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Abstract— The majority of neuroprosthetic interfaces, linking
amputee to prosthetic hand, utilise proportional-based control
through electromyography (EMG). The clinical translation of
these interfaces can be attributed to their relative simplicity,
usually requiring only two EMG electrodes to be placed on
the flexor and extensor of the forearm. This bi-electrode setup
enables opening and closing of hand grasp with an additional
manual input used to cycle through the various grip patterns. In
recent literature, the main focus has been on higher degree-of-
freedom control leading to more complicated interfaces which
can be considered the main barrier preventing their clinical
utility. As such, new methods for grip pattern switching have
not been explored with this fieldable strategy lacking any
serious attention. In this work, a novel input, augmenting
neuroprosthetic hand control, is proposed. This interface is
based on bioacoustic signals generated through prescribed
tongue movements. We demonstrate that such an interface can
provide comparable performance to existing proportional-based
systems without requiring any additional movements of the
upper extremities.

I. INTRODUCTION

A. Neuroprosthetic control

In the last decade, significant advances have been made

in the electromechanical design associated with prosthetic

hands. A plethora of multi-functional commercial prosthe-

ses are available to amputees with the potential for fully

restoring their functional loss [1]. These devices provide

highly realistic replacements which in many cases can mimic

the design and dynamics associated with all 22 degrees of

freedom (DoF) of the human hand. Although this is a signifi-

cant achievement, appropriate and relevant control strategies

are still vary much lacking [2]; see [3], [4] for recent

surveys. Therefore, neuroprosthetic integration and control

can be considered the major barrier to complete restoration

of motor function for amputees. The majority of current

control strategies utilise surface electromyography (sEMG)

which allow physiologically relevant control signals to be

generated. However, issues such as, the number of available

electrode sites, signal selectivity and signal reproducibility,

limit the controllability of the prosthesis [5]. Therefore, new

interfacing strategies which can replace or complement these

existing methods is of upmost importance if prosthetics are

to be fully integrated into daily living.

Due to their simplicity, commercial systems typically use

antagonistic pairing of sEMG signals placed on the flexors

and extensors of the forearm [3]. The differential motor
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activity is measured, amplified, demodulated and subtracted

allowing flexion/extension of the wrist to open/close the

grasp of the hand proportionally. Although this provides a

physiologically relevant control signal and limits the num-

ber of control sites required, most of the DoFs become

interdependent while an additional discreet input is required

for switching between various predetermined grip patterns.

This grip switching is often operated by the remaining

functional hand through a simple push switch mechanism.

Recently, a grip switching system based on radio frequency

identification (RFID) technology has been demonstrated [6].

Although this no longer requires additional input from the

remaining hand, physical movement of the prosthesis within

the activating radio field is still required. The potential

of mechanomyography (MMG), as an alternative to sEMG

signals for proportional-based control, has also been demon-

strated. Similarly to EMG signals, they are representative of

muscle activity, but rather then being generated electrically

are instead produced through mechanical oscillations [7].

Such signals offer significant advantages over sEMG, such

as, not requiring conductive gel, less stringent sensor place-

ment and no crosstalk occurring, although there is increased

risk of enhanced skin and motion artifacts1.

To enhance controllability and ultimately dexterity asso-

ciated with a prosthesis, the number of control sites can be

increased and combined with a feature based classification

scheme. Various hand states, for example specific grasp

patterns or static hand gestures, can then be classified based

on features extracted from the multichannel signals [8].

These features are generally time domain based and include

the mean absolute value, the number of zero-crossings and

normalised energies, to name a few [9], [10]. By using a

classification subsystem, based on the chosen feature set, the

various hand states can be decoded with a relatively high

degree of accuracy. The accuracy of the decoding strategy

is generally proportional to the number of electrode sites

and inversely proportional to the number of hand states.

Pattern recognition techniques have also been used to de-

code individuated finger movements (flexion/extension) with

over 90% accuracy using 32 sEMG signals [11]. However,

the large number of control sites limit the practicality of

such systems as well as requiring calibration whenever

the electrodes are reattached to the arm. Furthermore, it

is theorized that control of hand posture takes place in a

lower-dimensional space of coordinated motions, or postural

1MMG signals present a rich area for future research with regards to
prosthesis control
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synergies and therefore individual control of each DoF is

redundant when performing normal grasping tasks [12].

