
A Particle Filter for Hybrid Relational Domains

Davide Nitti1, Tinne De Laet2, Luc De Raedt3

Abstract— We introduce a probabilistic language and a fast
inference algorithm for state estimation in hybrid dynamic
relational domains with an unknown number of objects. More
specifically, we apply Particle Filters to distributional clauses.
The particles represent (partial) interpretations of possible
worlds (with discrete and/or continuous variables) and the
filter recursively updates its beliefs about the current state.
We use backward reasoning to determine which facts should
be included in the partial interpretations. Experiments show
that our framework can outperform the classical particle filter
and is promising for robotics applications.

I. INTRODUCTION

Robotics research has made important achievements in
problems such as state estimation, planning and learning.
However the majority of probabilistic models used, such as
Bayesian networks, cannot easily represent relational infor-
mation, that is, objects, properties as well as the relations
that hold between them. Relational representations allow
one to encode more general models, to integrate background
knowledge about the world and to convert low-level informa-
tion into human-readable form. Probabilistic programming
languages [1] and statistical relational learning techniques
(SRL) [2] have been developed to provide such represen-
tations and have been successful in many application areas
ranging from natural language processing to bioinformatics.

This paper extends probabilistic programming techniques
to deal with dynamic relational domains involving both
discrete and continuous random variables. Our approach
employs a dynamic variation of distributional clauses [3], a
recent extension of Sato’s distribution semantics [4] to deal
with continuous variables. Each state of the environment
will be represented as an interpretation, that is, a set of
ground facts that define a possible world. It is for dynamic
distributional clauses that we develop a particle filter that
allows one to recursively estimate the state over time given
some observations. Particle filters [5] are widely applied in
domains such as probabilistic robotics [6] and it is our goal to
develop a particle filter that integrates relations and random
variables in a flexible framework. The statistical relational
learning literature already contains several approaches to
temporal models and to particle filters; see Section VIII for

*This work is supported by the European Community’s 7th Framework
Programme, grant agreement First-MM-248258.

1 Davide Nitti is supported by the IWT (Agentschap voor Innovatie door
Wetenschap en Technologie). Department of Computer Science, KU Leuven,
Belgium. davide.nitti@cs.kuleuven.be

2 Tinne De Laet is a Postdoctoral Fellow of the Fund for Scientific
Research–Flanders (F.W.O.) in Belgium. Department of Mechanical Engi-
neering, KU Leuven, Belgium. tinne.delaet@mech.kuleuven.be

3 Department of Computer Science KU Leuven, Belgium.
luc.deraedt@cs.kuleuven.be

a detailed discussion. However, few frameworks are suitable
for robotics applications, indeed most of them support only
discrete domains or are too slow for online applications.

Distinguishing features of our particle filter are that: 1)
it provides a powerful relational template to define random
variables and their distributions (discrete or continuous); 2)
it exploits partial interpretations as particles allowing for a
potentially infinite state space; and 3) it employs a relational
representation to represent independence (context-specific)
assumptions, and exploits that representation to perform fast
inference; 4) it is suitable for robotics applications; and
5) it can integrate background knowledge and ontologies
to perform complex queries about static or dynamic vari-
ables/relations.

This paper is organized as follows: we first review the
particle filter (Section II-A) and introduce distributional
clauses (Section II-B). Next we define dynamic distributional
clauses (Section III) and use that representation to define
a relational particle filter (Section IV). Then we introduce
a magnetism scenario in Section V. After that we discuss
inference optimizations (Section VI). Finally we show ex-
periments (Section VII), related work (Section VIII), and
conclude (Section IX).

II. BACKGROUND

A. Particle Filters

The problem of filtering is concerned with the estimation
of the current state of an agent in a dynamic environment
where the world is not directly observable but only
through observations obtained from sensors. Filtering is
concerned with estimating the belief, that is, the probability
density function bel(xt) = p(xt|z1:t, u1:t), where xt is
the current state, z1:t is the set of observations, and u1:t
the actions (inputs) performed from time step 1 to t.
The Bayes filter computes recursively the belief at time
t + 1, starting from the belief at t, the last observation
zt+1, and the last action performed ut+1 through
bel(xt+1) = ηp(zt+1|xt+1)

∫
p(xt+1|xt, ut+1)bel(xt)dxt,

where η is a normalization constant. Thus the underlying
model consists of a prior distribution p(x0), the state
transition model p(xt+1|xt, ut+1), and the measurement
model p(zt+1|xt+1). Since the above integral is only
tractable for specific combinations of distributions bel(xt),
p(xt+1|xt, ut+1), and p(zt+1|xt+1) (see for instance the
Kalman filter [7]), one has to resort to approximations
of the real belief, bel(xt). One solution is to resort to
Monte-Carlo techniques for approximating the integral,
resulting in the particle filter [5]. The key idea of particle
filtering is to represent the belief by a set of weighted

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2764

samples (particles). Given N weighted samples (x
(i)
t , w

(i)
t)

distributed as bel(xt), a new observation zt+1, and a new
action ut+1, the particle filter generates a new weighted
sample set that approximates bel(xt+1). The algorithm
proceeds in three steps:
• Sample a new set of particles x(i)t+1, i = 1, . . . , N , from

a proposal distribution q(xt+1|x(i)t , zt+1, ut+1).
• Assign to each particle x(i)t+1 the weight:

w
(i)
t+1 =

p(zt+1|x(i)
t+1)p(x

(i)
t+1|x

(i)
t ,ut+1)

q(x
(i)
t+1|x

(i)
t ,zt+1,ut+1)

• If the variance of the sample weights exceeds a certain
threshold, resample with replacement, from the particle
set, with probability proportional to w(i)

t+1.
A common simplification is the bootstrap filter where
q(xt+1|x(i)t , zt+1, ut+1) = p(xt+1|x(i)t , ut+1) and
w

(i)
t+1 = p(zt+1|x(i)t+1).

