18)

respectively.

C. Hybrid Dynamics of Bounding in Non-dimensional Form

To examine the existence and local stability properties of

the bounding motions according to the phase sequence of

Fig. 2, we use Poincaré’s method. The Poincaré section is

taken at the apex height of the torso joint in the extended

flight, where its vertical velocity becomes zero; i.e.

S∗

apex :=
{

x∗

f ∈ TQ∗

f | ẏ∗p + dθ̇∗p cos θ
∗

p = 0, θ∗a > 0
}

,

(19)

where TQ∗

f is the flight phase state space parameterized by

the non-dimensional variables defined previously. Discarding

the horizontal distance x∗

p travelled by the posterior part

of the torso, which is monotonically increasing and cannot

map to itself after one cycle, the (reduced) Poincaré map

P∗ : S∗

apex → S∗

apex can be defined as

z∗f [k + 1] = P∗ (z∗f [k], α
∗

f [k]) , (20)

where z∗f := (y∗p, θ
∗

p, θ
∗

a , ẋ
∗

p, θ̇
∗

p, θ̇
∗

a)
′ and α∗

f contains the

absolute touchdown angles, i.e., α∗

f := (γtd∗
a , γtd∗

p )′.

III. SELF-STABLE BOUNDING MOTIONS

This section uses the planar model of Fig. 1 in the non-

dimensional context of Section II to demonstrate that pas-

sively stable bounding motions are possible in the presence

of a flexible torso without the need of actuation.

A. Passively Generated Fixed Points

Computing a fixed point for (20) is equivalent to finding

an argument z∗f in (20) that maps onto itself

z∗f − P∗ (z∗f , α
∗

f ) = 0, (21)

for physically reasonable values of touchdown angles α∗

f .

The equation (21) is solved numerically using MATLAB’s

fsolve and a large number of bounding gaits have been

computed by supplying the system with suitable initial

conditions and touchdown angles. Their properties will not

be discussed here; see [21] for details. We only mention the

fact that the system possesses a time-reversing symmetry;

this fact allows us to restrict our attention to fixed points at

which the pitch angles of the two segments of the torso obey

the relations

θ∗a = −θ∗p and θ̇∗a = θ̇∗p, (22)

at the apex of the flight phases. These relations will be

used in the present paper to reduce the number of variables

involved in the search for passively stable fixed points.

B. Passively Stable Fixed Points

To analyze the local stability properties of bounding, we

linearize (20) at a fixed point (z̄∗f , ᾱ
∗

f ) resulting in

∆z∗f [k + 1] = A∆z∗f [k ] + B∆α∗

f [k ], (23)

where ∆z∗f = z∗f − z̄∗f , and ∆α∗

f = α∗

f − ᾱ∗

f , and

A =
∂P∗

∂z∗f

∣

∣

∣

∣

z∗

f
=z̄∗

f
,α∗

f
=ᾱ∗

f

, B =
∂P∗

∂α∗

f

∣

∣

∣

∣

z∗

f
=z̄∗

f
,α∗

f
=ᾱ∗

f

. (24)

Due to the energy conservative nature, ones of the eigenval-

ues of matrix A is always one. Thus, when the remaining
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Fig. 3. (a) Fixed points computed for the same dimensionless total energy (7.95), average speed (2.41) and hopping height (0.818) and for different values
of dimensionless leg and torso stiffness. The color code corresponds to the values of the spectral radius of matrix A. (b) The paths of the six eigenvalues
for κleg = 25 and κtorso ∈ [4.88, 6.30] corresponding to the vertical grey dotted line in (a). (c ) The paths of the six eigenvalues for κtorso = 6.00 and
κleg ∈ [22.30, 26.65] corresponding to the horizontal grey dotted line in (a).
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Fig. 4. Torso flexion-extension oscillation in one stride for two fixed points.
(a) A fixed point in the grey area of Fig. 3(a). (b) A physically meaningful
fixed point in Fig. 3(a).

eigenvalues are all within the unit disc, the corresponding

fixed point is locally exponentially stable within the same

energy level.

All the fixed points computed in [21] correspond to

specific values of the parameters in (4), and have been

found to be unstable. However, the non-dimensional form of

the dynamics allows us to explore systematically the space

of solutions for various combinations of the dimensionless

parameters introduced in Section II. Of particular interest

in this work are the combinations of the relative torso and

leg stiffness values that generate bounding motions; note,

however, that other parameter combinations can also be

examined.