By implanting invasive EMG (iEMG) electrodes in direct

or close proximity to the nerve fascicles within the peripheral

nervous system enables electrophysiological signals with

higher fidelity and spatial resolution to be recorded [13]. This

allows specific nerve groups to be targeted using and their

associated action potentials captured [14]. Apart from provid-

ing information rich signals for decoding purposes, this also

enables bidirectional communication and therefore sensory

feedback from the prosthesis. Although this technology has

significant potential, its wide applicability is limited due to

the costly and risky surgical procedures required.

For general upper limb neuroprosthetic control, a paradox

exists whereby the higher the disarticulation the more DoFs

are lost whilst the number of functional sEMG sites is also

reduced. Having said this, the nerves bundles serving the

arm, although severed higher up the arm are generally func-

tional. Based on this notion, a new technique called targeted

muscle reinnervation (TMR) has been recently pioneered

[15]. It involves transferring the residual nerves from the

shoulder onto alternate denervated muscle groups, which

are no longer ‘biomechanically functional’, since they are

are no longer attached to the missing extremity. The target

muscle group is generally located in the chest or back

areas, for example the pectoralis muscle, as these provide

a large surface for post-operative electrode placement. This

combined with feature based pattern recognition allows for

decoding of various arm and hand states for individuals with

shoulder-disarticulation or transhumeral amputations.

By directly interfacing with the cortex, the motor sig-

nals relevant for neuroprosthetic control can be captured

at the source of their generation. In the past, this has

been done using noninvasive electroencephalography (EEG)

signals [16], [17]. However, the associated hardware lacks

cosmetic appeal and due to low spatial resolution, low-

level control of multi-functional peripherals is generally very

limited. More recently, invasive interfacing to the motor

cortex has been established through chronic recording of

action potentials associated with reach and grasp movements

[18], [19]. This has led to the ability for paralysed individuals

to have control, in three dimensional space, over robotic

manipulators alongside performing simple grasp actions.

This technology has the scope for enabling even the most

physically disabled individuals, such as those with locked-

in-syndrome, but is completely unwarranted for the majority

of amputees.

Based on these observations, current neuroprosthetic con-

trol strategies with the aim of restoring hand function, can

be broadly categorised by two main characteristics. The first

being the method by which the hand states are generated

from the physiological signals, that is, are they either propor-

tionally controlled or based on the classification of features

extracted from the biosignals. The second is the proximity of

the sensor to the nervous system with either the electrodes

positioned invasively or non-invasively within the individual.

Table I highlights this taxonomy and shows some examples

within each category of physiological signals which can be

used to drive a prosthesis.

TABLE I

SOME EXAMPLES OF NEUROPROSTHETIC HAND CONTROL

Control signal

Proportional Feature based

Sensor

location

Noninvasive sEMG , MMG
sEMG, MMG,

EEG, Gaze

Invasive iEMG, Cortical iEMG, Cortical

Currently, control strategies utilised by commercially

available prosthesis are based on proportional sEMG signals

only (as highlighted in Table I). Due to the limited number

of electrode sites for this type of control, these systems

still require the active involvement of a healthy extremity

to switch grip patterns. Therefore, a fieldable interface that

does not rely on such physical input and is robust enough

for use outside of the laboratory environment is still highly

desirable.

B. Hybrid control

Hybridisation of various interfacing systems can poten-

tially be used to extend the capabilities of neuroprosthetic

control strategies [20]. For example, gaze tracking and com-

puter vision techniques can be used to extract information re-

garding a object, acting as a high-level prehension controller,

while the low-level grasping action can be initiated through

sEMG. Such hybrid systems can lead to a higher level of

control of the multiple DoFs associated with neuroprosthetic

targets. Furthermore, independently operated interfaces can

be used in collaboration to expand the instruction set based

on synergistic design between the multi-modal inputs.