B. Distributional Clauses

Our statistical relational representation for specifying the
distributions of the particle filter is based on distributional
clauses [3], an extension of the distribution semantics [4].
We assume some familiarity with standard terminology of
statistical relational learning and logic programming [1]. We
now introduce the key notions: A clause, in logic program-
ming, is a first-order formula with a head, an atomic formula,
and a body, a list of atomic formulas or their negation. For
example, the clause

inside(A, B)← inside(A, C), inside(C, B)

states that for all A, B and C, A is inside B if A is inside
C and C is inside B (transitivity property). A, B and C are
logical variables. A ground atomic formula is a predicate
applied to a list of terms that represents objects. For example,
inside(1, 2) is a ground atomic formula, where inside is
a predicate, sometimes called relation, and 1, 2 are symbols
that refer to objects. A literal is an atomic formula or a
negated atomic formula. A clause usually contains non-
ground literals, that is, literals with logical variables (e.g.,
inside(A, B)). A substitution θ, applied to a clause or a for-
mula, replaces the variables with other terms. For example,
for θ = {A = 1, B = 2, C = 3} the above clause becomes:

inside(1, 2)← inside(1, 3), inside(3, 1)

and states that if inside(1, 3) and inside(3, 1) are true,
then inside(1, 2) is true.

Most probabilistic relational languages consider only
boolean random variables. In contrast, distributional clauses
allow one to define random variables with any distribution,
continuous or discrete. Moreover, a ground atom (i.e., tu-
ple of a relation) represents a random variable. Therefore,
throughout the paper, ground atoms and random variables are
considered interchangeable. Formally, a distributional clause
is a formula of the form h ∼ D ← b1, . . . , bn, where the bi
are literals and ∼ is a binary predicate written in infix nota-
tion. The intended meaning of a distributional clause is that
each ground instance of the clause (h ∼ D ← b1, . . . , bn)θ

defines the random variable hθ as being distributed according
to Dθ whenever all the biθ hold, where θ is a substitution.

The term D, that represents the distribution, can be non-
ground, i.e., values, probabilities, or distribution parameters
can be related to conditions in the body. A distributional
clause is a powerful template to define conditional probabil-
ities: the random variable h has a distribution D given the
conditions in the body b1, . . . , bn (referred to also as body).

Furthermore, a term '(d) constructed from the reserved
functor '/1 represents the value of the random variable d.
Consider the following clauses:

n ∼ poisson(6). (1)
pos(P) ∼ uniform(1, 10)← between(1,'(n), P). (2)

Clause (1) states that the number of people n is governed by a
Poisson distribution with mean 6; clause (2) models the posi-
tion pos(P) as a random variable uniformly distributed from
1 to 10, for each person P such that between(1,'(n), P)
succeeds. Thus if the outcome of n is 2, there will be 2
independent random variables pos(1) and pos(2).

This formalism allows to specify continuous distributions
(under reasonable conditions) and naturally copes with an un-
known number of objects (as BLOG [8] does). In addition to
distributional clauses, we shall also employ definite clauses
as in Prolog. We shall often talk about clauses when the con-
text is clear. A distributional program, that is, a set of distri-
butional clauses, defines a distribution over possible worlds.
The procedure used to generate possible worlds defines the
semantics and a basic inference algorithm. A possible world
is generated starting from the empty set S = ∅; then for each
distributional clause h ∼ D ← b1, ..., bn, whenever the body
{b1θ, ..., bnθ} is true in the set S for the substitution θ, a
value v for the random variable hθ is sampled from the
distribution Dθ and added to the set S. This is repeated
until a fixpoint is reached, that is, no more variables can be
sampled. The probability of a query given evidence p(q|e)
is estimated as the number of worlds sampled that satisfy
the query and evidence divided by the number of worlds
that satisfy the evidence. The described inference algorithm
is generally inefficient, though several improvements are
possible. The inference proposed by Gutmann et al. [3] uses
magic sets [9] to generate only facts relevant to the query. In
this paper we propose a more efficient inference algorithm
based on backward reasoning (section VI) and focus on
filtering in dynamic models (section III and IV).

III. DYNAMIC DISTRIBUTIONAL CLAUSES

We now extend distributional clauses to Dynamic Distri-
butional Clauses (DDC) for modeling dynamic domains.

In DDCs, each predicate/variable is classified as state x,
action u, or observation z, with a subscript that refers to
time 0, for the initial step; time t for the current step,
and t + 1 for the next step. The definition of a discrete-
time stochastic process follows the same idea of a Dynamic
Bayesian Network. We need clauses that define: 1) the prior
distribution: h0 ∼ D ← body0, 2) the state transition
model: ht+1 ∼ D ← bodyt, 3) the measurement probability:

2765

ht+1 ∼ D ← bodyt+1, and finally, 4) clauses that define
a random variable at time t from other variables at the
same time: ht ∼ D ← bodyt. As these are all essentially
distributional clauses, the semantics is retained from [3].
Details and formal definitions can be found in [3].