Fig. 3(a) shows how the spectral radius ρ(A) := maxi |λi|
of the matrix A in (23) changes as a function of the

pair (κleg, κtorso) keeping the rest of the dimensionless

parameters—namely, I and d defined by (11) and (12),

respectively—constant. The grey area in Fig. 3(a) corre-

sponds to periodic motions with torso bending movements

similar to Fig. 4(a), in which the torso oscillates multiple

times within one stride. This type of behavior appears for

small values of leg stiffness; clearly, a softer leg requires a

longer time period to go through a complete compression

and decompression phase during stance, allowing the torso

to oscillate as in Fig. 4(a). For reasons of comparison, the

torso oscillation corresponding to one of the self-stable fixed

points is depicted in Fig. 4(b).

An interesting observation from Fig. 3(a) is that the range

of values of the relative leg stiffness over which bounding

gaits—not necessarily stable ones—can be generated pas-

sively depends strongly on the combination of relative torso

and leg stiffness. For example, when κtorso = 3.6 passively

generated bounding orbits exist for κleg ∈ [20.80, 21.55].
On the other hand, when κtorso = 5.4, bounding orbits

can be generated for κleg ∈ [22.00, 28.15], a significantly

wider region than that corresponding to κtorso = 3.6. This

observation shows the sensitive dependence of the system’s

behavior on the combination between the stiffness of the

torso and the stiffness of the legs.

Fig. 3(a) also illustrates that self-stable bounding motions

emerge for particular combinations of the relative torso and

leg stiffness. However, these motions correspond to a small

fraction of the bounding gaits that can be generated passively.

This can be explained by Figs. 3(b) and 3(c) that show the

loci of the eigenvalues of A in (23) as the parameters κtorso

and κleg vary. In interpreting Figs. 3(b) and 3(c) note that the

numbers show the points at which the eigenvalues start and

“x” the points at which they terminate. In all cases, one of

the eigenvalues—namely, the eigenvalue denoted by “6”—

remains at one, due to the conservative nature of the system.

In more detail, Fig. 3(b) indicates that as the torso stiffness

κtorso increases for a given value of κleg the eigenvalues

“2” and “3” enter the unit circle. However, the eigenvalue

“1” eventually exits from the unit circle, implying an upper

bound on κtorso exists, beyond which instability occurs. On

the other hand, Fig. 3(c) shows that keeping κtorso constant

and increasing κleg moves the eigenvalue “1” inside the

unit circle, but the eigenvalues “2” and “3” exhibit the

opposite behavior: while they initially enter the unit circle,

they eventually move outside of it. In both cases, the range

of parameter values that correspond to self-stable motions is

narrow, explaining the difficulty in computing such motions

in our previous work [21], and in other efforts [13], [16].

As a final remark, note that the emergence of self-stability

in the presence of a flexible segmented torso should not be

considered as an immediate consequence of the existence

of self-stable bounding orbits in the context of quadrupedal

models with rigid torso [2], [23]. The reason is that torso
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bending movements may cause divergent behavior when they

are not properly coordinated with the hybrid oscillations of

the legs. As noted in [2], [23] for the rigid-torso case, the

inertia properties of the torso—captured by the dimensionless

moment of inertia of the torso—dominate self-stability. On

the other hand, in the flexible-torso case, the combination

of the stiffness properties of the legs and the torso is the

dominant factor for stability.

IV. FEEDBACK CONTROL

The existence of passively generated bounding orbits and

its relation to key design parameters that couple the stiffness,

inertia and geometric properties of the model can provide

useful information regarding the design of quadrupedal

robots with a flexible torso. In terms of stability, however, it

is clear that the model in its current passive and conservative

form cannot reject disturbances that perturb the total energy

of the system. Furthermore, even when the applied pertur-

bations do not alter the total energy level, the domain of

attraction of the self-stable bounding orbits found in Section

III-B is not sufficiently large to ensure convergence. Clearly,

the development of control laws is necessary to sustain

periodic bounding orbits in the presence of perturbations.

This section takes a step toward this direction by proposing

a controller that uses a single actuator to enhance the stability

of the 4-DOF compliant bounding model discussed so far.