Tongue-movement ear pressure (TMEP) signals have re-

cently been highly as a noninvasive, wearable and imper-

ceptible human-machine interface for command and control

of peripherals [21], [22]. In this work, we demonstrate the

utility of TMEP signals for synergistic control of a prosthetic

hand using control strategies similar to current commercial

practises.

Validation is performed with regards to a timed manip-

ulation task whereby various everyday objects are moved

within a tabletop environment. Evaluation is based on task

completion time and the strategies compared include natural

manipulation using a real hand, proportional control using

force sensitive resistors (FSR), full TMEP control and a hy-

brid strategy (comprising FSR & TMEP). It should be noted,

that the FSR inputs simulate proportional sEMG control

without the additional user training and subject variability.

For this strategy, similarly to commercially available control

setups, a contralateral hand-operated push button (PB) is used

for switching between primary grip patterns [1]. The task is

performed by three healthy individuals with ten repetitions

per subject and control strategy. The following sections

describe TMEP signals and their decoding, the prosthetic
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hand and control hardware, system integration and evaluation

of the four control strategies.

II. TONGUE-MOVEMENT EAR PRESSURE SIGNALS

It has been previously established, that bioacoustic signals

generated through impulsive tongue actions can be nonin-

vasively captured from the ears of an individual [21], [22],

[23]. The user expresses their intention through tongue flicks,

creating acoustic signals within the ear canals. These have

been coined as TMEP signals, due to the nature of their

generation and evolution within the oral and auditory regions.

The actions themselves involve placement of the tip of the

tongue at the base of the central incisor, left or right first

molar and flicking the tongue up (bottom, left or right action)

and placing the tip of the tongue against the top of the

palate and flicking down (top action). This instruction set

was chosen as it directly relates to the cardinal control

scheme of up, down, left and right, with any instruction

subset chosen based on the application. Fig. 1 illustrates the

described action set and tongue trajectory during a specific

movement. Based on their unique bioacoustic signatures,

the prescribed tongue movements are distinguishable from

one another as well as normally occurring activity, such as

speech, coughing and swallowing [24]. This is due to the

motions not typically occurring in daily activity, although

they feel natural to execute implicating their repeatability.

LEFT RIGHT

TOP

BOTTOM

LOWER

JAW

UPPER

JAW
RIGHT

action

Fig. 1. Left side - Starting point of the tip of the tongue prior to the
execution of the four predefined actions. Right side - 3D representation of
the idealised trajectory of the tip of the tongue during execution of the right
action

To capture the bioacoustic activity from the TMEP signals

a generic earpiece is used. Fig. 2 shows this, both extracted

and inserted, within the ear canal. In this work, a stereo

channel setup is utilised whereby two generic earpieces are

located in both ears of the individual. Although this has the

effect of slightly inhibiting the user’s ability to hear, it also

provides a sufficient increase in decoding information for this

to be considered an insignificant hinderance.

Extraction and decoding of the bioacoustic activity asso-

ciated with the dual TMEP channels utilises a bioacoustic

processing framework. Fig. 3 depicts this extraction and

decoding architecture and the various subsystems involved.

Initial processing consists of activity detection and signal

segmentation to extract a 200ms length for each bioacoustic

data channel containing the impulsive temporal waveforms

associated with the volitional TMEP activity [25]. This is

Fig. 2. Photos showing the generic earpiece both removed and inserted
into the ear

based on a short-term energy contour in combination with

amplitude and time thresholding. Due to the potential for

interfering bioacoustic activity to merge with the signals

in real-time a dedicated dichotomous interference rejection

(IR) block is implemented prior to inter-action classification

[24]. This has been shown to be effective at rejecting higher

frequency interference, such as speech and coughing, in both

off-line and online environments.

Bioacoustic data streams

Activity detection

Signal segmentation

Interference rejection

Template alignment

Ensemble classification
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Fig. 3. The real-time bioacoustic processing framework for extraction and
decoding the TMEP activity

Preceding inter-action classification the extracted TMEP

segments are aligned to class-specific templates. The tem-

plates are created from representative data-sets of each

action, collected from each subject, prior to classification.

This enhances the classification performance associated with

the individual classifiers. Inter-action discrimination uses a

heterogeneous ensemble architecture and is depicted in Fig.