IV. A PARTICLE FILTER FOR DDC

We assume that the (dynamic) distributional clauses define
the required distributions for a particle filter, i.e., the prior
distribution, the proposal distribution and the weighting func-
tion. Furthermore, the particles x(i)t will be interpretations,
i.e., sets of ground facts for the predicates and the values of
random variables that hold at timepoint t.

The basic relational particle filter applies the same steps
as the classical particle filter sketched in Section II-A and
employs the forward reasoning procedure for distributional
clauses sketched in Section II-B. An optimized inference
algorithm is presented in Section VI. In addition, multiple
observations are supported, where the total weight is the
product of the weight of each observation, assuming con-
ditional independence of the observations given the state.
This is not a real restriction on the expressiveness of the
language as multiple observations could be taken together
as a single observation. For resampling we use a minimum
variance sampling algorithm [10]. The resulting framework
is called Distributional Clauses Particle Filter (DCPF).

V. MAGNETISM EXPERIMENT

To illustrate DDCs, we consider the following scenario.
There is a table with several objects that can be either
permanent magnets, ferromagnetic, or non-magnetic objects.
The objects are marked so that their position and orientation
can be easily recognized. In the experiments, pairs of objects
are placed close to one another by a human or a robot, while
keeping one object fixed in the hand. Then, the resulting
interactions are observed. From such observations people are
able to infer which objects are magnets, ferromagnetic or
possibly non-magnetic. For instance, if the free object attracts
the one in the hand, we know that at least one of them must
be a magnet, and the other a magnet or a ferromagnetic
object. The goal is now to realize this type of reasoning
with our particle filter.

We modelled the following physical principles: 1) non-
magnetic objects do not interact with any other objects, 2)
a magnet and a ferromagnetic object attract each other with
a force that depends on the distance, 3) two magnets can
attract or repulse each other 4) the magnetic force produces
a movement if it is greater than the static friction of the table,
5) an object moves if it is pushed by another object or it is
grasped by a robot or human; 6) if an object is held by a
gripper or hand, its movement is independent of the eventual
magnetic force.

We perform two types of actions: 1) putting an object
near another one (while keeping the first object in the hand),
2) pushing an object until it makes contact with another
one, and then pulling it away. After performing an action
the robot or human pulls the objects apart again (if they

attracted one another) and then takes another object and
repeats the experiment. The goal is to estimate interactions
and therefore objects’ types from observed objects’ positions
during the experiments. The objects’ types are correlated to
one another, therefore whenever we perform an experiment
on two objects this may affect the belief of objects tested
previously. The magnetism theory has been encoded in the
state transition model, while the measurement model consists
of the product of Gaussian distributions around each object’s
position post(i) (assuming that the measurements are i.i.d.):

obsPost+1(ID) ∼ gaussian('(pos(ID)t+1), cov). (3)

The hidden state consists of the objects’ type, po-
sition, static friction and relations amongst them such
as near(A, B)t, interaction(A, B)t and contact(A, B)t.
Other properties are included, such as the objects’ dimen-
sions and colors. The number of objects is not defined in
advance, on the contrary, the state grows every time an
object is added. Relation near(A, B)t is true if the distance
of objects A and B is lower than a threshold (only then the
objects A and B can interact):

near(A, B)t←dist('(pos(A)t),'(pos(B)t))<0.11. (4)

The relation interaction(A, B)t is 1 if there is an attraction
between the objects, and -1 if there is a repulsion. For
example, for two magnets, interaction (with equal probability
0.5 for attraction/repulsion) is defined as follows:

interaction(A, B)t ∼ finite([0.5 :1, 0.5 :−1])←
A 6=B,'(type(A)t)=magnet,'(type(B)t)=magnet. (5)

For simplicity, we also assume that the interaction is constant
over time: if two magnets attract each other, they will
maintain that interaction, ignoring the possible repulsion by
rotation of the magnet:

interaction(A, B)t+1 ∼ ('(interaction(A, B)t)) (6)

that is, interaction(A, B)t+1 = interaction(A, B)t.
However, orientation could be integrated to distinguish
attraction and repulsion from objects’ orientation. In
addition, the relation contact(A, B)t is true if A and B are
in contact or overlapping:

contact(A, B)t ←
dist('(pos(A)t),'(pos(B)t))<(dim(A) + dim(B))/2+ θ

i.e., contact(A, B)t is true if the center’s distance is smaller
than half of the sum of their dimensions plus a threshold
θ. This qualitative definition assumes that the objects are
spherical, but it is sufficient for our purposes. To correct
objects overlapping, the distance between them is increased
in the next step if below the limit. Since the objects’ type
distributions do not change over time we can write:

type(A)t ∼ finite([1/3 :magnet, 1/3 :ferromagnetic,

1/3 :nonmagnetic])← object(A). (7)

This special clause (7) directly specifies the type belief of
those variables type(A)t that do not yet occur in the particle

2766

and hence, have not yet been sampled. Same considerations
hold for clause (5). Whenever an object type needs to be
evaluated and is not in the particle, it will be sampled
from that distribution. Sampled variables type(A)t remain
constant over time, as described for interaction(A, B)t in
clause (6). Although we can define clauses that specify a
belief distribution that changes over time.