To enable the development of non-conservative corrective

forces, the model is modified to include one actuator in par-

allel with the torso spring. With this modification, the open-

loop dynamics of the system in each phase i ∈ {f, sp, sa}
becomes

ẋi = fi(xi) + gi(xi)ui, (25)

where ui is the input torque. For concreteness, we consider

a model with mechanical properties that roughly correspond

to the quadrupedal robot Scout II [2]; see Table I.

TABLE I

MECHANICAL PARAMETERS OF THE MODEL

Parameter Value Units

Torso Mass (m) 10.432 kg

Torso Inertia (J) 0.36 kg m2

Hip-to-COM spacing (L) 0.138 m

Nominal Leg Length (l0) 0.36 m

Leg Spring Constant (kleg) 7329 N/m

Torso Spring Constant (ktorso) 203 Nm/rad

In general terms, the structure of the proposed controller

exploits the hybrid nature of the system by introducing

control action on two levels. On the first level, a continuous-

time controller is employed at the torso joint to impose

a virtual (holonomic) constraint that coordinates the torso

and legs according to a passively generated bounding orbit

of Section III-B; the orbit is selected to satisfy desired

forward velocity and hopping height specifications. On the

second level, a discrete-time controller that uses event-based

feedback of the forward velocity is engaged to update the

leg touchdown angles.

It should be mentioned here that in rigid-torso models, the

stability of the torso pitch oscillation in bounding emerges

without direct control over the pitch angle for a wide range of

initial conditions [1, Chapter 8]. However, in models with a

segmented flexible torso, the additional degree of freedom

that corresponds to the torso relative pitch oscillations is

very sensitive to perturbations and highly coupled to the leg

motion. The controller proposed here restricts the torso rela-

tive pitch oscillation according to the leg motion, effectively

reducing the system so that the stability of its motion can be

enhanced through leg touchdown angle updates in an event-

based fashion.

1) Continuous-time Control: For each phase i ∈
{sp, sa, f} we associate to the continuous dynamics (25) the

output function

yi = hi(qi) := Hiqi − hd
P,i(qi), (26)

where Hi := [0 0 −1 1] so that, by (2) and (3), the controlled

variable Hiqi corresponds to the relative pitch angle θa −
θp and hd

P,i(qi) is its desired evolution. Note that in (26),

hi(qi) is a function of the configuration variables (not time),

and therefore it can be interpreted as a (virtual) holonomic

constraint, which can be imposed via a control law whose

objective is to drive the output to zero. To simplify1 the

development, PD control laws will be employed to achieve

this objective; i.e.,

ui = KP,iyi +KD,iẏi, (27)

where KP,i and KD,i are selected gains.

It is through the design of hd
P,i(qi) in (26) that information

about the leg-torso coordination pattern that characterizes the

selected passively generated gait is passed to the controller.

In more detail, hd
P,i(qi) is designed through a suitable

parameterization of the evolution of the relative pitch angle

θa−θp at the selected (desired) passive gait. To simplify the

implementation, for i ∈ {f, sp, sa}, hd
P,i(qi) is selected as a

fifth degree polynomial

hd
P,i(qi) =

5
∑

k=0

ai,ks
k(qi), (28)

fitted to the nominal (according to the desired passive orbit)

evolution of θa − θp. It is important to note that s is not an

1Feedback linearization techniques as in [24] can also be used.
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Fig. 5. The relative torso pitch angle θa−θp as a function of the leg angle
ϕp and ϕa in the posterior (a), and the anterior (b) stance. The monotonic
relation allows to coordinate the torso oscillation with the leg sweeping
motion through a virtual holonomic constraint.
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explicit function of time. Utilizing the fact that during the

stance phases, θa − θp is a (strictly) monotonic function of

the angle of the stance leg relative to the torso—see also Fig.

5—the function s(qi), i ∈ {sp, sa} can be selected as

s(qi) :=
ϕ̄max − ϕ

ϕ̄max − ϕ̄min
, (29)

where ϕ = ϕp for i = sp and ϕ = ϕa for i = sa, and ϕ̄min

and ϕ̄max are the minimum and maximum values of ϕ in

the corresponding stance phase during the nominal motion.

Intuitively, with this parametrization, the virtual constraint

design (26) ensures that the torso extends during the posterior

stance phase and it flexes during the subsequent anterior

stance phase, and that this flexion-extension oscillation is

coordinated with the nominal motion through the sweeping

angle of the corresponding stance leg.