4. This framework is described in detail in [23]. The output

from the ensemble is based on a majority vote between

the two channels of data classified through seven individ-

ual base classifier models and implies a total of fourteen

heterogeneous members. The seven classification strategies

comprise various combinations of feature extraction, feature

selection and classifier models and include: (1) Euclidean

distance classifier, (2) Matched filter classifier, (3) Decision

fusion classifier, (4) Autoregressive classifier, (5) Discrete

Fourier transform classifier, (6) Principal component analysis

classifier, and (7) Discrete cosine transform classifier.

The heterogeneous ensemble helps to reduce the effect
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Discrete

command
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Fig. 4. Heterogeneous ensemble classification architecture using dual
earpiece channels, seven base classifier models and a majority voting
strategy to fuse the outputs of the ensemble members

of the ‘no free lunch theorem’, especially in circumstances

where there is limited data available to the classification

machine. This helps to minimise the misclassification error

whilst also increasing the overall classification accuracy

based on ambiguity amongst the members. A further advan-

tageous byproduct is its natural IR capabilities. Interfering

signals which are potentially missed by the IR block, for

instance, due to them having a similar frequency response

as the TMEP actions, can now potentially be rejected based

on this mechanism.

III. PROSTHETIC HAND CONTROL

The prosthetic hand used in this study is a Bebionic

v2 manufactured by RSL Steeper, UK [1], [26]. The hand

allows the user to achieve everyday manipulation tasks using

common grip patterns with the opening and closing of the

hand designed to be proportionally controlled using two

sEMG signals. A discrete switch located on the rear of

the hand allows two primary grip patterns to be toggled.

A secondary method allows two further grip patterns to be

accessed based on when the hand is fully open followed

by a subsequent short duration open signal (<1s on the

falling edge). Currently, there is no other way of accessing

this secondary set of grip patterns, for example, by using an

independent PB. Four different grip patterns can be accessed

on the hand at any one time and are preset by the user

from a total set of fourteen. These are intended for different

manipulation tasks and include, but are not limited to, a

precision open grip (POG), precision closed grip (PCG), key

and point grip. Fig. 5 shows a state diagram indicating how

the grip patterns can be accessed using the described primary

(P) and secondary (S) switching methods. Shown alongside

is the Bebionic v2 hand in the grip patterns utilised in this

study.

Fig. 6 shows the proposed system setup linking the TMEP

decoding framework to the Bebionic hand. Also shown is the

physical interaction between the user and their environment.

The prosthetic hand is shown in the standard open position

which is the default position for all grip patterns when the

hand is fully extended.

Pointstart

Power

POG

Pinch

N

S

N N

S

N

P

Fig. 5. Bebionic v2 hand shown in the four grip patterns utilised during
this study. Also shown is a state diagram indicating how the grip patterns
are accessed. P - Primary switch (solid line), S - Secondary switch (dashed
line), N - No action (dotted line), Red states - Group A grip patterns and
Blue states - Group B grip patterns

IV. CONTROL STRATEGIES

To demonstrate the potential of discrete tongue movements

for prosthetic hand control it has been compared to various

control strategies, including natural manipulation using the

human hand, FSR-based and synergistic control. FSR inputs

have been used as an alternative to sEMG as they provide a

similar control signal and remove additional human factors

including required subject training, varying proficiency levels

and signal fidelity based on electrode placement. The similar-

ity between the control signals is due to sEMG preprocessing

involving (half- or full- wave) rectification and filtering

[27]. Therefore, to simulate antagonistic muscle control as

used by proportional sEMG control schemes, dual FSRs are

utilised providing similar analogue open and close signals in

response to applied pressure from fingers on the contralateral

(unused) hand of the subject. This requires no prior training

with the generated signals more responsive and requiring less

exertion than standard sEMG based inputs. The following

subsections describe the four control strategies tested.

A. Natural

Performing the task using a normal human hand. This is

used as a benchmark when evaluating the three remaining

strategies. The same grip patterns are simulated by the

healthy hand as stipulated in the task protocol.