The state transition model encodes the principles listed
above. For example, the next object’s position is the current
position plus Gaussian noise if there are no objects nearby.
If two objects are close enough, and if they are magnet-
ferromagnetic or magnet-magnet they will attract one another
till contact, whenever the magnetic force overcomes the
static friction with the table. In addition, we assume that
the attraction brings the objects in contact in one step.

pos(A)t+1 ∼ gaussian('(middlepoint(A, B),cov)←
near(A, B)t, not(action(move(A,)),

not(action(move(B,)),'(interaction(A, B)t) = 1,

c·dist('(pos(A)t),'(pos(B)t))−2>'(friction(A)t) (8)

This clause defines the next position of an object A when
it is not moved or held by a gripper or human, that is
not(action(move(A,)), and if it is near to another object
B with which there is an attraction force that overcomes the
static friction with the table. The next position is determined
by a Gaussian around the point in the middle of A and
B considering the object’s size to avoid overlap, computed
by the function middlepoint(A, B). The magnetic force is
c · dist('(pos(A)t),'(pos(B)t))−2, where c is a constant.
Moreover, the static friction is randomly sampled from a
Gaussian independently every step. The definition of mid-
dlepoint and friction are omitted for brevity.

VI. OPTIMIZED INFERENCE

The classical particle filter samples all variables and gen-
erates complete interpretations. For the magnetism scenario
this requires computing all relationships that hold for each
pair of objects in a particle. This is often unrealistic and
undesirable; it may also lead to wasted resources and bad
performance. Thus, we work with particles that are partial
interpretations. For instance, in the magnetism scenario, if
two objects are far apart, the state in the particles will consist
of the positions of both objects. Any other state variable
is marginalized, e.g., type, interaction, contact, and friction.
Indeed if the objects are far apart the relation near is false
and there are no interactions, therefore we do not need to
sample the object type or other relations. Whenever such a
variable is needed during evaluation it is sampled from the
relevant distribution. For example, consider the clause (8)
for objects 1 and 2, if near(1, 2)t is true and there are no
action moves for 1 and 2, then interaction(1, 2)t needs
to be evaluated. If that random variable is not already in the
particle, clauses such as (5) are evaluated to sample it. Those
clauses check the object’s type, if not already in the particle
it will be sampled from (7). Hence, distributional clauses

allow to define a template of context-specific independence
assumptions with a relational representation.

A. Mathematical Formalization

More formally, we assume that the complete interpretation
at time t can be written as xt = xPI

t ∪ xat . Here xPI
t

denotes the variables in the partial interpretation and xat
the remaining variables, i.e., the marginalized variables. The
partial interpretation needs to remain finite, however the
number of marginalized variables can be countably infinite.
To define a proper distribution, the distributional program has
to satisfy Sato’s finite support condition [4], that is, for each
random variable there is finite number of explanations, where
each explanation is a finite conjunction. In other words, each
random variable can be derived from a finite number of other
random variables and there is a finite number of ways to
derive such a variable, i.e., there is a finite number of proofs
(explanations). Therefore, even though an infinite number of
random variables can be derived/sampled from xPI

t , each
variable of interest can be derived from a finite set of other
variables. The marginalized variables xat will only be non-
empty if the belief of the entire state can be derived from
the partial interpretation xPI

t :

bel(xt) = p(xat , x
PI
t |z1:t, u1:t) =

=p(xat |xPI
t , z1:t, u1:t)p(x

PI
t |z1:t, u1:t)=p(xat |xPI

t)bel(xPI
t).

This assumption allows to apply the Bayes Filter to xPI
t .

The variable xat represents what we can derive from xPI
t

together with the probabilistic rules defined in the model.
For example, if near(a, b)t is marginalized, clause (4) can
be used to sample it given xPI

t , that is pos(a)t and pos(b)t.
Clause (7) is a special case with p(xat |xPI

t) = p(xat) =
p(xat−1) = ... = p(xa0) for variables type(A)t not yet
sampled.

In a particle filter we have to compute, for each particle,
the smallest partial interpretation needed to sample the next
state and evaluate the weight of the particle. This means that
for each step t and each particle i the set xPI(i)

t+1 and xPI(i)
t

must satisfy the following conditions:
1) the variables in the partial interpretation x

PI(i)
t+1

do not depend on the marginalized variables:
p(x

PI(i)
t+1 |x

PI(i)
t , xat , x

a
t+1, ut+1)=p(x

PI(i)
t+1 |x

PI(i)
t , ut+1);

2) the weighting function does not depend on the
marginalized variables: p(zt+1|x(i)t+1)=p(zt+1|xPI(i)

t+1)
3) the marginalized variables xat+1 depend

only on the partial state at time t + 1:
p(xat+1|x

PI(i)
t+1 , x

PI(i)
t , xat , x

a
t+1, ut+1)= p(xat+1|x

PI(i)
t+1)

unequivocally described by clauses
Under these assumptions, we can apply the particle filter
steps without sampling the marginalized variables. Initially,
a particle i at time t consists of a partial state xPI(i)

t together
with marginalized xat ; the next xt+1 is not sampled yet,
therefore xat+1 = xt+1 and xPI

t+1 = ∅ (Figure 1 left). Given a
new observation zt+1, the algorithm performs the particle
filtering steps sampling marginalized variables in xat and
xat+1 (thus expanding x