In a similar fashion, during flight s(qf) is computed as

s(qi) :=
xtj(qi)− x̄min

tj

x̄max
tj − x̄min

tj

, (30)

where xtj is the distance travelled by the torso joint,

xtj(qi) := xp + L cos θp, (31)

and x̄min
tj and x̄max

tj are its values at the beginning and at the

end of the flight phase, respectively.

Note that when the system in closed-loop with the

continuous-time controlled described above bounds along a

nominal orbit, the torques developed by the actuator are very

small, but are not exactly equal to zero; see also Section IV-

.3 below. This is due to the numerical errors introduced by

the fitting process. Increasing the degree of the polynomials

in (28) can decrease the fitting error. To further suppress the

residual torques after convergence to the nominal gait, the

PD controller (27) can be implemented using

ẏi = Hiq̇i − hd
V,i(qi), (32)

where, instead of differentiating (28) with respect to time,

hd
V,i(qi) is obtained by fitting a new polynomial to the rate

of change of yi. This idea has been employed in [24] in the

context of passive bipedal walking, and is very effective in

reducing the torques that are present in the nominal motion.

2) Discrete-time Control: The discrete-time controller

simply updates the touchdown angles of the anterior and

posterior legs at the apex of the gathered flight based on

feedback of the horizontal velocity of the torso spinal joint,

γtd
i [k] = γ̄td

i +Ki(ẋtj[k]− ¯̇xtj), (33)

where i ∈ {a, p} and .̄ denotes the nominal value.

3) Simulation Results: To test the controller, we examined

the response of the system when encountering an unexpected

variation in the ground height that is equal to 20% of the

nominal leg length. Fig. 6 shows snapshots of the system’s

motion as it converges to a periodic orbit, which corresponds

to the nominal one when the hopping height is measured

from the new ground level; see also the video accompanying

this submission.

Fig. 7 shows convergence to the nominal values of the

hopping height, forward velocity and the total energy of

the system. Fig. 8(a) shows the corresponding input torque

developed by the torso joint actuator for the first four strides.

During the first stride which is along the nominal orbit, the

torque is close, but not exactly equal to zero due to the fitting

errors associated with (28). In the recovering strides, the

size of the input torque remains within practically reasonable

bounds due to the existence of the torso spring, and even-

tually becomes very small when the system converges to its

nominal motion. The corresponding ground reaction forces

are shown in Fig. 8(b); their profile is similar to the one used

to generate bounding through force planning in [25]. After

the step-down disturbance, the magnitudes of both vertical

and horizontal components increase due to the fact that part

of the gravitational potential energy is transferred to the leg

spring resulting in larger compression. Note that the friction

cone limitations are respected throughout the motion.

Finally, it is remarked that the proposed control law is

capable of stabilizing a 4-DOF compliant system undergo-

ing significantly large disturbances with only one actuator.

Additional actuators can be included at the hips and/or the

legs to further improve the performance of the controller or

to achieve additional objectives in more complete higher-

dimensional robot models. The results in the present paper

should be considered as a first step toward this direction.

V. CONCLUSIONS

In this paper, the existence and stability of passively

generated bounding running gaits were studied in the context

of a reductive sagittal-plane model with a flexible segmented

torso and compliant legs. Based on the analysis of the

corresponding Poincaré return map in a non-dimensional

form, it was found that stable bounding could be passively

generated for certain combinations of physical parameters

and appropriate initial conditions. The relationship between

the leg and torso spring stiffness was discussed, quantifying

the sensitive dependence of the torso flexion and extension

oscillations on the movement of the legs. Finally, to enhance

stability, a hybrid feedback controller that takes advantage

of the leg-torso coordination corresponding to a passive

Fig. 6. Snapshots of the model’s motion as it runs down a step of 7.2cm (20% of the nominal leg length).
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Fig. 7. Response of the system to a step-down disturbance of 7.2cm showing convergence to the nominal orbit. (a) Hopping height; (b) Forward velocity;
(c) Total energy. The red squares represent the apex height in the gathered flight and the green dotted lines represent the final values.
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Fig. 8. (a) The input of the torso joint actuator. (b) Horizontal (red
continuous) and vertical (blue dotted) components of ground reaction force.
For clarity, only five strides are presented.

gait was proposed. The controller was capable of rejecting

significantly large disturbances with only a single actuator.
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