B. FSR

This strategy involves the use of FSRs to produce a control

signal which opens or closes the hand at a speed which is

proportional to the pressure exerted. Primary grip switching

is achieved via a PB which is located on the control terminal

adjacent to the FSRs. Therefore, from Figure 6, the control

inputs are open - FSR 1, close - FSR 2 and primary grip

switch - PB.
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TMEP 1

FSR 1
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TMEP 2

FSR 2

Close

TMEP 3

PB

Grip

Control inputs

Decoding
framework

Mapping
functions

PIC (Microchip
18F4331)

Bebionic v2
prosthesis

Environment

Tongue
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hand input

Sensors Command

RS232 serial
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signals

Manipulate

Visual feedback
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Fig. 6. System setup for controlling the Bebionic v2 prosthetic hand with potential control inputs for opening, closing and primary grip switching
highlighted (TMEP - tongue-movement ear pressure, FSR - force sensitive resistor, PB - push-button). Dashed lines are indicative of human connections
while solid lines indicate hardware connections

C. Tongue

This strategy involves the use of three distinct TMEP

signals for the opening, closing and primary grip-switching

of the hand. Due to the output of the TMEP decoding

block being discrete, an on-off strategy is employed. A

single open/close action starts opening/closing the hand at a

constant speed with a repetition of the same action stopping

it. As the duration and delay in processing a TMEP event is

short (∼300ms), this still provides very fine control during

manipulation tasks. The tongue actions which correspond

to the specific control actions are customizable depending

upon user preference. Hence, it is possible to ’rank’ the

tongue actions such that the most commonly used control

signal is assigned to the tongue action which the user is

most comfortable with. Therefore, from Figure 6, the control

inputs are open - TMEP 1, close - TMEP 2 and primary grip

switch - TMEP 3.

D. Hybrid: FSR & Tongue

This hybrid control strategy involves the use of the FSRs

to open/close the hand and a single tongue action for primary

grip switching. Again, it is possible to assign which tongue

action is used via the action ranking feature in the software.

Therefore, from Figure 6, the control inputs are open - FSR

1, close - FSR 2 and primary grip switch - TMEP 3.

V. EXPERIMENTAL PROTOCOL

Fig. 7 highlights the task space used during the evaluation

of the various hand control strategies. The setup consisted of

the tabletop divided into three sections (each 15 × 25 cm)

with a filled bottle, tray and lid placed at the centre of each.

A circular block was placed at the top of the middle section.

Fig. 8 highlights the task protocol and shows for a single

trial, the order that the objects were manipulated alongside

the associated grip patterns and grip changes required. The

task was chosen as it resembles an everyday object manipu-

lation task.

Block

Bottle
Tray

Lid

Hand

Fig. 7. The proposed task environment and objects to manipulate

Start Block

Point

Bottle

Power

Lid

POG

Tray

Pinch

S P S

P

Fig. 8. Flow diagram highlighting the task protocol: P - primary grip
switch, S - secondary grip switch

Each trial consisted of the following: Start timer by

touching the block using the point grip, pick up the bottle

using the power grip and place into the tray, pick up the lid

using POG and also place into tray, pick up and lift the tray

into the right area using the pinch grip and finish by touching

the block again using the point grip, thus stopping the timer.

During the trial, the prosthetic hand is grasped in the right

healthy hand of the individual.

The experiment was performed by three healthy subjects

who had previous experience in making all four tongue

actions. Subject training is detailed in [22]. Specific actions

were assigned to each of the control signals (open, close

and primary grip switch) based on user preference with the

task performed ten times per control strategy. The TMEP

decoding block was trained using 30 subject-specific signals

of each action and 162 generic interfering signals.
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VI. RESULTS AND DISCUSSION

Fig. 9 shows timing results for each trial across the three

subjects (A, B, C) and four control strategies. Also shown

are boxplots created from each of the ten trial groupings

and is indicative of the distribution of the timing results. As

expected while using the natural control strategy, on average,

the subjects were able to execute the task in the fastest

time ({7.7, 7.7} ± 0.8, {6.5, 6.6} ± 0.6, {15.5, 15.4} ± 0.8

seconds; {median,mean} ± 1 STD). In all cases, operation

of the prosthetic hand was always slower than this. For

subjects A and B, this was at least a minimum of a factor

of two times slower. In all cases full tongue control was

the slowest on average ({46.6, 44.3} ± 15.1, {38.5, 40.8} ±
13.7, {37.5, 46.7} ± 22.1). The hybrid control method