PI(i)
t and x

PI(i)
t+1) until the above

2767

conditions are satisfied, as shown on the right of Figure 1.
Note that the set of variables in xPI(i)

t+1 can be different from
the set in xPI(i)

t , and can differ between particles.

xPI
t

xat

xt+1xat+1

{

xPI
t

xmt

x̂at

}
x̂PI
t

x̂PI
t+1

x̂at+1

Before After

time t

time t+ 1

Fig. 1: Particle partition, before (left) and after (right) the
filtering algorithm. Initially xt+1 is not sampled, therefore
xat+1 = xt+1 and xPI

t+1 = ∅. The inference algorithm samples
variables xmt ⊆ xat , xmt+1 ⊆ xat+1 and adds them respectively
to xPI

t and xPI
t+1. Indeed, x̂PI

t = xPI
t ∪ xmt , x̂at = xat \ xmt ,

x̂PI
t+1 = xPI

t+1 ∪ xmt+1 = xmt+1, x̂at+1 = xat+1 \ xmt+1.

This method is a special case of Rao-Blackwellisation
[11], where the state space is partitioned into one set of
variables that is sampled and another one that is calculated
analytically, as shown in Figure 1. The decision of which
variables to sample and which ones to marginalize is made
automatically according to the model and the specific inter-
pretation, as explained in the following section.

B. Inference Algorithm

The inference algorithm is based on tabled backward
reasoning (SLD-resolution) extended with a Monte-Carlo
mechanism similar to that employed in ProbLog [12]. This
differs from the algorithm used for non-temporal distribu-
tional clauses [3]. Tabling [13], a well-known logic pro-
gramming technique, is applied to memorize computed goals,
including variables and their distribution h ∼ D. The tables
are separate for each particle and are reset every step, since
the variables/predicates are different over time and between
particles. Tabling avoids that the same goal is computed
multiple times and avoids infinite loops in recursive calls.

1) Query Evaluation: We can estimate the belief of a
query q at time t as:

belt(q) ≈
N∑
i=1

p(q|xPI(i)
t)w

(i)
t ,

where xPI(i)
t is a particle and w

(i)
t its weight. If the query

involves variables Vq in the particle, i.e., Vq ⊂ x
PI(i)
t , then

p(q|xPI(i)
t) is 1 if q complies with the values of xPI(i)

t

and 0 otherwise. If Vq 6⊂ x
PI(i)
t , the algorithm looks for

distributional clauses that define the distribution of each vi ∈
Vq to compute p(q|xPI(i)

t). The variables vi are forced to take
values that make the query true, following a principle similar
to likelihood weighting. For each variable vi the algorithm
looks for a clause h ∼ D ← body such that hθ = vi for a

substitution θ, and evaluates the body recursively; if bodyθ
holds, we can compute the likelihood of vi (that complies
with the query q) from vi’s distribution Dθ. Then p(q|xPI(i)

t)
is the product of the likelihood of each variable vi. The
evaluation of distributional clauses may require sampling
new random variables expanding the particles.

2) Filtering Algorithm: The weighting and prediction
steps query the following logical goals in each particle i:

Step (1): the weight of the given observation zt+1 = val
Step (2): the next state xt+1.

To explain the algorithm let us consider the bootstrap filter.
Step (1) performs the weighting step and implicitly

(part of) the prediction step: it computes the weight
w

(i)
t+1 = p(zt+1|xPI(i)

t+1) using the same algorithm described
to evaluate p(q|xPI(i)

t), where q = (zt+1=val). This process
will automatically sample those variables at time t + 1 and
t that are needed to evaluate the weight starting from the
particle xPI(i)

t (but this process never goes back to time t−1).
Step (2) performs the prediction step for variables that

have not yet been sampled because they are not involved in
the weighting step. The algorithm looks for any DC clause
whose head is related to the next state xt+1 (state transition
model), and then evaluates the body recursively. Whenever
the body is true the variable/relation in the head will be
sampled and added to the particle.

To understand the described algorithm let us con-
sider the weight evaluation (Step (1)) for the observation
obsPos(1)t+1 = value related to object 1. The algorithm
searches the definition of obsPos(1)t+1, given by clause
(3). This clause needs pos(1)t+1, that is the next position of
object 1; therefore the algorithm tests clause (8) that defines
pos(1)t+1 with substitution A = 1. If near(1, B)t is false for
any object B, the body of (8) is not true, and the inference al-
gorithm will backtrack and search for another clause that de-
fines pos(1)t+1. In this situation, the remaining conditions in
the body of (8) are not tested, such as interaction(1, B)t,
for any B. If the set of random variables interaction(1, B)t
is never tested in the entire filtering step, then pos(1)t+1

is independent of interaction(1, B)t given the particle,
therefore the variables interaction(1, B)t are not sampled.
On the other hand, if near(1, B)t, not(action(move(1,))
and not(action(move(B,)) are true for a particular B,
then interaction(1, B)t needs to be evaluated, hence the
mentioned independence is context-specific.

Step (2) samples random variables xmt+1 ⊆ xat+1

that depend on the previous partial state x
PI(i)
t to

satisfy condition 3 in Section VI-A. For example,
in the magnetism model we impose that the interac-
tion type remains constant for each pair of objects
(clause (6)). The algorithm will (deterministically) sample
interaction(A, B)t+1 = interaction(A, B)t only for A, B
such that interaction(A, B)t ∈ xPI(i)

t .
On the contrary, Step (2) does not sample variables xat+1

that depend only on the partial state x
PI(i)
t+1 . For example,

clause (4) is not evaluated for time t+ 1, therefore variables
near(A, B)t+1 are not sampled, at least in the current particle

2768

(a) 3 objects (b) 3 objects (c) 4 objects (d) 4 objects
(e) Particles: position pre-
diction (f) Experiment

Fig. 2: (a-d) Total variation distance between the ideal type distribution and the estimation provided by the DCPF and
classical PF for a predefined set of observations; the classical particle filter sample the entire state, while DCPF keeps partial
particles. Performance improvement increases with the number of objects (e) Objects’ position prediction when close to
another object; (f) experimental setup

filter step t→ t+1. After Step (2) any marginalized random
variable at time t+1 must be derivable from x

PI(i)
t+1 together

with the distributional program. This condition avoids the
need to go back in time during filtering or query evaluation,
thus previous partial states xPI(i)

0:t can be forgotten. However,
it may require to perform belief update for an unknown
number of marginalized variables. This issue is solved using
clauses that directly define the belief distribution over time
for some of the marginalized random variables. For example,
(5) and (7) describe the distribution of not yet sampled
variables interaction(A, B)t and type(C)t respectively.
Alternatively, under some constraints, lifted inference might
be used to perform belief update of a set of variables together,
but this solution is not investigated in this paper.

The described algorithm performs forward reasoning be-
cause it samples the next state starting from the current state
even though it is based on backward reasoning to determine
state variables relevant to belief update. If we apply a naive
forward reasoning algorithm instead, it would generate a
large or even infinite number of variables. Our algorithm
generates partial interpretations and any marginalized vari-
able can be derived from the partial interpretation using
the same inference procedure. After the belief update, the
particle will be partitioned as depicted in Figure 1, satisfying
the conditions described in Section VI-A.

VII. EXPERIMENTS

This section answers the following questions:
(Q1) Does the algorithm obtain the correct results?
(Q2) How do the DCPF and the classical particle filter

compare?
(Q3) Is the DCPF suitable for real-world applications?

We compared two algorithms: the classical particle filter
and our DCPF. The classical particle filter samples the entire
state every step with a forward reasoning procedure. All
algorithms were implemented in YAP Prolog and run on an
Intel Core i5 3.3GHz for simulations and on a laptop Core
i7 for the real-world experiment. For the evaluation of the
algorithm we used the magnetism scenario.

In the first experiment we tested the correctness of DCPF
(Q1) using a predefined sequence of actions and observations
and compared the results with the expected outcome. In

particular we simulated the observations of three objects a,
b, c and the following three interactions in order: attraction
of pairs (a,b) and (b,c), absence of interaction for (a,c).
Assuming those interactions known, we can infer that the
objects a, b, and c are respectively ferromagnetic, magnet
and ferromagnetic; other combinations are not possible. The
DCPF with the model described in section V converges to the
expected solution for a predefined sequence of observations
that simulates those interactions. In addition, we computed
the three object type distribution given attraction (a,b) and
(b,c). Then we computed the four objects’ type distributions
given attraction (a,b) and (b,c) and absence of interaction
between (a,d), where d is another object. Therefore, we com-
pared those exact distributions with the DCPF and classical
particle filter estimations after a set of observations that sim-
ulate these interactions. It is clear that the type distributions
are analytically computed in a simplified model where we
assume the object interactions to be known. Therefore, the
DCPF predicted distribution is expected to be affected by an
error with respect to the ideal case. Indeed, the interactions
are estimated only from the object positions. To measure
the error between the predicted and the exact posteriors we
use the total variation divergence (i.e., the sum of absolute
differences). Figure 2 shows that both algorithms converge
to the correct results (Q1), but our DCPF produces lower
errors when compared to the classical particle filter (Q2) for
the same number of particles (figures 2b, 2d) and for the
same execution time (figures 2a, 2c). This is because DCPF
samples only variables relevant for belief update, improving
time performance. This speed improvement is more evident
for a growing number of objects, as we can see comparing
figures 2a with 2c and 2b with 2d. Indeed, the state space
becomes larger, thus the computational difference between
filtering the entire state and filtering a partial state increases.
In addition, DCPF performs a kind of Rao-Blackwellization
marginalizing a subset of variables, therefore we obtain a
reduction of the total variation distance.

An optimized propositional particle filter can be faster
than our DCPF when the state space is relatively small.
However, the state space becomes larger and larger for an
increasing number of objects and relations between them. In
addition, general knowledge representation about the world

2769

and objects is less straightforward in a propositional (non-
relational) model. Furthermore, additional problems arise
for a heterogeneous state space, where each possible world
can contain different variables. In contrast, in distributional
clauses and its dynamic extension we can easily integrate
probabilistic as well as deterministic background knowledge
exploiting the relational representation. For example we
can integrate ontologies about objects, their properties and
relations between them. The described inference algorithm
will query that knowledge base whenever required, keeping
acceptable performance.