({26.9, 32.2}±15.7, {20.1, 21.7}±5.6, {29.6, 32.2}±10.8)

performed comparably to the FSR method ({32.7, 33.6} ±
11.6, {22.2, 26.3} ± 9.2, {24.2, 24.2} ± 4.6).
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b
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Control strategy

Natural
FSR
FSR+Tongue
Tongue

0 20 40 60 80 100
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B

C

Time (s)
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u
b
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Control strategy

Natural
FSR
FSR+Tongue
Tongue

Fig. 9. Timing results of the hand control task (Top - raw results, Bottom -
boxplots). Each subplot is associated with a subject (A,B or C) performing
ten trials for each of the four control strategies

Statistical analysis was performed in SPSS version 20.

Due to skewed distributions, the median was chosen as the

descriptive statistic across each of the ten trial sample sets.

Based on this statistic, a Shapiro-Wilks test identified that the

data was normally distributed across all three subjects and

four control strategies. Therefore, a one-factor analysis-of-

variance (ANOVA) was performed, highlighting a familywise

significant difference (p = 0.029) between the four control

strategies at the 5% level. To elucidate specific differences,

paired two-tailed t-tests were then performed.

This analysis highlighted that there was no significant

difference (p = 0.073) between natural manipulation and the

FSR method. This implies that the FSR method performs

comparably to a real hand and although is not a standard

control strategy (and is only simulating proportional sEMG

control) is able to do so with a good performance level.

Both methods involving tongue control were significantly

different (hybrid: p = 0.013 and tongue: p = 0.024) from the

natural baseline. Comparison between the hybrid and FSR

method were highly insignificant (p = 0.817) indicating a

very similar performance level. The FSR and tongue were

also significantly different (p = 0.004) while the hybrid

and tongue method were insignificantly different (p= 0.054).

Therefore, apart from the hybrid method, full tongue control

performed significantly slower than the remaining control

strategies.

Although full TMEP control was the slowest control

method, the ability to perform and complete the task in all

cases was demonstrated. The slower completion time can,

in part, be attributed to the increased cognitive load due to

the subjects having no previous experience in controlling

a prosthetic hand with their tongue. Subjects were often

prone to making mistakes due to incorrect grip selection

rather than TMEP signal misclassification. This confusion

often occurred during incorrect selection between the two

grip switching mechanisms. The hybrid method provides a

good control solution as it performed comparably to the

FSR method without involving an additional PB input when

switching grips. In reality, this PB is located on the back

of the Bebionic v2 hand, is operated using the contralateral

hand and therefore would further reduce the task completion

time. It is hypothesised that utilising normal sEMG, when

compared to FSR, control is likely to further slow perfor-

mance due to the steep learning curve and large forearm

muscle contractions required.

VII. CONCLUSION

We have demonstrated that bioacoustic signals associated

with tongue movements can be used as an input for neu-

roprosthetic control. This has comparable performance to

standard proportional control methods when performing a

timed object manipulation task. Utilising the tongue pro-

vides additional and synergistic control signals that would

otherwise be unavailable if only proportional sEMG signals

were employed due to the limited control sites available

on the forearm. Furthermore, this interface can be used in

the presence of interfering signals, caused by daily activity,

due to a dedicated interference rejection subsystem. This

robust subsystem prevents incorrect grasping from occurring

caused, for example, by speech and/or coughing during

conversation. In two out of the three subjects, this hybrid

control strategy was on average faster than the standard FSR

method and comparison between the two exhibited highly

insignificant differences (p = 0.817), thus indicating com-

parable performance. The hybrid strategy has the additional

advantage of not requiring a grip switching input from the

contralateral hand. This paper has highlighted that additional
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heterogeneous control inputs, such as TMEP signals, can

be used in conjunction with existing neuroprosthetic control

methods; providing hands-free manipulation with compara-

ble performance to current control strategies.
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