We ran similar experiments with real-world data (Q3):
we used magnets, iron-made and nonmagnetic objects with
markers on them for an easy detection with a camera
(figure 2f). We tested pairs of objects, as described above,
putting an object near the other. Since the displacement
can be small we pull one object after the attraction, hence
the other object remains attached proving further evidence
of attraction. The estimated distribution in this scenario
converges to the ideal distribution up to a small but inevitable
error. In the end, we continued the experiment adding new
objects and testing them with previous objects.

As described before, a relational representation al-
lows to perform complex queries exploiting a back-
ground knowledge. The queries can refer to static knowl-
edge or dynamic variables updated in the particle fil-
ter. In the magnetism experiment, we added the def-
inition of relations rightOf(A, B)t, leftOf(A, B)t and
color(A). Therefore, we can perform simple queries
such as type(1) = magnet to compute the probability
that 1 is a magnet, or more complex queries such as
(type(B) = magnet, rightOf(A, B)t, color(A, green)), to
list all pairs (A, B) such that B is a magnet with a green
object A on the right; for each pair (A, B) a probability that
the query is true is provided. A video of the experiment
is available at https://dtai.cs.kuleuven.be/ml/
systems/DC/dcpf.html.

VIII. RELATED WORK

A. Theoretical works

Our particle filter is related to probabilistic programming
languages such as BLOG [8], Church [14], ProbLog [12],
and the distributional clauses of [3]. While these languages
are expressive enough to be used for modeling dynamic
relational domains, these languages do not support filtering,
which makes inference prohibitely slow for dynamic models.

There exist SRL approaches for temporal models. A
variant of BLOG for dynamic domains and filtering has
been proposed (but no experimental results are available in
the literature). Logical HMMs [15] employ logical atoms
as observations and states and hence, their expressivity
is more limited. The lifted relational Kalman filter [16],
performs efficient lifted exact inference for continuous dy-
namic domains but assumes Gaussian models. The relational
particle filter of [17] and CPT-L [18] cannot handle partial
particles. Finally, the approaches that are most similar to

ours are those of [19] and [20]. The former employs first-
order formulas to represent a set of states called hypothesis;
these are similar to our partial interpretations in that they
represent a potentially infinite number of states. The key
difference is that our approach explicitly defines random
variables, (in)dependence assumptions, and their conditional
distributions in relationship to other random variables, which
allows us to efficiently compute the distribution of a random
variable that needs to be sampled and added to the particle.
In [20] the filtering problem is converted into a deterministic
first order logic one. While their framework is suited for
planning domains defined in probabilistic STRIPS, it does
not define a sensor model.

Furthermore, none of the frameworks of [19], [20], [21]
supports dealing with continuous random variables (other
than through discretization), therefore these techniques can-
not deal with real-world applications in robotics. Discretiza-
tion is not always a good solution, and it can dramatically
increase the number of states, therefore it is unclear whether
these algorithms would maintain good performance in such
cases. Finally, their FOL representation allows discrete and
fixed probabilities (for the state transition model and mea-
surement model), instead DCPF provides a flexible language
to represent continuous or discrete distributions that can be
parameterized by other random variables or logical variables
used in the body. This allows a compact model and faster
inference.

Several improvements to classical particle filtering have
been proposed, such as Rao-Blackwellization [22] and Fac-
tored Particle Filtering [23], which support continuous and
discrete variables and cluster the state space reducing the
variance and improving the accuracy. These methods are
effective, but they consider a fixed state vector and do not
exploit a relational representation and partial states. They
are also complementary to our work and could be adapted
in future work.

B. Applications

Some state estimation applications with a relational rep-
resentation have been proposed. The relational particle filter
of [24] uses relations such as ‘walking together’ in people
tracking to improve prediction and the tracking process. They
divide the state in two sets: object attributes and relations,
making some assumptions to speed up inference. In their
approach a relation can be true or false. In contrast, our
approach does not make a real distinction between attributes
and relations, indeed, each random variable has a relational
representation, regardless of the distribution (binary, discrete
or continuous). This allows parametrization and template
definition for any kind of random variable. Furthermore, our
language and inference algorithm are more general, keeping
inference relatively fast. In addition, it is not clear if they can
support partial states and integrate background knowledge
while keeping good performance. A relational representation
has been used in [25] for situation characterization over
time. However, this work is based on HMMs and uses
only binary relations (true or false). Interesting works have

2770

been proposed [26], [27] for manipulation tasks exploiting
a relational representation. Those works integrate relational
knowledge about the world to reason about the objects and
perform complex tasks. For probabilistic inference and belief
update they use MLNs (Markov Logic Networks). However,
MLNs are generally slow and not suited for belief update
over time, indeed they use an update rate around 0.1 Hz.

IX. CONCLUSIONS
We proposed a flexible representation for hybrid relational

domains in temporal models and provided an efficient in-
ference algorithm for filtering. This framework exploits the
relational representation and the (in)dependence assumptions
to reduce the particle size (through partial interpretations)
and the inference cost. DCPF is particularly suited for
(probabilistic) relational models that involve objects and re-
lations between them. It performs fast inference about static
variables/relations (e.g., from an ontology) and dynamic
variables/relations in the same framework. It was empirically
evaluated and applied in the magnetism scenario. The results
show that DCPF outperforms the classical particle filter in
those models, and is promising for robotics applications.

ACKNOWLEDGMENTS
We thank McElory Hoffmann, Guy Van den Broeck and

Ingo Thon for the fruitful discussions and collaborations
during the early stages of this work.

REFERENCES

[1] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, Eds.,
Probabilistic Inductive Logic Programming, Theory and Applications,
ser. Lecture Notes in Artificial Intelligence. Springer, 2008.

[2] L. Getoor and B. Taskar, An Introduction to Statistical Relational
Learning. MIT Press, 2007.

[3] B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt,
“The magic of logical inference in probabilistic programming,” Theory
and Practice of Logic Programming, 2011.

[4] T. Sato, “A statistical learning method for logic programs with
distribution semantics,” in Proceedings of the Twelth International
Conference on Logic Programming. MIT Press, 1995, pp. 715–729.

[5] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering,” STATISTICS AND COM-
PUTING, vol. 10, no. 3, pp. 197–208, 2000.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[7] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Journal of basic Engineering, vol. 82, 1960.

[8] B. Milch, B. Marthi, S. Russell, D. Sontag, D. Ong, and A. Kolobov,
“BLOG: Probabilistic models with unknown objects,” in IJCAI, 2005.

[9] F. Bancilhon and R. Ramakrishnan, “An amateur’s introduction to
recursive query processing strategies,” SIGMOD Record, vol. 15, pp.
16–51, 1986.

[10] G. Kitagawa, “Monte Carlo Filter and Smoother for Non-Gaussian
Nonlinear State Space Models,” Journal of Computational and Graph-
ical Statistics, vol. 5, no. 1, pp. 1–25, 1996.

[11] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-
blackwellised particle filtering for dynamic bayesian networks,” in
Proceedings of UAI 2000. Morgan Kaufmann, 2000, pp. 176–183.

[12] A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De
Raedt, “On the efficient execution of ProbLog programs,” in Logic
Programming, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, pp. 175–189.

[13] T. Swift and D. S. Warren, “Xsb: Extending prolog with tabled logic
programming,” CoRR, vol. abs/1012.5123, 2010.

[14] N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum, “Church: A language for generative models,” in UAI,
2008, pp. 220–229.

[15] K. Kersting, L. De Raedt, and T. Raiko, “Logical hidden markov
models,” Journal of Artificial Intelligence Research, vol. 25, 2006.

[16] J. Choi, A. Guzman-Rivera, and E. Amir, “Lifted relational kalman
filtering,” in IJCAI, 2011, pp. 2092–2099.

[17] C. E. Manfredotti, D. J. Fleet, H. J. Hamilton, and S. Zilles, “Relational
particle filtering,” Monte Carlo Methods for Modern Applications,
2010 NIPS Workshop, Whistler, B.C., December 2010.

[18] I. Thon, N. Landwehr, and L. De Raedt, “Stochastic relational
processes: Efficient inference and applications.” Machine Learning,
vol. 82, 2011.

[19] L. S. Zettlemoyer, H. M. Pasula, and L. P. Kaelbling, “Logical particle
filtering,” in In Proceedings of the Dagstuhl Seminar on Probabilistic,
Logical, and Relational Learning, 2007.

[20] H. Hajishirzi and E. Amir, “Sampling first order logical particles,” in
UAI, 2008.

[21] S. Natarajan, H. H. Bui, P. Tadepalli, K. Kersting, and W. keen
Wong, “Logical hierarchical hidden markov models for modeling user
activities,” in In Proc. of ILP-08, 2008.

[22] G. Casella and C. P. Robert, “Rao-Blackwellisation of Sampling
Schemes,” Biometrika, vol. 83, no. 1, pp. 81–94, 1996.

[23] A. Pfeffer, S. Das, D. Lawless, and B. Ng, “Factored reasoning for
monitoring dynamic team and goal formation,” Inf. Fusion, vol. 10,
no. 1, pp. 99–106, Jan. 2009.

[24] L. Cattelani, C. Manfredotti, and E. Messina, “A particle filtering
approach for tracking an unknown number of objects with dynamic
relations,” Journal of Mathematical Modelling and Algorithms in
Operations Research, pp. 1–19, 2012.

[25] D. Meyer-Delius, C. Plagemann, G. Wichert, W. Feiten, G. Lawitzky,
and W. Burgard, “A probabilistic relational model for characterizing
situations in dynamic multi-agent systems,” in Data Analysis, Machine
Learning and Applications. Springer Berlin Heidelberg, 2008.

[26] M. Tenorth and M. Beetz, “KnowRob - Knowledge Processing for
Autonomous Personal Robots,” in IEEE/RSJ International Conference
on Intelligent RObots and Systems., 2009, pp. 4261–4266.

[27] M. Beetz, D. Jain, L. Mosenlechner, M. Tenorth, L. Kunze, N. Blodow,
and D. Pangercic, “Cognition-enabled autonomous robot control for
the realization of home chore task intelligence,” Proceedings of the
IEEE, vol. 100, no. 8, pp. 2454–2471, Aug.

2771

